Skip to main content
Log in

Recent progress of dielectric polymer composites for bionics

仿生学中介电聚合物复合材料的研究进展

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Natural structures, natural phenomena, animal and plant forms, and human behavior always provide us with inspiration and stimulate more creativity. The design and application of dielectric polymer composites that can be utilized to fabricate artificial muscles show great potential in the field of bionics. However, great challenges still exist, which severely prevent the development of dielectric polymer composites. In this review, we systematically surveyed recent advancements in nature-inspired monolayer and multilayer dielectric polymer composites with excellent properties, as well as the description of their structures and characteristics. In addition, we further discussed the applications of such composites in integrated systems for the development of bionic robotics, healthcare and biomedical applications. Moreover, an in-depth analysis of challenges and prospects in this field was also provided. Mimicking nature has become essential for the design and application of dielectric polymer composites, and we believe this approach will drive continued advances in the intelligent and medical industries.

摘要

自然结构、自然现象、动植物形态和人类行为总是给我们提供 灵感, 激发更多的创造力. 可用于制造人工肌肉的介电聚合物复合材料 的设计与应用在仿生学领域显示出巨大的潜力. 然而, 其仍然面临着巨 大的挑战, 严重阻碍了介电聚合物复合材料的发展. 本文系统地综述了 近年来自然启发的具有优异性能的单层和多层介电聚合物复合材料的 研究进展, 并对其结构和特性进行了描述. 此外, 我们进一步讨论了这 种复合材料在集成系统中的应用, 包括仿生机器人、医疗保健和生物 医学应用. 此外, 我们还深入分析了这一领域的挑战和前景. 模仿自然 已经成为介电聚合物复合材料设计和应用的关键. 我们相信这种方法 将推动智能和医疗行业的持续进步.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bhushan B. Bioinspired structured surfaces. Langmuir, 2012, 28: 1698–1714

    Article  CAS  Google Scholar 

  2. Henke EFM, Schlatter S, Anderson IA. Soft dielectric elastomer oscillators driving bioinspired robots. Soft Robotics, 2017, 4: 353–366

    Article  Google Scholar 

  3. Bartlett MD, Kazem N, Powell-Palm MJ, et al. High thermal conductivity in soft elastomers with elongated liquid metal inclusions. Proc Natl Acad Sci USA, 2017, 114: 2143–2148

    Article  CAS  Google Scholar 

  4. He Q, Wang Z, Song Z, et al. Bioinspired design of vascular artificial muscle. Adv Mater Technol, 2019, 4: 1800244

    Article  Google Scholar 

  5. Kang S, Lee J, Lee S, et al. Highly sensitive pressure sensor based on bioinspired porous structure for real-time tactile sensing. Adv Electron Mater, 2016, 2: 1600356

    Article  Google Scholar 

  6. Sun QJ, Zhuang J, Venkatesh S, et al. Highly sensitive and ultrastable skin sensors for biopressure and bioforce measurements based on hierarchical microstructures. ACS Appl Mater Interfaces, 2018, 10: 4086–4094

    Article  CAS  Google Scholar 

  7. Zhou Q, Ji B, Wei Y, et al. A bio-inspired cilia array as the dielectric layer for flexible capacitive pressure sensors with high sensitivity and a broad detection range. J Mater Chem A, 2019, 7: 27334–27346

    Article  CAS  Google Scholar 

  8. Rueping M, Vila C, Szadkowska A, et al. Photoredox catalysis as an efficient tool for the aerobic oxidation of amines and alcohols: Bioinspired demethylations and condensations. ACS Catal, 2012, 2: 2810–2815

    Article  CAS  Google Scholar 

  9. He WL, Zhao M, Wu CD. A versatile metalloporphyrinic framework platform for highly efficient bioinspired, photo- and asymmetric catalysis. Angew Chem Int Ed, 2019, 58: 168–172

    Article  CAS  Google Scholar 

  10. Jimeno C. Amino acylguanidines as bioinspired catalysts for the asymmetric aldol reaction. Molecules, 2021, 26: 826

    Article  CAS  Google Scholar 

  11. Parker AR, Townley HE. Biomimetics of photonic nanostructures. Nat Nanotech, 2007, 2: 347–353

    Article  CAS  Google Scholar 

  12. Chiadini F, Fiumara V, Scaglione A, et al. Bioinspired pit texturing of silicon solar cell surfaces. J Photon Energy, 2013, 3: 034596

    Article  CAS  Google Scholar 

  13. Martin JJ, Fiore BE, Erb RM. Designing bioinspired composite reinforcement architectures via 3D magnetic printing. Nat Commun, 2015, 6: 8641

    Article  Google Scholar 

  14. Kleyko D, Osipov E, Senior A, et al. Holographic graph neuron: A bioinspired architecture for pattern processing. IEEE Trans Neural Netw Learn Syst, 2017, 28: 1250–1262

    Article  Google Scholar 

  15. Baik S, Lee HJ, Kim DW, et al. Bioinspired adhesive architectures: From skin patch to integrated bioelectronics. Adv Mater, 2019, 31: 1803309

    Article  Google Scholar 

  16. Studart AR. Towards high-performance bioinspired composites. Adv Mater, 2012, 24: 5024–5044

    Article  CAS  Google Scholar 

  17. Mirvakili SM, Pazukha A, Sikkema W, et al. Niobium nanowire yarns and their application as artificial muscles. Adv Funct Mater, 2013, 23: 4311–4316

    Article  CAS  Google Scholar 

  18. Mirvakili SM, Hunter IW. Artificial muscles: Mechanisms, applications, and challenges. Adv Mater, 2018, 30: 1704407

    Article  Google Scholar 

  19. Zhang Y, Liu Z, Zhu L, et al. Enhanced discharged efficiency and high energy density at elevated temperature in polymer dielectric via manipulating relaxation behavior. CCS Chem, 2020, 2: 1169–1177

    Article  CAS  Google Scholar 

  20. Sarjeant WJ, Clelland IW, Price RA. Capacitive components for power electronics. Proc IEEE, 2001, 89: 846–855

    Article  CAS  Google Scholar 

  21. Reaney IM, Iddles D. Microwave dielectric ceramics for resonators and filters in mobile phone networks. J Am Ceramic Soc, 2006, 89: 2063–2072

    CAS  Google Scholar 

  22. Bell AJ. Ferroelectrics: The role of ceramic science and engineering. J Eur Ceramic Soc, 2008, 28: 1307–1317

    Article  CAS  Google Scholar 

  23. Ilami M, Bagheri H, Ahmed R, et al. Materials, actuators, and sensors for soft bioinspired robots. Adv Mater, 2021, 33: 2003139

    Article  CAS  Google Scholar 

  24. Rus D, Tolley MT. Design, fabrication and control of soft robots. Nature, 2015, 521: 467–475

    Article  CAS  Google Scholar 

  25. Walsh C. Human-in-the-loop development of soft wearable robots. Nat Rev Mater, 2018, 3: 78–80

    Article  Google Scholar 

  26. Peng Z, Huang J. Soft rehabilitation and nursing-care robots: A review and future outlook. Appl Sci, 2019, 9: 3102

    Article  Google Scholar 

  27. Lim HR, Kim HS, Qazi R, et al. Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Adv Mater, 2020, 32: 1901924

    Article  CAS  Google Scholar 

  28. Hawkes EW, Blumenschein LH, Greer JD, et al. A soft robot that navigates its environment through growth. Sci Robot, 2017, 2: eaan3028

    Article  Google Scholar 

  29. Shintake J, Rosset S, Schubert BE, et al. A foldable antagonistic actuator. IEEE ASME Trans Mechatron, 2015, 20: 1997–2008

    Article  Google Scholar 

  30. Shintake J, Shea H, Floreano D. Biomimetic underwater robots based on dielectric elastomer actuators. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Daejeon: IEEE, 2016, 4957–4962

    Google Scholar 

  31. Buoso S, Dickinson BT, Palacios R. Bat-inspired integrally actuated membrane wings with leading-edge sensing. Bioinspir Biomim, 2018, 13: 016013

    Article  Google Scholar 

  32. Shi Y, Chen Z. Function-driven design of stimuli-responsive polymer composites: Recent progress and challenges. J Mater Chem C, 2018, 6: 11817–11834

    Article  CAS  Google Scholar 

  33. Carpi F, Bauer S, De Rossi D. Stretching dielectric elastomer performance. Science, 2010, 330: 1759–1761

    Article  CAS  Google Scholar 

  34. Gupta U, Qin L, Wang Y, et al. Soft robots based on dielectric elastomer actuators: A review. Smart Mater Struct, 2019, 28: 103002

    Article  CAS  Google Scholar 

  35. Li Q, Yao FZ, Liu Y, et al. High-temperature dielectric materials for electrical energy storage. Annu Rev Mater Res, 2018, 48: 219–243

    Article  CAS  Google Scholar 

  36. Lu T, Ma C, Wang T. Mechanics of dielectric elastomer structures: A review. Extreme Mech Lett, 2020, 38: 100752

    Article  Google Scholar 

  37. Wei YZ, Wang GS, Wu Y, et al. Bioinspired design and assembly of platelet reinforced polymer films with enhanced absorption properties. J Mater Chem A, 2014, 2: 5516–5524

    Article  CAS  Google Scholar 

  38. Lu Y, Wang W, Xue F, et al. Bio-inspired polydopamine-assisted graphene oxide coating on tetra-pod zinc oxide whisker for dielectric composites. Chem Eng J, 2018, 345: 353–363

    Article  CAS  Google Scholar 

  39. Hu H, Yu B, Ye Q, et al. Modification of carbon nanotubes with a nanothin polydopamine layer and polydimethylamino-ethyl metha-crylate brushes. Carbon, 2018, 48: 2347–2353

    Article  Google Scholar 

  40. Lee H, Dellatore SM, Miller WM, et al. Mussel-inspired surface chemistry for multifunctional coatings. Science, 2007, 318: 426–430

    Article  CAS  Google Scholar 

  41. Yang L, Phua SL, Teo JKH, et al. A biomimetic approach to enhancing interfacial interactions: Polydopamine-coated clay as reinforcement for epoxy eesin. ACS Appl Mater Interfaces, 2011, 3: 3026–3032

    Article  CAS  Google Scholar 

  42. Li Y, Fan M, Wu K, et al. Polydopamine coating layer on graphene for suppressing loss tangent and enhancing dielectric constant of poly (vinylidene fluoride)/graphene composites. Compos Part A, 2015, 73: 85–92

    Article  CAS  Google Scholar 

  43. Wang G, Huang X, Jiang P. Bio-inspired polydopamine coating as a facile approach to constructing polymer nanocomposites for energy storage. J Mater Chem C, 2017, 5: 3112–3120

    Article  CAS  Google Scholar 

  44. Zhang L, Yuan S, Chen S, et al. Preparation and dielectric properties of core-shell structured Ag@polydopamine/poly(vinylidene fluoride) composites. Compos Sci Tech, 2015, 110: 126–131

    Article  CAS  Google Scholar 

  45. Zhu J, Ji X, Yin M, et al. Poly(vinylidene fluoride) based percolative dielectrics with tunable coating of polydopamine on carbon nanotubes: Toward high permittivity and low dielectric loss. Compos Sci Tech, 2017, 144: 79–88

    Article  CAS  Google Scholar 

  46. Dong Z, Zhang F, Wang D, et al. Polydopamine-mediated surface-functionalization of graphene oxide for heavy metal ions removal. J Solid State Chem, 2015, 224: 88–93

    Article  CAS  Google Scholar 

  47. Wu C, Wang H, Wei Z, et al. Polydopamine-mediated surface functionalization of electrospun nanofibrous membranes: Preparation, characterization and their adsorption properties towards heavy metal ions. Appl Surf Sci, 2015, 346: 207–215

    Article  CAS  Google Scholar 

  48. Liu Y, Wu K, Luo F, et al. Significantly enhanced thermal conductivity in polyvinyl alcohol composites enabled by dopamine modified graphene nanoplatelets. Compos Part A, 2019, 117: 134–143

    Article  CAS  Google Scholar 

  49. Ning N, Ma Q, Liu S, et al. Tailoring dielectric and actuated properties of elastomer composites by bioinspired poly(dopamine) encapsulated graphene oxide. ACS Appl Mater Interfaces, 2015, 7: 10755–10762

    Article  CAS  Google Scholar 

  50. Ruan M, Yang D, Guo W, et al. Improved dielectric properties, mechanical properties, and thermal conductivity properties of polymer composites via controlling interfacial compatibility with bio-inspired method. Appl Surf Sci, 2018, 439: 186–195

    Article  CAS  Google Scholar 

  51. Wang G, Huang X, Liu F, et al. Bio-inspired modification of TiO2 nanowires for fabrication of high-kappa polymer nanocomposites. In: 2016 IEEE International Conference on Dielectrics (ICD), Montpellier: IEEE, 2016. 864–867

    Google Scholar 

  52. Yang D, Huang S, Ruan M, et al. Mussel inspired modification for aluminum oxide/silicone elastomer composites with largely improved thermal conductivity and low dielectric constant. Ind Eng Chem Res, 2018, 57: 3255–3262

    Article  CAS  Google Scholar 

  53. Xu W, Liu J, Chen T, et al. Bioinspired polymer nanocomposites exhibit giant energy density and high efficiency at high temperature. Small, 2019, 15: 1901582

    Article  Google Scholar 

  54. Zhang H, Ly KCS, Liu X, et al. Biologically inspired flexible photonic films for efficient passive radiative cooling. Proc Natl Acad Sci USA, 2020, 117: 14657–14666

    Article  Google Scholar 

  55. Kariko S, Timonen JVI, Weaver JC, et al. Structural origins of coloration in the spider Phoroncidia rubroargentea Berland, 1913 (Araneae: Theridiidae) from Madagascar. J R Soc Interface, 2018, 15: 20170930

    Article  Google Scholar 

  56. Levy-Lior A, Shimoni E, Schwartz O, et al. Guanine-based biogenic photonic-crystal arrays in fish and spiders. Adv Funct Mater, 2010, 20: 320–329

    Article  CAS  Google Scholar 

  57. Vukusic P, Hallam B, Noyes J. Brilliant whiteness in ultrathin beetle scales. Science, 2007, 315: 348

    Article  CAS  Google Scholar 

  58. Bell GRR, Mäthger LM, Gao M, et al. Diffuse white structural coloration from multilayer reflectors in a squid. Adv Mater, 2014, 26: 4352–4356

    Article  CAS  Google Scholar 

  59. Gur D, Leshem B, Oron D, et al. The structural basis for enhanced silver reflectance in koi fish scale and skin. J Am Chem Soc, 2014, 136: 17236–17242

    Article  CAS  Google Scholar 

  60. Cui Y, Gong H, Wang Y, et al. A thermally insulating textile inspired by polar bear hair. Adv Mater, 2018, 30: 1706807

    Article  Google Scholar 

  61. Du A, Wang H, Zhou B, et al. Multifunctional silica nanotube aerogels inspired by polar bear hair for light management and thermal insulation. Chem Mater, 2018, 30: 6849–6857

    Article  CAS  Google Scholar 

  62. Choi SH, Kim SW, Ku Z, et al. Anderson light localization in biological nanostructures of native silk. Nat Commun, 2018, 9: 452

    Article  Google Scholar 

  63. Didari A, Mengüç MP. A biomimicry design for nanoscale radiative cooling applications inspired by Morpho didius butterfly. Sci Rep, 2018, 8: 16891

    Article  Google Scholar 

  64. Liu X, Wang D, Yang Z, et al. Bright silver brilliancy from irregular microstructures in butterfly Curetis acuta moore. Adv Opt Mater, 2019, 7: 1900687

    Article  Google Scholar 

  65. Shi NN, Tsai CC, Camino F, et al. Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants. Science, 2015, 349: 298–301

    Article  CAS  Google Scholar 

  66. Xie D, Yang Z, Liu X, et al. Broadband omnidirectional light reflection and radiative heat dissipation in white beetles Goliathus goliatus. Soft Matter, 2019, 15: 4294–4300

    Article  CAS  Google Scholar 

  67. Zhang L, Xiong H, Wu Q, et al. Constructing hydrophobic protection for ionic interactions toward water, acid, and base-resistant self-healing elastomers and electronic devices. Sci China Mater, 2021, 64: 1780–1790

    Article  CAS  Google Scholar 

  68. Li CH, Wang C, Keplinger C, et al. A highly stretchable autonomous self-healing elastomer. Nat Chem, 2016, 8: 618–624

    Article  CAS  Google Scholar 

  69. Sun H, Liu X, Liu S, et al. A supramolecular silicone dielectric elastomer with a high dielectric constant and fast and highly efficient self-healing under mild conditions. J Mater Chem A, 2020, 8: 23330–23343

    Article  CAS  Google Scholar 

  70. Yang Y, He J, Li Q, et al. Self-healing of electrical damage in polymers using superparamagnetic nanoparticles. Nat Nanotech, 2019, 14: 151–155

    Article  CAS  Google Scholar 

  71. Wan C, Bowen CR. Multiscale-structuring of polyvinylidene fluoride for energy harvesting: the impact of molecular-, micro- and macrostructure. J Mater Chem A, 2017, 5: 3091–3128

    Article  CAS  Google Scholar 

  72. Baer E, Zhu L. 50th Anniversary perspective: Dielectric phenomena in polymers and multilayered dielectric films. Macromolecules, 2017, 50: 2239–2256

    Article  CAS  Google Scholar 

  73. Shao H, Wei S, Jiang X, et al. Bioinspired electrically activated soft bistable actuators. Adv Funct Mater, 2018, 28: 1802999

    Article  Google Scholar 

  74. Hu Y, Liu J, Chang L, et al. Electrically and sunlight-driven actuator with versatile biomimetic motions based on rolled carbon nanotube bilayer composite. Adv Funct Mater, 2017, 27: 1704388

    Article  Google Scholar 

  75. Lei Z, Wang Q, Sun S, et al. A bioinspired mineral hydrogel as a self-healable, mechanically adaptable ionic skin for highly sensitive pressure sensing. Adv Mater, 2017, 29: 1700321

    Article  Google Scholar 

  76. Li B, Tan H, Anastasova S, et al. A bio-inspired 3D micro-structure for graphene-based bacteria sensing. Biosens Bioelectron, 2019, 123: 77–84

    Article  CAS  Google Scholar 

  77. Deng H, Zhang C, Su JW, et al. Bioinspired multi-responsive soft actuators controlled by laser tailored graphene structures. J Mater Chem B, 2018, 6: 5415–5423

    Article  CAS  Google Scholar 

  78. Li S, Bai H, Shepherd RF, et al. Bio-inspired design and additive manufacturing of soft materials, machines, robots, and haptic interfaces. Angew Chem Int Ed, 2019, 58: 11182–11204

    Article  CAS  Google Scholar 

  79. Zou M, Li S, Hu X, et al. Progresses in tensile, torsional, and multifunctional soft actuators. Adv Funct Mater, 2021, 31: 2007437

    Article  CAS  Google Scholar 

  80. Pei Q, Rosenthal M, Pelrine R, et al. Multifunctional electroelastomer roll actuators and their application for biomimetic walking robots. In: Smart Structures and Materials 2003 Conference. San Diego: SPIE, 2003. 281–290

    Book  Google Scholar 

  81. Nguyen CT, Phung H, Nguyen TD, et al. Multiple-degrees-of-freedom dielectric elastomer actuators for soft printable hexapod robot. Sens Actuat A-Phys, 2017, 267: 505–516

    Article  CAS  Google Scholar 

  82. Nguyen CT, Phung H, Hoang PT, et al. Development of an insect-inspired hexapod robot actuated by soft actuators. J Mech Robotics, 2018, 10: 061016

    Article  Google Scholar 

  83. Shian S, Bertoldi K, Clarke D. Use of aligned fibers to enhance the performance of dielectric elastomer inchworm robots. In: Conference on Electroactive Polymer Actuators and Devices (EAPAD). San Diego: SPIE, 2015, 9430

    Google Scholar 

  84. Qin L, Cao J, Tang Y, et al. Soft freestanding planar artificial muscle based on dielectric elastomer actuator. J Appl Mech, 2018, 85: 051001

    Article  Google Scholar 

  85. Cao J, Qin L, Liu J, et al. Untethered soft robot capable of stable locomotion using soft electrostatic actuators. Extreme Mech Lett, 2018, 21: 9–16

    Article  Google Scholar 

  86. Jung K, Koo JC, Nam J, et al. Artificial annelid robot driven by soft actuators. Bioinspir Biomim, 2007, 2: S42–S49

    Article  Google Scholar 

  87. Xu L, Chen HQ, Zou J, et al. Bio-inspired annelid robot: A dielectric elastomer actuated soft robot. Bioinspir Biomim, 2017, 12: 025003

    Article  Google Scholar 

  88. Lu XJ, Wang K, Hu TT. Development of an annelid-like peristaltic crawling soft robot using dielectric elastomer actuators. Bioinspir Biomim, 2020, 15: 046012

    Article  CAS  Google Scholar 

  89. Li T, Li G, Liang Y, et al. Fast-moving soft electronic fish. Sci Adv, 2017, 3: e1602045

    Article  Google Scholar 

  90. Shintake J, Cacucciolo V, Shea H, et al. Soft biomimetic fish robot made of dielectric elastomer actuators. Soft Robotics, 2018, 5: 466–474

    Article  Google Scholar 

  91. Pfeil S, Katzer K, Kanan A, et al. A biomimetic fish fin-like robot based on textile reinforced silicone. Micromachines, 2020, 11: 298

    Article  Google Scholar 

  92. Tang C, Ma W, Li B, et al. Cephalopod-inspired swimming robot using dielectric elastomer synthetic jet actuator. Adv Eng Mater, 2020, 22: 1901130

    Article  Google Scholar 

  93. Godaba H, Li J, Wang Y, et al. A soft jellyfish robot driven by a dielectric elastomer actuator. IEEE Robot Autom Lett, 2016, 1: 624–631

    Article  Google Scholar 

  94. Christianson C, Bayag C, Li G, et al. Jellyfish-inspired soft robot driven by fluid electrode dielectric organic robotic actuators. Front Robot AI, 2019, 6: 126

    Article  Google Scholar 

  95. Tang Y, Qin L, Li X, Chew CM, Zhu J. A frog-inspired swimming robot based on dielectric elastomer actuators. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vancouver: IEEE, 2017, 2403–2408

    Google Scholar 

  96. Wang S, Huang B, McCoul D, et al. A soft breaststroke-inspired swimming robot actuated by dielectric elastomers. Smart Mater Struct, 2019, 28: 045006

    Article  CAS  Google Scholar 

  97. Lau GK, Lim HT, Teo JY, et al. Lightweight mechanical amplifiers for rolled dielectric elastomer actuators and their integration with bio-inspired wing flappers. Smart Mater Struct, 2014, 23: 025021

    Article  CAS  Google Scholar 

  98. Zhao J, Niu J, McCoul D, et al. A rotary joint for a flapping wing actuated by dielectric elastomers: Design and experiment. Meccanica, 2015, 50: 2815–2824

    Article  Google Scholar 

  99. Galvao R, Israeli E, Song A, et al. The aerodynamics of compliant membrane wings modeled on mammalian flight mechanics. In: 36th AIAA Fluid Dynamics Conference and Exhibit. San Francisco: AIAA, 2006. 2006–2866

    Google Scholar 

  100. Eldada L. Optical communication components. Rev Sci Instruments, 2004, 75: 575–593

    Article  CAS  Google Scholar 

  101. Friese C, Werber A, Krogmann F, et al. Materials, effects and components for tunable micro-optics. IEEJ Trans Elec Electron Eng, 2007, 2: 232–248

    Article  CAS  Google Scholar 

  102. Carpi F, Frediani G, Turco S, et al. Bioinspired tunable lens with muscle-like electroactive elastomers. Adv Funct Mater, 2011, 21: 4152–4158

    Article  CAS  Google Scholar 

  103. Pieroni M, Lagomarsini C, De Rossi D, et al. Electrically tunable soft solid lens inspired by reptile and bird accommodation. Bioinspir Biomim, 2016, 11: 065003

    Article  Google Scholar 

  104. Park BJ, Park S, Choi M, et al. Monolithic focus-tunable lens technology enabled by disk-type dielectric-elastomer actuators. Sci Rep, 2020, 10: 16937

    Article  CAS  Google Scholar 

  105. Carpi F, Frediani G, De Rossi D. Hydrostatically coupled dielectric elastomer actuators. IEEE ASME Trans Mechatron, 2010, 15: 308–315

    Article  Google Scholar 

  106. Carpi F, Frediani G, Tarantino S, et al. Millimetre-scale bubble-like dielectric elastomer actuators. Polym Int, 2010, 59: 407–414

    Article  CAS  Google Scholar 

  107. Carpi F, Frediani G, Nanni M, et al. Granularly coupled dielectric elastomer actuators. IEEE ASME Trans Mechatron, 2011, 16: 16–23

    Article  Google Scholar 

  108. Shi R, Lou Z, Chen S, et al. Flexible and transparent capacitive pressure sensor with patterned microstructured composite rubber dielectric for wearable touch keyboard application. Sci China Mater, 2018, 61: 1587–1595

    Article  CAS  Google Scholar 

  109. Kim J, Jang M, Jeong G, et al. Mxene-enhanced β-phase crystallization in ferroelectric porous composites for highly-sensitive dynamic force sensors. Nano Energy, 2021, 89: 106409

    Article  CAS  Google Scholar 

  110. Sharma S, Chhetry A, Sharifuzzaman M, et al. Wearable capacitive pressure sensor based on mxene composite nanofibrous scaffolds for reliable human physiological signal acquisition. ACS Appl Mater Interfaces, 2020, 12: 22212–22224

    Article  CAS  Google Scholar 

  111. Runyan NH, Carpi F. Seeking the ‘holy Braille’ display: Might electromechanically active polymers be the solution? Expert Rev Med Devices, 2011, 8: 529–532

    Article  Google Scholar 

  112. Frediani G, Busfield J, Carpi F. Enabling portable multiple-line refreshable Braille displays with electroactive elastomers. Med Eng Phys, 2018, 60: 86–93

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51973080, 92066104).

Author information

Authors and Affiliations

Authors

Contributions

Chi H wrote the original draft; He W collected the literatures and sorted them out; Zhao D designed the writing idea; Ma R, Zhang Y, and Jiang Z reviewed and revised the original draft. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Rujun Ma  (马儒军) or Yunhe Zhang  (张云鹤).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Hui Chi received her bachelor’s degree in applied chemistry from Northeast Electric Power University (NEEPU), China, in 2020. And now she is pursuing her PhD degree in polymer chemistry and physics under the direction of Professor Yunhe Zhang at Jilin University (JLU). Her research focuses on the electrostrictive properties of ferroelectric polymers and the modification of dielectric elastomers.

Yunhe Zhang is a professor and doctoral supervisor of the Key Laboratory of High Performance Plastics, Ministry of Education, JLU. He received his doctoral degree in 2007 from the College of Chemistry, JLU, China. He was a visiting researcher at Hiroshima University, Japan. His current research interests focus on dielectric polymers/high performance polymers and their composites.

Rujun Ma is a professor and doctoral supervisor at the School of Materials Science and Engineering, Nankai University. He graduated from the Institute of Nano Science and Technology, Sungkyunkwan University (Supervisior: Prof. Seunghyun Baik), then he worked as a postdoctoral fellow at the Energy Science and Basic Science Research Institute. Later on, as a postdoctoral researcher, he joined professor Qibing Pei’s team at the University of California, Los Angeles (UCLA). His research interests include the preparation and application of energy devices, sensors and high-performance functional composite materials.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, H., He, W., Zhao, D. et al. Recent progress of dielectric polymer composites for bionics. Sci. China Mater. 66, 22–34 (2023). https://doi.org/10.1007/s40843-022-2212-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2212-y

Keywords

Navigation