Skip to main content
Log in

Recent application progress and key challenges of biomass-derived carbons in resistive strain/pressure sensor

生物质衍生碳在电阻式应变/压力传感器中的最新应用进展与关键挑战

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Resistive strain/pressure sensors have attracted intensive attention due to their irreplaceable role in the fields of motor behavior monitoring, human health diagnosis, and human machine interface. Notably, the material and structural design have significant impacts on the performance of resistive strain/pressure sensors. Biomass-derived carbons (BDCs) are considered as popular candidates for realizing the fabrication of resistive strain/pressure sensors because of their excellent properties such as abundant sources, diverse structures, and satisfactory electrical conductivity. This review presents the recent progress of BDCs in the field of resistive strain/pressure sensors and their key challenges. First, the classification methods, evaluation criteria and sensing mechanisms of previously reported resistive strain/pressure sensors are systematically outlined and discussed. Subsequently, the preparation of BDCs with different macrostructures, including one-dimensional (1D), 2D, and 3D structures, and their recent progress in the field of resistive strain/pressure sensors are summarized. Next, the respective advantages of BDCs with different macroscopic structures in the field of resistive strain/pressure sensors are carefully analyzed, and the relationship between different structures and the comprehensive sensing performances of devices is discussed. Finally, the future prospects and major challenges are proposed for BDC-based resistive strain/pressure sensors, and some key future research directions are given.

摘要

近年来电阻式应变/压力传感器在运动行为监测、人类健康诊断和人机交互等领域展现了不可替代的作用, 因而刺激了人们对其需求的急剧增长. 材料和结构设计对电阻式应变/压力传感器的性能有着不可忽视的影响, 而生物质碳(BDCs)具有丰富的来源、多样的结构和令人满意的导电性等优良特性, 被认为是制造电阻式应变/压力传感器的优异候选材料之一. 本综述介绍了BDCs材料在电阻式应变/压力传感器领域的最新进展及其目前面临的主要挑战. 首先, 系统地概述和讨论了已报道的电阻式应变/压力传感器的分类方法、评价标准和传感机制.其次, 总结了具有不同宏观结构(包括一维、二维和三维结构)的BDCs材料的制备及其在电阻式应变/压力传感器领域的最新应用进展. 详细分析了具有不同宏观结构的BDCs材料在电阻应变/压力传感器领域的各自应用优势, 并讨论了不同宏观结构与器件综合传感性能之间的关系. 最后, 提出了基于BDCs材料的电阻式应变/压力传感器的未来前景和主要挑战, 及其未来发展的研究方向.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ha M, Lim S, Ko H. Wearable and flexible sensors for user-interactive health-monitoring devices. J Mater Chem B, 2018, 6: 4043–4064

    Article  CAS  Google Scholar 

  2. Wang X, Liu Z, Zhang T. Flexible sensing electronics for wearable/attachable health monitoring. Small, 2017, 13: 1602790

    Article  Google Scholar 

  3. Kim H, Ahn JH. Graphene for flexible and wearable device applications. Carbon, 2017, 120: 244–257

    Article  CAS  Google Scholar 

  4. Ma C, Ma MG, Si C, et al. Flexible MXene-based composites for wearable devices. Adv Funct Mater, 2021, 31: 2009524

    Article  CAS  Google Scholar 

  5. Wang H, Li Z, Liu Z, et al. Flexible capacitive pressure sensors for wearable electronics. J Mater Chem C, 2022, 10: 1594–1605

    Article  CAS  Google Scholar 

  6. Chao M, Wang Y, Ma D, et al. Wearable MXene nanocomposites-based strain sensor with tile-like stacked hierarchical microstructure for broad-range ultrasensitive sensing. Nano Energy, 2020, 78: 105187

    Article  CAS  Google Scholar 

  7. Liu L, Wang L, Liu X, et al. High-performance wearable strain sensor based on MXene@cotton fabric with network structure. Nanomaterials, 2021, 11: 889

    Article  CAS  Google Scholar 

  8. Huang L, Wang H, Wu P, et al. Wearable flexible strain sensor based on three-dimensional wavy laser-induced graphene and silicone rubber. Sensors, 2020, 20: 4266

    Article  CAS  Google Scholar 

  9. Zhang D, Zhang J, Wu Y, et al. Liquid metal interdigitated capacitive strain sensor with normal stress insensitivity. Adv Intelligent Syst, 2022, 4: 2100201

    Article  Google Scholar 

  10. Yoon SG, Koo HJ, Chang ST. Highly stretchable and transparent microfluidic strain sensors for monitoring human body motions. ACS Appl Mater Interfaces, 2015, 7: 27562–27570

    Article  CAS  Google Scholar 

  11. Yang G, Tang X, Zhao G, et al. Highly sensitive, direction-aware, and transparent strain sensor based on oriented electrospun nanofibers for wearable electronic applications. Chem Eng J, 2022, 435: 135004

    Article  CAS  Google Scholar 

  12. Zhang S, Wen L, Wang H, et al. Vertical CNT-ecoflex nanofins for highly linear broad-range-detection wearable strain sensors. J Mater Chem C, 2018, 6: 5132–5139

    Article  CAS  Google Scholar 

  13. Li Z, Ye L, Shen J, et al. Strain-gauge sensoring composite films with self-restoring water-repellent properties for monitoring human movements. Compos Commun, 2018, 7: 23–29

    Article  Google Scholar 

  14. Lee H, Glasper MJ, Li X, et al. Preparation of fabric strain sensor based on graphene for human motion monitoring. J Mater Sci, 2018, 53: 9026–9033

    Article  CAS  Google Scholar 

  15. Duan S, Wang Z, Zhang L, et al. A highly stretchable, sensitive, and transparent strain sensor based on binary hybrid network consisting of hierarchical multiscale metal nanowires. Adv Mater Technol, 2018, 3: 1800020

    Article  Google Scholar 

  16. Yin R, Yang S, Li Q, et al. Flexible conductive Ag nanowire/cellulose nanofibril hybrid nanopaper for strain and temperature sensing applications. Sci Bull, 2020, 65: 899–908

    Article  CAS  Google Scholar 

  17. Pan J, Yang M, Luo L, et al. Stretchable and highly sensitive braided composite yarn@polydopamine@polypyrrole for wearable applications. ACS Appl Mater Interfaces, 2019, 11: 7338–7348

    Article  CAS  Google Scholar 

  18. Veeralingam S, Badhulika S. Bi2S3/PVDF/PPy-based freestanding, wearable, transient nanomembrane for ultrasensitive pressure, strain, and temperature sensing. ACS Appl Bio Mater, 2021, 4: 14–23

    Article  CAS  Google Scholar 

  19. Yan T, Wang Z, Pan ZJ. Flexible strain sensors fabricated using carbon-based nanomaterials: A review. Curr Opin Solid State Mater Sci, 2018, 22: 213–228

    Article  CAS  Google Scholar 

  20. Li S, Xiao X, Hu J, et al. Recent advances of carbon-based flexible strain sensors in physiological signal monitoring. ACS Appl Electron Mater, 2020, 2: 2282–2300

    Article  CAS  Google Scholar 

  21. Jian M, Wang C, Wang Q, et al. Advanced carbon materials for flexible and wearable sensors. Sci China Mater, 2017, 60: 1026–1062

    Article  CAS  Google Scholar 

  22. Li W, Chen Z, Yu H, et al. Wood-derived carbon materials and light-emitting materials. Adv Mater, 2021, 33: 2000596

    Article  CAS  Google Scholar 

  23. Chen L, Bai L, Yeo J, et al. Wood-derived carbon with selectively introduced C=O groups toward stable and high capacity anodes for sodium storage. ACS Appl Mater Interfaces, 2020, 12: 27499–27507

    Article  CAS  Google Scholar 

  24. Deng L, Guo S, Zhou M, et al. A silk derived carbon fiber mat modified with Au@Pt urchilike nanoparticles: A new platform as electrochemical microbial biosensor. Biosens Bioelectron, 2010, 25: 2189–2193

    Article  CAS  Google Scholar 

  25. Matsagar BM, Yang RX, Dutta S, et al. Recent progress in the development of biomass-derived nitrogen-doped porous carbon. J Mater Chem A, 2021, 9: 3703–3728

    Article  CAS  Google Scholar 

  26. Zhu X, Yu S, Xu K, et al. Sustainable activated carbons from dead ginkgo leaves for supercapacitor electrode active materials. Chem Eng Sci, 2018, 181: 36–45

    Article  CAS  Google Scholar 

  27. Deng L, Yuan Y, Zhang Y, et al. Alfalfa leaf-derived porous heteroatom-doped carbon materials as efficient cathodic catalysts in microbial fuel cells. ACS Sustain Chem Eng, 2017, 5: 9766–9773

    Article  CAS  Google Scholar 

  28. Jiang L, Sheng L, Fan Z. Biomass-derived carbon materials with structural diversities and their applications in energy storage. Sci China Mater, 2018, 61: 133–158

    Article  CAS  Google Scholar 

  29. Chen Y, Guo X, Liu A, et al. Recent progress in biomass-derived carbon materials used for secondary batteries. Sustain Energy Fuels, 2021, 5: 3017–3038

    Article  CAS  Google Scholar 

  30. Wei L, Li JH, Chen C, et al. Ultrasensitive non-enzymatic glucose sensors based on hybrid reduced graphene oxide and carbonized silk fabric electrodes decorated with Cu nanoflowers. J Electrochem Soc, 2020, 167: 127501

    Article  CAS  Google Scholar 

  31. Wu R, Ma L, Patil A, et al. Graphene decorated carbonized cellulose fabric for physiological signal monitoring and energy harvesting. J Mater Chem A, 2020, 8: 12665–12673

    Article  CAS  Google Scholar 

  32. Joshi A, Raulo A, Bandyopadhyay S, et al. Waste cotton cloth derived flexible current collector with optimized electrical properties for high performance lithium-sulfur batteries. Carbon, 2022, 192: 429–437

    Article  CAS  Google Scholar 

  33. Xu M, Li F, Zhang Z, et al. Stretchable and multifunctional strain sensors based on 3D graphene foams for active and adaptive tactile imaging. Sci China Mater, 2019, 62: 555–565

    Article  CAS  Google Scholar 

  34. Wang C, Hou X, Cui M, et al. An ultra-sensitive and wide measuring range pressure sensor with paper-based CNT film/interdigitated structure. Sci China Mater, 2020, 63: 403–412

    Article  CAS  Google Scholar 

  35. Yang Z, Zhou S, Zu J, et al. High-performance piezoelectric energy harvesters and their applications. Joule, 2018, 2: 642–697

    Article  CAS  Google Scholar 

  36. Fiorillo AS, Critello CD, Pullano SA. Theory, technology and applications of piezoresistive sensors: A review. Sens Actuat A-Phys, 2018, 281: 156–175

    Article  CAS  Google Scholar 

  37. Miao W, Wang D, Liu Z, et al. Bioinspired self-healing liquid films for ultradurable electronics. ACS Nano, 2019, 13: 3225–3231

    Article  CAS  Google Scholar 

  38. Wu Y, Zhen R, Liu H, et al. Liquid metal fiber composed of a tubular channel as a high-performance strain sensor. J Mater Chem C, 2017, 5: 12483–12491

    Article  CAS  Google Scholar 

  39. Wang Y, Hao J, Huang Z, et al. Flexible electrically resistive-type strain sensors based on reduced graphene oxide-decorated electrospun polymer fibrous mats for human motion monitoring. Carbon, 2018, 126: 360–371

    Article  CAS  Google Scholar 

  40. Huang T, He P, Wang R, et al. Porous fibers composed of polymer nanoball decorated graphene for wearable and highly sensitive strain sensors. Adv Funct Mater, 2019, 29: 1903732

    Article  CAS  Google Scholar 

  41. Liu X, Miao J, Fan Q, et al. Recent progress on smart fiber and textile based wearable strain sensors: Materials, fabrications and applications. Adv Fiber Mater, 2022, 4: 361–389

    Article  CAS  Google Scholar 

  42. Chen W, Yan X. Progress in achieving high-performance piezo-resistive and capacitive flexible pressure sensors: A review. J Mater Sci Tech, 2020, 43: 175–188

    Article  CAS  Google Scholar 

  43. Jin T, Ko Park SH, Fang DW. Highly-stable flexible pressure sensor using piezoelectric polymer film on metal oxide TFT. RSC Adv, 2022, 12: 21014–21021

    Article  CAS  Google Scholar 

  44. Wang G, Li Y, Cui H, et al. Acceleration self-compensation mechanism and experimental research on shock wave piezoelectric pressure sensor. Mech Syst Signal Proc, 2021, 150: 107303

    Article  Google Scholar 

  45. Chang S, Li J, He Y, et al. A high-sensitivity and low-hysteresis flexible pressure sensor based on carbonized cotton fabric. Sens Actuat A-Phys, 2019, 294: 45–53

    Article  CAS  Google Scholar 

  46. Zhang L, Li H, Lai X, et al. Carbonized cotton fabric-based multilayer piezoresistive pressure sensors. Cellulose, 2019, 26: 5001–5014

    Article  CAS  Google Scholar 

  47. Tang B, Chen X, He Y, et al. Fabrication of kapok fibers and natural rubber composites for pressure sensor applications. Cellulose, 2021, 28: 2287–2301

    Article  Google Scholar 

  48. Lu W, Yu P, Jian M, et al. Molybdenum disulfide nanosheets aligned vertically on carbonized silk fabric as smart textile for wearable pressure-sensing and energy devices. ACS Appl Mater Interfaces, 2020, 12: 11825–11832

    Article  CAS  Google Scholar 

  49. Wang Q, Jian M, Wang C, et al. Carbonized silk nanofiber membrane for transparent and sensitive electronic skin. Adv Funct Mater, 2017, 27: 1605657

    Article  Google Scholar 

  50. Liu H, Xu T, Cai C, et al. Multifunctional superelastic, super-hydrophilic, and ultralight nanocellulose-based composite carbon aerogels for compressive supercapacitor and strain sensor. Adv Funct Mater, 2022, 32: 2113082

    Article  CAS  Google Scholar 

  51. Hu Y, Zhuo H, Chen Z, et al. Superelastic carbon aerogel with ultrahigh and wide-range linear sensitivity. ACS Appl Mater Interfaces, 2018, 10: 40641–40650

    Article  CAS  Google Scholar 

  52. He X, Shen G, Liang J, et al. Stretchable strain sensors based on two- and three-dimensional carbonized cotton fabrics for the detection of full range of human motions. ACS Appl Electron Mater, 2021, 3: 3287–3295

    Article  CAS  Google Scholar 

  53. Wang C, Xia K, Jian M, et al. Carbonized silk georgette as an ultrasensitive wearable strain sensor for full-range human activity monitoring. J Mater Chem C, 2017, 5: 7604–7611

    Article  CAS  Google Scholar 

  54. Xia K, Chen X, Shen X, et al. Carbonized Chinese art paper-based high-performance wearable strain sensor for human activity monitoring. ACS Appl Electron Mater, 2019, 1: 2415–2421

    Article  CAS  Google Scholar 

  55. Ji T, Sun H, Cui B, et al. Sustainable and conductive wood-derived carbon framework for stretchable strain sensors. Adv Sustain Syst, 2022, 6: 2100382

    Article  CAS  Google Scholar 

  56. Zhang M, Wang C, Wang H, et al. Carbonized cotton fabric for high-performance wearable strain sensors. Adv Funct Mater, 2017, 27: 1604795

    Article  Google Scholar 

  57. Zhu WB, Li YQ, Wang J, et al. High-performance fiber-film hybrid-structured wearable strain sensor from a highly robust and conductive carbonized bamboo aerogel. ACS Appl Bio Mater, 2020, 3: 8748–8756

    Article  CAS  Google Scholar 

  58. Chen S, Song Y, Ding D, et al. Flexible and anisotropic strain sensor based on carbonized crepe paper with aligned cellulose fibers. Adv Funct Mater, 2018, 28: 1802547

    Article  Google Scholar 

  59. Gao Y, Xiao T, Li Q, et al. Flexible microstructured pressure sensors: Design, fabrication and applications. Nanotechnology, 2022, 33: 322002

    Article  Google Scholar 

  60. Wang X, Chai Y, Wang Z, et al. Metal oxides/carbon felt pressure sensors with ultra-broad-range high sensitivity. Adv Mater Inter, 2022, 9: 2101663

    Article  CAS  Google Scholar 

  61. Li C, Pan L, Deng C, et al. A highly sensitive and wide-range pressure sensor based on a carbon nanocoil network fabricated by an electrophoretic method. J Mater Chem C, 2017, 5: 11892–11900

    Article  CAS  Google Scholar 

  62. Hosseini ES, Chakraborty M, Roe J, et al. Porous elastomer based wide range flexible pressure sensor for autonomous underwater vehicles. IEEE Sens J, 2022, 22: 9914–9921

    Article  CAS  Google Scholar 

  63. Han W, Wu Y, Gong H, et al. Reliable sensors based on graphene textile with negative resistance variation in three dimensions. Nano Res, 2021, 14: 2810–2818

    Article  CAS  Google Scholar 

  64. Wu L, Xu C, Fan M, et al. Lotus root structure-inspired Ti3C2-MXene-based flexible and wearable strain sensor with ultra-high sensitivity and wide sensing range. Compos Part A-Appl Sci Manufact, 2022, 152: 106702

    Article  CAS  Google Scholar 

  65. Wu L, Fan M, Qu M, et al. Self-healing and anti-freezing graphenehydrogel-graphene sandwich strain sensor with ultrahigh sensitivity. J Mater Chem B, 2021, 9: 3088–3096

    Article  CAS  Google Scholar 

  66. Yue Z, Zhu Y, Xia J, et al. Sponge graphene aerogel pressure sensors with an extremely wide operation range for human recognition and motion detection. ACS Appl Electron Mater, 2021, 3: 1301–1310

    Article  CAS  Google Scholar 

  67. Wei H, Kong D, Li T, et al. Solution-processable conductive composite hydrogels with multiple synergetic networks toward wearable pressure/strain sensors. ACS Sens, 2021, 6: 2938–2951

    Article  CAS  Google Scholar 

  68. Souri H, Banerjee H, Jusufi A, et al. Wearable and stretchable strain sensors: Materials, sensing mechanisms, and applications. Adv Intelligent Syst, 2020, 2: 2000039

    Article  Google Scholar 

  69. Fan M, Wu L, Hu Y, et al. A highly stretchable natural rubber/buckypaper/natural rubber (NR/N-BP/NR) sandwich strain sensor with ultrahigh sensitivity. Adv Compos Hybrid Mater, 2021, 4: 1039–1047

    Article  CAS  Google Scholar 

  70. Paul SJ, Elizabeth I, Gupta BK. Ultrasensitive wearable strain sensors based on a VACNT/PDMS thin film for a wide range of human motion monitoring. ACS Appl Mater Interfaces, 2021, 13: 8871–8879

    Article  CAS  Google Scholar 

  71. Wu L, Li L, Qu M, et al. Mussel-inspired self-adhesive, antidrying, and antifreezing poly(acrylic acid)/bentonite/polydopamine hybrid glycerol-hydrogel and the sensing application. ACS Appl Polym Mater, 2020, 2: 3094–3106

    Article  CAS  Google Scholar 

  72. Tang N, Zhou C, Qu D, et al. A highly aligned nanowire-based strain sensor for ultrasensitive monitoring of subtle human motion. Small, 2020, 16: 2001363

    Article  CAS  Google Scholar 

  73. Huang J, Zhou J, Luo Y, et al. Wrinkle-enabled highly stretchable strain sensors for wide-range health monitoring with a big data cloud platform. ACS Appl Mater Interfaces, 2020, 12: 43009–43017

    Article  CAS  Google Scholar 

  74. Liu X, Miao J, Fan Q, et al. Recent progress on smart fiber and textile based wearable strain sensors: Materials, fabrications and applications. Adv Fiber Mater, 2022, 4: 571

    Article  Google Scholar 

  75. Lei H, Dong L, Li Y, et al. Stretchable hydrogels with low hysteresis and anti-fatigue fracture based on polyprotein cross-linkers. Nat Commun, 2020, 11: 4032

    Article  CAS  Google Scholar 

  76. Wang Y, Pang B, Wang R, et al. An anti-freezing wearable strain sensor based on nanoarchitectonics with a highly stretchable, tough, anti-fatigue and fast self-healing composite hydrogel. Compos Part A-Appl Sci Manufact, 2022, 160: 107039

    Article  CAS  Google Scholar 

  77. Lu J, Hu O, Gu J, et al. Tough and anti-fatigue double network gelatin/polyacrylamide/DMSO/Na2SO4 ionic conductive organohydrogel for flexible strain sensor. Eur Polym J, 2022, 168: 111099

    Article  CAS  Google Scholar 

  78. Li T, Zhi DD, Guo ZH, et al. 3D porous biomass-derived carbon materials: Biomass sources, controllable transformation and microwave absorption application. Green Chem, 2022, 24: 647–674

    Article  CAS  Google Scholar 

  79. Jin C, Nai J, Sheng O, et al. Biomass-based materials for green lithium secondary batteries. Energy Environ Sci, 2021, 14: 1326–1379

    Article  CAS  Google Scholar 

  80. Yang Z, Chaieb S, Hemar Y. Gelatin-based nanocomposites: A review. Polym Rev, 2021, 61: 765–813

    Article  CAS  Google Scholar 

  81. Qu B, Luo Y. Chitosan-based hydrogel beads: Preparations, modifications and applications in food and agriculture sectors—A review. Int J Biol Macromolecules, 2020, 152: 437–448

    Article  CAS  Google Scholar 

  82. Liu WJ, Jiang H, Yu HQ. Thermochemical conversion of lignin to functional materials: A review and future directions. Green Chem, 2015, 17: 4888–4907

    Article  CAS  Google Scholar 

  83. Wang X, Yao C, Wang F, et al. Cellulose-based nanomaterials for energy applications. Small, 2018, 14: 1704152

    Article  Google Scholar 

  84. Ummartyotin S, Manuspiya H. A critical review on cellulose: From fundamental to an approach on sensor technology. Renew Sustain Energy Rev, 2015, 41: 402–412

    Article  CAS  Google Scholar 

  85. Chio C, Sain M, Qin W. Lignin utilization: A review of lignin depolymerization from various aspects. Renew Sustain Energy Rev, 2019, 107: 232–249

    Article  CAS  Google Scholar 

  86. Agustin MB, Carvalho DM, Lahtinen MH, et al. Laccase as a tool in building advanced lignin-based materials. ChemSusChem, 2021, 14: 4615–4635

    Article  CAS  Google Scholar 

  87. Deng J, Xiong T, Wang H, et al. Effects of cellulose, hemicellulose, and lignin on the structure and morphology of porous carbons. ACS Sustain Chem Eng, 2016, 4: 3750–3756

    Article  CAS  Google Scholar 

  88. Duan B, Huang Y, Lu A, et al. Recent advances in chitin based materials constructed via physical methods. Prog Polym Sci, 2018, 82: 1–33

    Article  CAS  Google Scholar 

  89. Bartlett DH, Azam F. Chitin, cholera, and competence. Science, 2005, 310: 1775–1777

    Article  CAS  Google Scholar 

  90. Nogi M, Kurosaki F, Yano H, et al. Preparation of nanofibrillar carbon from chitin nanofibers. Carbohydrate Polyms, 2010, 81: 919–924

    Article  CAS  Google Scholar 

  91. Wang Y, Zhang M, Shen X, et al. Biomass-derived carbon materials: Controllable preparation and versatile applications. Small, 2021, 17: 2008079

    Article  CAS  Google Scholar 

  92. Li YQ, Samad YA, Polychronopoulou K, et al. Lightweight and highly conductive aerogel-like carbon from sugarcane with superior mechanical and EMI shielding properties. ACS Sustain Chem Eng, 2015, 3: 1419–1427

    Article  CAS  Google Scholar 

  93. Qiao Y, Chen S, Liu Y, et al. Pyrolysis of chitin biomass: TG-MS analysis and solid char residue characterization. Carbohydrate Polyms, 2015, 133: 163–170

    Article  CAS  Google Scholar 

  94. Hu M, Hu T, Cheng R, et al. MXene-coated silk-derived carbon cloth toward flexible electrode for supercapacitor application. J Energy Chem, 2018, 27: 161–166

    Article  Google Scholar 

  95. He W, Wang C, Wang H, et al. Integrated textile sensor patch for realtime and multiplex sweat analysis. Sci Adv, 2019, 5: eaax0649

    Article  CAS  Google Scholar 

  96. Sugimoto Y, Irisawa T, Hatori H, et al. Yarns of carbon nanotubes and reduced graphene oxides. Carbon, 2020, 165: 358–377

    Article  CAS  Google Scholar 

  97. Jang Y, Kim SM, Spinks GM, et al. Carbon nanotube yarn for fiber-shaped electrical sensors, actuators, and energy storage for smart systems. Adv Mater, 2020, 32: 1902670

    Article  CAS  Google Scholar 

  98. Liu F, Dong Y, Shi R, et al. Continuous graphene fibers prepared by liquid crystal spinning as strain sensors for monitoring vital signs. Mater Today Commun, 2020, 24: 100909

    Article  CAS  Google Scholar 

  99. Yan T, Wang Z, Wang YQ, et al. Carbon/graphene composite nanofiber yarns for highly sensitive strain sensors. Mater Des, 2018, 143: 214–223

    Article  CAS  Google Scholar 

  100. Tang J, Wu Y, Ma S, et al. Flexible strain sensor based on CNT/TPU composite nanofiber yarn for smart sports bandage. Compos Part B-Eng, 2022, 232: 109605

    Article  CAS  Google Scholar 

  101. Shang Y, Li Y, He X, et al. Elastic carbon nanotube straight yarns embedded with helical loops. Nanoscale, 2013, 5: 2403–2410

    Article  CAS  Google Scholar 

  102. Li Y, Shang Y, He X, et al. Overtwisted, resolvable carbon nanotube yarn entanglement as strain sensors and rotational actuators. ACS Nano, 2013, 7: 8128–8135

    Article  CAS  Google Scholar 

  103. Yan T, Wu Y, Tang J, et al. Highly sensitive strain sensor with wide strain range fabricated using carbonized natural wrapping yarns. Mater Res Bull, 2021, 143: 111452

    Article  CAS  Google Scholar 

  104. Das S, Natarajan S. Deformation behaviour of mulberry woven silk fabrics. J Nat Fibers, 2022, 19: 10946–10952

    Article  CAS  Google Scholar 

  105. Gao D, Li X, Li Y, et al. Long-acting antibacterial activity on the cotton fabric. Cellulose, 2021, 28: 1221–1240

    Article  CAS  Google Scholar 

  106. Wang C, Li X, Gao E, et al. Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors. Adv Mater, 2016, 28: 6640–6648

    Article  CAS  Google Scholar 

  107. Zhang J, Long H, Zhang P. Structure and characterization of carbonized cotton knitted fabric. Textile Res J, 2022, 92: 3719–3732

    Article  CAS  Google Scholar 

  108. Dai X, Guo Z. The gorgeous transformation of paper: From cellulose paper to inorganic paper to 2D paper materials with multifunctional properties. J Mater Chem A, 2021, 10: 122–156

    Article  Google Scholar 

  109. Chen S, Song Y, Xu F. Flexible and highly sensitive resistive pressure sensor based on carbonized crepe paper with corrugated structure. ACS Appl Mater Interfaces, 2018, 10: 34646–34654

    Article  CAS  Google Scholar 

  110. Wang L, Zhang M, Yang B, et al. Recent advances in multidimensional (1D, 2D, and 3D) composite sensors derived from MXene: Synthesis, structure, application, and perspective. Small Methods, 2021, 5: 2100409

    Article  CAS  Google Scholar 

  111. Wang X, Wang X, Yin J, et al. Mechanically robust, degradable and conductive MXene-composited gelatin organohydrogel with environmental stability and self-adhesiveness for multifunctional sensor. Compos Part B-Eng, 2022, 241: 110052

    Article  CAS  Google Scholar 

  112. Lee KH, Zhang Y, Kim H, et al. Muscle fatigue sensor based on MXene hydrogel. Small Methods, 2021, 5: 2100819

    Article  CAS  Google Scholar 

  113. Zheng Y, Yin R, Zhao Y, et al. Conductive MXene/cotton fabric based pressure sensor with both high sensitivity and wide sensing range for human motion detection and E-skin. Chem Eng J, 2021, 420: 127720

    Article  CAS  Google Scholar 

  114. Lee J, Kim J, Liu D, et al. Highly aligned, anisotropic carbon nanofiber films for multidirectional strain sensors with exceptional selectivity. Adv Funct Mater, 2019, 29: 1901623

    Article  Google Scholar 

  115. Zhang L, Song T, Shi L, et al. Recent progress for silver nanowires conducting film for flexible electronics. J Nanostruct Chem, 2021, 11: 323–341

    Article  CAS  Google Scholar 

  116. He J, Guo X, Yu J, et al. A high-resolution flexible sensor array based on PZT nanofibers. Nanotechnology, 2020, 31: 155503

    Article  CAS  Google Scholar 

  117. Guan QF, Han ZM, Yang HB, et al. Regenerated isotropic wood. Natl Sci Rev, 2021, 8: nwaa230

    Article  CAS  Google Scholar 

  118. Li SC, Hu BC, Ding YW, et al. Wood-derived ultrathin carbon nanofiber aerogels. Angew Chem Int Ed, 2018, 57: 7085–7090

    Article  CAS  Google Scholar 

  119. He W, Qiang H, Liang S, et al. Hierarchically porous wood aerogel/polypyrrole(PPy) composite thick electrode for supercapacitor. Chem Eng J, 2022, 446: 137331

    Article  CAS  Google Scholar 

  120. Zhang Q, Li L, Jiang B, et al. Flexible and mildew-resistant wood-derived aerogel for stable and efficient solar desalination. ACS Appl Mater Interfaces, 2020, 12: 28179–28187

    Article  CAS  Google Scholar 

  121. Song J, Chen C, Yang Z, et al. Highly compressible, anisotropic aerogel with aligned cellulose nanofibers. ACS Nano, 2018, 12: 140–147

    Article  CAS  Google Scholar 

  122. Chen C, Song J, Zhu S, et al. Scalable and sustainable approach toward highly compressible, anisotropic, lamellar carbon sponge. Chem, 2018, 4: 544–554

    Article  CAS  Google Scholar 

  123. Huang Y, Chen Y, Fan X, et al. Wood derived composites for high sensitivity and wide linear-range pressure sensing. Small, 2018, 14: 1801520

    Article  Google Scholar 

  124. Zhuo H, Hu Y, Chen Z, et al. Linking renewable cellulose nanocrystal into lightweight and highly elastic carbon aerogel. ACS Sustain Chem Eng, 2020, 8: 11921–11929

    Article  CAS  Google Scholar 

  125. Chen Z, Zhuo H, Hu Y, et al. Wood-derived lightweight and elastic carbon aerogel for pressure sensing and energy storage. Adv Funct Mater, 2020, 30: 1910292

    Article  CAS  Google Scholar 

  126. Jiang W, Yao C, Chen W, et al. A super-resilient and highly sensitive graphene oxide/cellulose-derived carbon aerogel. J Mater Chem A, 2020, 8: 18376–18384

    Article  CAS  Google Scholar 

  127. Balusamy SR, Rahimi S, Sukweenadhi J, et al. Chitosan, chitosan nanoparticles and modified chitosan biomaterials, a potential tool to combat salinity stress in plants. Carbohydrate Polyms, 2022, 284: 119189

    Article  CAS  Google Scholar 

  128. Luo Q, Zheng H, Hu Y, et al. Carbon nanotube/chitosan-based elastic carbon aerogel for pressure sensing. Ind Eng Chem Res, 2019, 58: 17768–17775

    Article  CAS  Google Scholar 

  129. Zheng S, Ma J, Fang K, et al. High-voltage potassium ion micro-supercapacitors with extraordinary volumetric energy density for wearable pressure sensor system. Adv Energy Mater, 2021, 11: 2003835

    Article  CAS  Google Scholar 

  130. Zheng S, Wang H, Das P, et al. Multitasking MXene inks enable high-performance printable microelectrochemical energy storage devices for all-flexible self-powered integrated systems. Adv Mater, 2021, 33: 2005449

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (22125903, 51872283, and 22109160), Dalian Innovation Support Plan for High Level Talents (2019RT09), Dalian National Laboratory For Clean Energy (DNL), CAS, DNL Cooperation Fund, CAS (DNL201912, DNL201915, DNL202016, and DNL202019), DICP (DICP I2020032), the Joint Fund of Yulin University and Dalian National Laboratory for Clean Energy (YLU-DNL Fund 2021002 and YLU-DNL Fund 2021009), and China Postdoctoral Science Foundation (2021M693126).

Author information

Authors and Affiliations

Authors

Contributions

Wu ZS supervised this project. Wu L, Shi X and Wu ZS wrote this manuscript. Das P revised and polished the language. All authors contributed to the general discussion.

Corresponding author

Correspondence to Zhong-Shuai Wu  (吴忠帅).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Lu Wu is a postdoctoral researcher at Dalian Institute of Chemical Physics, Chinese Academy of Sciences (DICP, CAS). He received his PhD degree from Dalian University of Technology in 2021. His research focuses on the preparation of gel composites and their applications in the field of flexible sensors.

Xiaoyu Shi is a postdoctoral researcher at DICP, CAS. He received his PhD degree from the University of Science and Technology of China in 2020. His research focuses on functional and integrated microscale energy systems.

Pratteek Das is a postdoctoral researcher at DICP, CAS. He received his PhD degree from Dalian Institute of Chemical Physics, CAS in 2022. His research focuses on 2D materials and micro-supercapacitors.

Zhong-Shuai Wu received his PhD degree from the Institute for Metal Research, CAS, in 2011 and worked as a postdoctoral fellow at Max Planck Institute for Polymer Research in Mainz, Germany, from 2011 to 2015. Subsequently, he became a full professor and group leader of 2D Materials Chemistry & Energy Applications at DICP, CAS, and was promoted in 2018 as a DICP Chair Professor. Currently, his research interests include the chemistry of graphene and 2D materials, surface- and nanoelec-trochemistry, microscale electrochemical energy storage devices, supercapacitors, batteries, and energy catalysis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Shi, X., Das, P. et al. Recent application progress and key challenges of biomass-derived carbons in resistive strain/pressure sensor. Sci. China Mater. 66, 1702–1718 (2023). https://doi.org/10.1007/s40843-022-2397-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2397-y

Keywords

Navigation