Skip to main content
Log in

Facile purification of ultrathin Au nanowires: A solvent exclusion method

简单地纯化超细金纳米线的方法: 溶剂排除法

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Ultrathin Au nanowires are always synthesized with 2 nm Au nanoparticles as the by-product, and their separation has been a long-standing problem. In this work, we show that high-purity (>99%) separation can be achieved using the solvent exclusion method: Adding hexane would cause water to be excluded from the initial water-THF mixture. The excluded water preferentially nucleates on the oleylamine-bilayer of the nanowires, transferring them into the water phase. Careful control experiments were conducted to establish the purification mechanism. The facile method can be generally applied to purify ultrathin Au nanowires with short lengths (470 and 130 nm), which has not been realized using the conventional methods.

摘要

在超细Au纳米线的合成过程中常伴随着2 nm Au纳米颗粒这一副产物, 两者如何分离是长期存在的问题. 本研究通过使用溶剂排除法实现了高纯度(>99%)分离: 加入正己烷会导致水从最初的水-THF混合物中被排除. 被排除的水优先在纳米线表面吸附的油胺双分子层上成核, 从而将纳米线转移到水相中. 本文通过仔细地对照实验建立了纯化机理. 这种简便的方法可以用于传统方法无法实现的短的超细金纳米线(470和130 nm)的纯化.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang B, Han Y, Xu S, et al. Mechanically assisted self-healing of ultrathin gold nanowires. Small, 2018, 14: 1704085

    Article  Google Scholar 

  2. Chen Y, Ouyang Z, Gu M, et al. Mechanically strong, optically transparent, giant metal superlattice nanomembranes from ultrathin gold nanowires. Adv Mater, 2013, 25: 80–85

    Article  CAS  PubMed  Google Scholar 

  3. Mai HL, Cui XY, Ringer SP. Mechanical properties of ultrathin gold nanowires from first principles: Interdependencies between size, morphology, and twin boundaries. Phys Rev Mater, 2020, 4: 086003

    Article  CAS  Google Scholar 

  4. Leelavathi A, Madras G, Ravishankar N. Ultrathin Au nanowires supported on rGO/TiO2 as an efficient photoelectrocatalyst. J Mater Chem A, 2015, 3: 17459–17468

    Article  CAS  Google Scholar 

  5. Zhu W, Zhang YJ, Zhang H, et al. Active and selective conversion of CO2 to CO on ultrathin Au nanowires. J Am Chem Soc, 2014, 136: 16132–16135

    Article  CAS  PubMed  Google Scholar 

  6. Gong S, Zhao Y, Shi Q, et al. Self-assembled ultrathin gold nanowires as highly transparent, conductive and stretchable supercapacitor. Electroanalysis, 2016, 28: 1298–1304

    Article  CAS  Google Scholar 

  7. Gong S, Schwalb W, Wang Y, et al. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat Commun, 2014, 5: 3132

    Article  PubMed  Google Scholar 

  8. Muratova IS, Mikhelson KN, Ermolenko YE, et al. Chemiresistors based on ultrathin gold nanowires for sensing halides, pyridine and dopamine. Sens Actuat B-Chem, 2016, 232: 420–427

    Article  CAS  Google Scholar 

  9. Maurer JHM, González-García L, Backes IK, et al. Direct nanoimprinting of a colloidal self-organizing nanowire ink for flexible, transparent electrodes. Adv Mater Technologies, 2017, 2: 1700034

    Article  Google Scholar 

  10. Jiang J, Zhang Y, Zhou J, et al. Facile surface modification of ultrathin gold nanowires film with hydrogen sulfide for improvement of stability. Adv Eng Mater, 2022, 24: 2200509

    Article  CAS  Google Scholar 

  11. Feng H, Yang Y, You Y, et al. Simple and rapid synthesis of ultrathin gold nanowires, their self-assembly and application in surface-enhanced Raman scattering. Chem Commun, 2009, 1984

  12. Zhang Y, Liu J, Li D, et al. Self-assembly of ultrathin gold nanowires and single walled carbon nanotubes as a highly sensitive substrate for surface enhanced Raman spectroscopy. New J Chem, 2016, 40: 7286–7289

    Article  CAS  Google Scholar 

  13. Bai L, Jiang F, Wang R, et al. Ultrathin gold nanowires to enhance radiation therapy. J Nanobiotechnol, 2020, 18: 131

    Article  CAS  Google Scholar 

  14. Halder A, Ravishankar N. Ultrafine single-crystalline gold nanowire arrays by oriented attachment. Adv Mater, 2007, 19: 1854–1858

    Article  CAS  Google Scholar 

  15. Pazos-Pérez N, Baranov D, Irsen S, et al. Synthesis of flexible, ultrathin gold nanowires in organic media. Langmuir, 2008, 24: 9855–9860

    Article  PubMed  Google Scholar 

  16. Wang C, Hu Y, Lieber CM, et al. Ultrathin Au nanowires and their transport properties. J Am Chem Soc, 2008, 130: 8902–8903

    Article  CAS  PubMed  Google Scholar 

  17. Huo Z, Tsung C, Huang W, et al. Sub-two nanometer single crystal Au nanowires. Nano Lett, 2008, 8: 2041–2044

    Article  CAS  PubMed  Google Scholar 

  18. Li Z, Tao J, Lu X, et al. Facile synthesis of ultrathin Au nanorods by aging the AuCl(oleylamine) complex with amorphous Fe nanoparticles in chloroform. Nano Lett, 2008, 8: 3052–3055

    Article  CAS  PubMed  Google Scholar 

  19. Lu X, Yavuz MS, Tuan HY, et al. Ultrathin gold nanowires can be obtained by reducing polymeric strands of oleylamine-AuCl complexes formed via aurophilic interaction. J Am Chem Soc, 2008, 130: 8900–8901

    Article  CAS  PubMed  Google Scholar 

  20. Takahata R, Yamazoe S, Koyasu K, et al. Surface plasmon resonance in gold ultrathin nanorods and nanowires. J Am Chem Soc, 2014, 136: 8489–8491

    Article  CAS  PubMed  Google Scholar 

  21. Loubat A, Impéror-Clerc M, Pansu B, et al. Growth and self-assembly of ultrathin Au nanowires into expanded hexagonal superlattice studied by in situ SAXS. Langmuir, 2014, 30: 4005–4012

    Article  CAS  PubMed  Google Scholar 

  22. Chen Y, Wang Y, Peng J, et al. Assembly of ultrathin gold nanowires: From polymer analogue to colloidal block. ACS Nano, 2017, 11: 2756–2763

    Article  CAS  PubMed  Google Scholar 

  23. Lang EN, Pintro CJ, Claridge SA. Trans and saturated alkyl impurities in technical-grade oleylamine: Limited miscibility and impacts on nanocrystal growth. Chem Mater, 2022, 34: 5273–5282

    Article  CAS  Google Scholar 

  24. Li B, Jiang B, Tang H, et al. Unconventional seed-mediated growth of ultrathin Au nanowires in aqueous solution. Chem Sci, 2015, 6: 6349–6354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Qian Z, Park SJ. Silver seeds and aromatic surfactants facilitate the growth of anisotropic metal nanoparticles: Gold triangular nanoprisms and ultrathin nanowires. Chem Mater, 2014, 26: 6172–6177

    Article  CAS  Google Scholar 

  26. Layani-Tzadka ME, Tirosh E, Markovich G. Patterning metal nanowire-based transparent electrodes by seed particle printing. ACS Omega, 2017, 2: 7584–7592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Imura Y, Tanuma H, Sugimoto H, et al. Water-dispersible ultrathin Au nanowires prepared using a lamellar template of a long-chain amidoamine derivative. Chem Commun, 2011, 47: 6380–6382

    Article  CAS  Google Scholar 

  28. Morita C, Tanuma H, Kawai C, et al. Room-temperature synthesis of two-dimensional ultrathin gold nanowire parallel array with tunable spacing. Langmuir, 2013, 29: 1669–1675

    Article  CAS  PubMed  Google Scholar 

  29. Miyajima N, Wang YC, Nakagawa M, et al. Water-phase synthesis of ultrathin Au nanowires with a two-dimensional parallel array structure. Bull Chem Soc Jpn, 2020, 93: 1372–1377

    Article  CAS  Google Scholar 

  30. Loubat A, Lacroix LM, Robert A, et al. Ultrathin gold nanowires: Soft-templating versus liquid phase synthesis, a quantitative study. J Phys Chem C, 2015, 119: 4422–4430

    Article  CAS  Google Scholar 

  31. Bai L, Ma X, Liu J, et al. Rapid separation and purification of nano-particles in organic density gradients. J Am Chem Soc, 2010, 132: 2333–2337

    Article  CAS  PubMed  Google Scholar 

  32. Xu J, Wang H, Liu C, et al. Mechanical nanosprings: Induced coiling and uncoiling of ultrathin Au nanowires. J Am Chem Soc, 2010, 132: 11920–11922

    Article  CAS  PubMed  Google Scholar 

  33. Lu Y, Cheng X, Li H, et al. Braiding ultrathin Au nanowires into ropes. J Am Chem Soc, 2020, 142: 10629–10633

    Article  CAS  PubMed  Google Scholar 

  34. Gong S, Zhao Y, Yap LW, et al. Fabrication of highly transparent and flexible nanomesh electrode via self-assembly of ultrathin gold nanowires. Adv Elect Mater, 2016, 2: 1600121

    Article  Google Scholar 

  35. Lang EN, Porter AG, Ouyang T, et al. Oleylamine impurities regulate temperature-dependent hierarchical assembly of ultranarrow gold nanowires on biotemplated interfaces. ACS Nano, 2021, 15: 10275–10285

    Article  CAS  PubMed  Google Scholar 

  36. Wang Q, Zhao D, Yu J, et al. Self-templating synthesis of Pd4S hollow nanospheres as electrocatalysts for oxygen reduction reaction. Nano Res, 2023, 16: 2597–2603

    Article  CAS  Google Scholar 

  37. Reiser B, Gerstner D, Gonzalez-Garcia L, et al. Multivalent bonds in self-assembled bundles of ultrathin gold nanowires. Phys Chem Chem Phys, 2016, 18: 27165–27169

    Article  CAS  PubMed  Google Scholar 

  38. Gao H, Bettscheider S, Kraus T, et al. Entropy can bundle nanowires in good solvents. Nano Lett, 2019, 19: 6993–6999

    Article  CAS  PubMed  Google Scholar 

  39. Robbins GP, Hallett JP, Bush D, et al. Liquid-liquid equilibria and partitioning in organic-aqueous systems. Fluid Phase Equilib, 2007, 253: 48–53

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (91956109) and Zhejiang Provincial Natural Science Foundation (2022XHSJJ002), Hangzhou Municipal Funding, Team of Innovation (TD2022004) and the Foundation of Westlake University. We thank Westlake University Instrumentation and Service Center for Molecular Sciences for the facility support and technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Yang Q and Chen H conceived the idea and explained the mechanism of separation, contributing to the writing and revision of the manuscript. Yang Q conducted the syntheses, separations, and characterizations of the nanomaterials. Wang R and Cheng X participated in discussions, providing valuable insights into the mechanisms.

Corresponding author

Correspondence to Hongyu Chen  (陈虹宇).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Supporting data are available in the online version of the paper.

Qian Yang is now a PhD student at Zhejiang University under the supervision of Prof. Hongyu Chen. Her research interest focuses on the synthesis and mechanism study of ultrathin nanomaterials.

Hongyu Chen received his BSc degree from the University of Science and Technology of China and then received his PhD degree from Yale University in 2004. He joined Nanyang Technological University, Singapore and was promoted to a tenured Associate Professor. In 2016, he moved back to China and joined Nanjing Tech University, where he co-founded the Institute of Advanced Synthesis and served as Executive Dean. He is now a tenured full professor at Westlake University. His research interest centers on the advancement of synthetic capability at the nanoscale, more specifically on the development of synthetic methods, understanding the underlying principles and applying these tools for novel nanostructures and new applications. See https://nanosynthesis.github.io/ for more details.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Wang, R., Cheng, X. et al. Facile purification of ultrathin Au nanowires: A solvent exclusion method. Sci. China Mater. 67, 1301–1309 (2024). https://doi.org/10.1007/s40843-024-2813-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-024-2813-7

Keywords

Navigation