Skip to main content
Log in

Covalently bonded metal-organic groups anodes for high-performance potassium-ion batteries

具有共价键特征的金属-有机基团促进高性能钾离子电池

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

A key challenge in potassium ion batteries (PIBs) is the design of anode materials with advanced structures that can enable fast charge transport to enhance potassium storage performance. The use of iron carbodiimide (FeNCN) as the anode, containing a considerable number of covalent bonds and a stable structure at the molecular level, enables the achievement of excellent electrochemical performance of potassium storage systems. The FeNCN anode exhibits high electrical conductivity with a band gap close to 0 eV and decent structural stability owing to its covalently bonded structure. In addition, the amorphous reaction products provide multiple pathways to facilitate ion diffusion. Consequently, the FeNCN anode demonstrated a high reversible specific capacity (600 mA h g−1 at a current density of 50 mA g−1), remarkable rate capability, and long cycle life (a reversible specific capacity of 400 mA h g−1 at a current density of 500 mA g−1 over 300 cycles). The conversion mechanism between Fe2+ and K+ was revealed by theoretical simulation, in situ X-ray diffraction analysis, and X-ray photoelectron spectroscopy. Moreover, the as-assembled FeNCN//perylene-3,4,9,10-tetracarboxylic dianhydride full cell demonstrated a high energy density of 184.7 W h kg−1 (the highest among all iron-based PIBs) with a power density of 198.6 W kg−1, which is superior to the previously reported values for PIBs or potassium-ion hybrid capacitors.

摘要

钾离子电池(PIBs)面临的一个关键问题是设计具有先进结构的负极材料, 以实现快速电荷传输以提高钾的存储性能. 采用碳二亚胺铁(FeNCN)作为阳极, 由于其含有一定数量的共价键且在分子水平上具有稳定的结构, 使得储钾系统能够实现优异的电化学性能. FeNCN阳极具有高导电性, 带隙接近0 eV, 并且由于其共价键结构具有良好的结构稳定性. 此外, 无定形反应产物也为离子扩散提供了多种途径. 因此, FeNCN阳极表现出高可逆比容量(在50 mA g−1电流密度下具有600 mA h g−1比容量), 显著的倍率性能和长寿命循环(电流密度为500 mA g−1时拥有400 mA h g−1比容量且超过300次循环). 通过理论模拟、 X射线原位衍射分析和X射线光电子能谱分析揭示了Fe2+和K+之间的转化反应机理. 此外, 将FeNCN负极与苝-3,4,9,10-四羧酸二酐正极材料匹配, 组装成的全电池在198.6 W kg−1的功率密度下实现了184.7 W h kg−1的超高能量密度, 明显高于以往所有铁基负极的PIBs或钾离子混合电容器.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hosaka T, Kubota K, Hameed AS, et al. Research development on K-ion batteries. Chem Rev, 2020, 120: 6358–6466

    CAS  Google Scholar 

  2. Zhu J, Liu X, Wang W, et al. Universal low-temperature and template-free synthesis of sponge-like porous micron-sized elemental materials for high-performance lithium/potassium storage. Nano Energy, 2022, 95: 106981

    CAS  Google Scholar 

  3. Ge J, Fan L, Rao AM, et al. Surface-substituted Prussian blue analogue cathode for sustainable potassium-ion batteries. Nat Sustain, 2021, 5: 225–234

    Google Scholar 

  4. Yu D, Zhang W, Zhang Q, et al. Tuning anion chemistry enables high-voltage and stable potassium-based tellurium-graphite batteries. Nano Energy, 2022, 92: 106744

    CAS  Google Scholar 

  5. Wang W, Zhou J, Wang Z, et al. Short-range order in mesoporous carbon boosts potassium-ion battery performance. Adv Energy Mater, 2018, 8: 1701648

    Google Scholar 

  6. Min X, Xiao J, Fang M, et al. Potassium-ion batteries: Outlook on present and future technologies. Energy Environ Sci, 2021, 14: 2186–2243

    CAS  Google Scholar 

  7. Gu M, Rao AM, Zhou J, et al. In situ formed uniform and elastic SEI for high-performance batteries. Energy Environ Sci, 2023, 16: 1166–1175

    CAS  Google Scholar 

  8. Ge J, Wang B, Wang J, et al. Nature of FeSe2/N-C anode for high performance potassium ion hybrid capacitor. Adv Energy Mater, 2019, 10: 1903277

    Google Scholar 

  9. Huang YF, Yang YC, Tuan HY. Construction of strongly coupled few-layer FePSe3-CNT hybrids for high performance potassium-ion storage devices. Chem Eng J, 2023, 451: 139013

    CAS  Google Scholar 

  10. Liu Y, Shi Y, Gao C, et al. Low-temperature potassium batteries enabled by electric and thermal field regulation. Angew Chem Int Ed, 2023, 62: e202300016

    CAS  Google Scholar 

  11. Chen K, Fehse M, Laurita A, et al. Quantum-chemical study of the FeNCN conversion-reaction mechanism in lithium- and sodium-ion batteries. Angew Chem Int Ed, 2020, 59: 3718–3723

    CAS  Google Scholar 

  12. Guo P, Cao L, Wang R, et al. In situ construction of “anchor-like” structures in FeNCN for long cyclic life in sodium-ion batteries. Adv Funct Mater, 2020, 30: 2000208

    CAS  Google Scholar 

  13. Du Y, Zhang Z, Xu Y, et al. Metal sulfide-based potassium-ion battery anodes: Storage mechanisms and synthesis strategies. Acta Physico Chim Sin, 2022, 0: 2205017–0

    Google Scholar 

  14. Yan X, Ye Z, Ning G, et al. Molten salt pyrolysis synthesis of magnetic FeNCN nanorods and their visible-light-driven photocatalytic properties. Appl Surf Sci, 2020, 506: 145010

    CAS  Google Scholar 

  15. Li J, Wang R, Guo P, et al. Realizing fast charge diffusion in oriented iron carbodiimide structure for high-rate sodium-ion storage performance. ACS Nano, 2021, 15: 6410–6419

    CAS  Google Scholar 

  16. Sun J, Xu Y, Lv Y, et al. Recent advances in covalent organic framework electrode materials for alkali metal-ion batteries. CCS Chem, 2023, 5: 1259–1276

    CAS  Google Scholar 

  17. Sougrati MT, Darwiche A, Liu X, et al. Transition-metal carbodiimides as molecular negative electrode materials for lithium- and sodium-ion batteries with excellent cycling properties. Angew Chem Int Ed, 2016, 55: 5090–5095

    CAS  Google Scholar 

  18. Alahmadi M, Siaj M. Graphene-assisted magnetic iron carbide nanoparticle growth. ACS Appl Nano Mater, 2018, 1: 7000–7005

    CAS  Google Scholar 

  19. Liu XW, Cao Z, Zhao S, et al. Iron carbides in Fischer–Tropsch synthesis: Theoretical and experimental understanding in epsilon-iron carbide phase assignment. J Phys Chem C, 2017, 121: 21390–21396

    CAS  Google Scholar 

  20. Wei J, Xia D, Wei Y, et al. Probing the oxygen reduction reaction intermediates and dynamic active site structures of molecular and pyrolyzed Fe-N-C electrocatalysts by in situ Raman spectroscopy. ACS Catal, 2022, 12: 7811–7820

    CAS  Google Scholar 

  21. Qi H, Hou Y, Wang W, et al. Controlled phase and crystallinity of FeNCN/NC dominating sodium storage performance. Dalton Trans, 2022, 51: 8223–8233

    CAS  Google Scholar 

  22. Müller RJ, Lan J, Lienau K, et al. Monitoring surface transformations of metal carbodiimide water oxidation catalysts by operando XAS and Raman spectroscopy. Dalton Trans, 2018, 47: 10759–10766

    Google Scholar 

  23. Zhu A, Qiao L, Tan P, et al. Iron-nitrogen-carbon species for oxygen electro-reduction and Zn-air battery: Surface engineering and experimental probe into active sites. Appl Catal B-Environ, 2019, 254: 601–611

    CAS  Google Scholar 

  24. He Q, Yu B, Li Z, et al. Density functional theory for battery materials. Energy Environ Mater, 2019, 2: 264–279

    CAS  Google Scholar 

  25. Wu S, Wang W, Shan J, et al. Conductive 1T-VS2-MXene heterostructured bidirectional electrocatalyst enabling compact Li-S batteries with high volumetric and areal capacity. Energy Storage Mater, 2022, 49: 153–163

    Google Scholar 

  26. Li W, Shen P, Yang L, et al. Novel Cu(Zn)-Ge-P compounds as advanced anode materials for Li-ion batteries. Energy Environ Sci, 2021, 14: 2394–2407

    CAS  Google Scholar 

  27. Jin T, Li H, Li Y, et al. Intercalation pseudocapacitance in flexible and self-standing V2O3 porous nanofibers for high-rate and ultra-stable K ion storage. Nano Energy, 2018, 50: 462–467

    CAS  Google Scholar 

  28. Gan Z, Yin J, Xu X, et al. Nanostructure and advanced energy storage: Elaborate material designs lead to high-rate pseudocapacitive ion storage. ACS Nano, 2022, 16: 5131–5152

    CAS  Google Scholar 

  29. Yuan D, Dou Y, Tian Y, et al. Robust pseudocapacitive sodium cation intercalation induced by cobalt vacancies at atomically thin Co1−xSe2/graphene heterostructure for sodium-ion batteries. Angew Chem Int Ed, 2021, 60: 18830–18837

    CAS  Google Scholar 

  30. Du Y, Weng W, Zhang Z, et al. Candied-haws-like architecture consisting of FeS2@C core-shell particles for efficient potassium storage. ACS Mater Lett, 2021, 3: 356–363

    CAS  Google Scholar 

  31. Hong W, Wang A, Li L, et al. Bi dots confined by functional carbon as high-performance anode for lithium ion batteries. Adv Funct Mater, 2020, 31: 2000756

    Google Scholar 

  32. Lai C, Zhang Z, Xu Y, et al. A general strategy for embedding ultrasmall CoMx nanocrystals (M = S, O, Se, and Te) in hierarchical porous carbon nanofibers for high-performance potassium storage. J Mater Chem A, 2021, 9: 1487–1494

    CAS  Google Scholar 

  33. Liu M, Xing Y, Wang J, et al. Besides the capacitive and diffusion control: Inner-surface controlled bismuth based electrode facilitating potassium-ion energy storage. Adv Funct Mater, 2021, 31: 2101868

    CAS  Google Scholar 

  34. Hu J, Xie Y, Zheng J, et al. Unveiling nanoplates-assembled Bi2MoO6 microsphere as a novel anode material for high performance potassium-ion batteries. Nano Res, 2020, 13: 2650–2657

    CAS  Google Scholar 

  35. Gaberšček M. Understanding Li-based battery materials via electrochemical impedance spectroscopy. Nat Commun, 2021, 12: 6513

    Google Scholar 

  36. Liu M, Zhang J, Sun Z, et al. Dual mechanism for sodium based energy storage. Small, 2023, 19: 2206922

    CAS  Google Scholar 

  37. Wang A, Hong W, Li L, et al. Hierarchical bismuth composite for fast lithium storage: Carbon dots tuned interfacial interaction. Energy Storage Mater, 2022, 44: 145–155

    Google Scholar 

  38. Liao J, Hu Q, Du Y, et al. Robust carbon nanotube-interwoven KFeSO4F microspheres as reliable potassium cathodes. Sci Bull, 2022, 67: 2208–2215

    CAS  Google Scholar 

  39. Liu S, Mao J, Zhang Q, et al. An intrinsically non-flammable electrolyte for high-performance potassium batteries. Angew Chem Int Ed, 2020, 59: 3638–3644

    CAS  Google Scholar 

  40. Fan L, Ma R, Yang Y, et al. Covalent sulfur for advanced room temperature sodium-sulfur batteries. Nano Energy, 2016, 28: 304–310

    CAS  Google Scholar 

  41. Niu X, Zhang Y, Tan L, et al. Amorphous FeVO4 as a promising anode material for potassium-ion batteries. Energy Storage Mater, 2019, 22: 160–167

    Google Scholar 

  42. Li S, Qin J, Gao T, et al. Fabrication of Fe3C nanoparticles embedded in N-doped carbon nanotubes/porous carbon 3D materials derived from distilled grains for high performance of potassium ion battery. J Alloys Compd, 2022, 912: 165130

    CAS  Google Scholar 

  43. Lu S, Wu H, Xu S, et al. Iron selenide microcapsules as universal conversion-typed anodes for alkali metal-ion batteries. Small, 2021, 17: 2005745

    CAS  Google Scholar 

  44. Park JS, Yang SY, Lee JK, et al. A novel strategy for encapsulating metal sulfide nanoparticles inside hollow carbon nanosphere-aggregated microspheres for efficient potassium ion storage. J Mater Chem A, 2022, 10: 17790–17800

    CAS  Google Scholar 

  45. Cui Y, Feng W, Wang D, et al. Water-soluble salt template-assisted anchor of hollow FeS2 nanoparticle inside 3D carbon skeleton to achieve fast potassium-ion storage. Adv Energy Mater, 2021, 11: 2101343

    CAS  Google Scholar 

  46. Wang WA, Huang H, Wang B, et al. A new dual-ion battery based on amorphous carbon. Sci Bull, 2019, 64: 1634–1642

    CAS  Google Scholar 

  47. Wei Z, Wang D, Yang X, et al. From crystalline to amorphous: An effective avenue to engineer high-performance electrode materials for sodium-ion batteries. Adv Mater Interfaces, 2018, 5: 1800639

    Google Scholar 

  48. Zhang Z, Li M, Gao Y, et al. Fast potassium storage in hierarchical Ca0.5Ti2(PO4)3@C microspheres enabling high-performance potassium-ion capacitors. Adv Funct Mater, 2018, 28: 1802684

    Google Scholar 

  49. Zhu Z, Cheng F, Hu Z, et al. Highly stable and ultrafast electrode reaction of graphite for sodium ion batteries. J Power Sources, 2015, 293: 626–634

    CAS  Google Scholar 

  50. Ming F, Liang H, Zhang W, et al. Porous MXenes enable high performance potassium ion capacitors. Nano Energy, 2019, 62: 853–860

    CAS  Google Scholar 

  51. Lei K, Wang C, Liu L, et al. A porous network of bismuth used as the anode material for high-energy-density potassium-ion batteries. Angew Chem Int Ed, 2018, 57: 4687–4691

    CAS  Google Scholar 

  52. Le Z, Liu F, Nie P, et al. Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2-graphene nanocomposite enables high-performance sodium-ion capacitors. ACS Nano, 2017, 11: 2952–2960

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (52074113, 22005091 and 22005092), Hunan University Outstanding Youth Science Foundation (531118040319), the Science and Technology Innovation Program of Hunan Province (2021RC3055), Changsha Municipal Natural Science Foundation (43184), the CITIC Metals Ningbo Energy Co., Ltd. (H202191380246), Chongqing Talents: Exceptional Young Talents Project (CQYC202105015), and Shenzhen Virtual University Park Basic Research Project of Free exploration (2021Szvup036).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Zhu J conceived the idea and directed the study. Jia X performed the main experiments. Jia X and Li S discussed the experiments and data. Jia X and Chen S, Wang L, Sun H, Fu L, and Zhu J drafted the manuscript. Deng H and Yuan Y participated in the sample preparation and characterization. All authors participated in the interpretation of the data and preparation of the final manuscript.

Corresponding authors

Correspondence to Licai Fu  (符立才) or Jian Zhu  (朱建).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Jian Zhu received a PhD degree in 2017 from Hunan University. Now, he is a professor and doctoral supervisor at Hunan University. He mainly investigates the application of functional nanomaterials in electrochemical energy storage.

Xinxin jia is pursuing her doctoral degree at the College of Materials Science and Engineering, Hunan University. Her research interest is anode materials and their applications in PIBs.

Supplementary information Supporting data are available in the online version of the paper.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, X., Li, S., Chen, S. et al. Covalently bonded metal-organic groups anodes for high-performance potassium-ion batteries. Sci. China Mater. 66, 3827–3836 (2023). https://doi.org/10.1007/s40843-023-2532-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2532-x

Keywords

Navigation