Skip to main content
Log in

Strengthening mechanisms of high-performance Al-Mn-Mg-Sc-Zr alloy fabricated by selective laser melting

选区激光熔化成形高性能Al-Mn-Mg-Sc-Zr合金的 时效强化机理

  • Letters
  • Published:
Science China Materials Aims and scope Submit manuscript

摘要

针对当前应用选区激光熔化(SLM)成形铝合金强度较低的 缺点, 本研究基于SLM技术熔体快速冷却的技术特性, 通过提升Al-Mn-Mg-Sc-Zr合金中合金化元素的含量, 设计高(Mg+Mn)和高(Sc +Zr)含量的SLM专用铝合金, 系统研究了合金的SLM成形性及时效 处理对合金组织和力学性能的影响. 结果表明, 新合金具有优异的 SLM成形性, 最大相对致密度可达99.82%. SLM成形合金具有细小 等轴晶-柱状晶双峰结构. 等轴晶晶界处有Al6Mn和Al3(Sc,Zr)纳米 颗粒析出, 而柱状晶晶界处只存在Al6Mn纳米颗粒, 这些高稳定性 纳米颗粒可有效抑制合金在时效处理过程中的回复再结晶. 经 300°C时效处理后, 样品的力学性能获得较大程度的提升, 其屈服 强度和抗拉强度均超过600 MPa, 是现有已报道SLM成形铝合金的 最高值, 并且保持较好的延伸率. 细晶强化、固溶强化和Al3Sc纳米 颗粒析出强化的共同作用, 是Al-Mn-Mg-Sc-Zr合金具有高强度的 主要原因.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Gu DD, Meiners W, Wissenbach K, et al. Laser additive manufacturing of metallic components: Materials, processes and mechanisms. Int Mater Rev, 2012, 57: 133–164

    Article  CAS  Google Scholar 

  2. Shi Y, Yang K, Kairy SK, et al. Effect of platform temperature on the porosity, microstructure and mechanical properties of an Al-Mg-Sc-Zr alloy fabricated by selective laser melting. Mater Sci Eng-A, 2018, 732: 41–52

    Article  CAS  Google Scholar 

  3. Li N, Huang S, Zhang G, et al. Progress in additive manufacturing on new materials: A review. J Mater Sci Tech, 2019, 35: 242–269

    Article  Google Scholar 

  4. Wang XJ, Zhang LC, Fang MH, et al. The effect of atmosphere on the structure and properties of a selective laser melted Al-12Si alloy. Mater Sci Eng-A, 2014, 597: 370–375

    Article  CAS  Google Scholar 

  5. Aboulkhair NT, Simonelli M, Parry L, et al. 3D printing of aluminium alloys: Additive manufacturing of aluminium alloys using selective laser melting. Prog Mater Sci, 2019, 106: 100578

    Article  CAS  Google Scholar 

  6. Geng YX, Fan SM, Jian JL, et al. Mechanical properties of AlSiMg alloy specifically designed for selective laser melting. Acta Metall Sin, 2020, 56: 821–830

    CAS  Google Scholar 

  7. Geng Y, Wang Y, Xu J, et al. A high-strength AlSiMg1.4 alloy fabricated by selective laser melting. J Alloys Compd, 2021, 867: 159103

    Article  CAS  Google Scholar 

  8. Liao Y, Han X, Zeng M, et al. Influence of Cu on microstructure and tensile properties of 7XXX series aluminum alloy. Mater Des, 2015, 66: 581–586

    Article  CAS  Google Scholar 

  9. Zhang J, Song B, Wei Q, et al. A review of selective laser melting of aluminum alloys: Processing, microstructure, property and developing trends. J Mater Sci Tech, 2019, 35: 270–284

    Article  Google Scholar 

  10. Zhang H, Zhu H, Qi T, et al. Selective laser melting of high strength Al-Cu-Mg alloys: Processing, microstructure and mechanical properties. Mater Sci Eng-A, 2016, 656: 47–54

    Article  CAS  Google Scholar 

  11. Martin JH, Yahata BD, Hundley JM, et al. 3D printing of high-strength aluminium alloys. Nature, 2017, 549: 365–369

    Article  CAS  Google Scholar 

  12. Li L, Li R, Yuan T, et al. Microstructures and mechanical properties of Si and Zr modified Al-Zn-Mg-Cu alloy-A comparison between selective laser melting and spark plasma sintering. J Alloys Compd, 2020, 821: 153520

    Article  CAS  Google Scholar 

  13. Tan Q, Zhang J, Sun Q, et al. Inoculation treatment of an additively manufactured 2024 aluminium alloy with titanium nanoparticles. Acta Mater, 2020, 196: 1–16

    Article  CAS  Google Scholar 

  14. Li R, Wang M, Yuan T, et al. Selective laser melting of a novel Sc and Zr modified Al-6.2 Mg alloy: Processing, microstructure, and properties. Powder Tech, 2017, 319: 117–128

    Article  CAS  Google Scholar 

  15. Schmidtke K, Palm F, Hawkins A, et al. Process and mechanical properties: Applicability of a scandium modified Al-alloy for laser additive manufacturing. Phys Procedia, 2011, 12: 369–374

    Article  CAS  Google Scholar 

  16. Spierings AB, Dawson K, Uggowitzer PJ, et al. Influence of SLM scan-speed on microstructure, precipitation of Al3Sc particles and mechanical properties in Sc- and Zr-modified Al-Mg alloys. Mater Des, 2018, 140: 134–143

    Article  CAS  Google Scholar 

  17. Li R, Wang M, Li Z, et al. Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting: Crack-inhibiting and multiple strengthening mechanisms. Acta Mater, 2020, 193: 83–98

    Article  CAS  Google Scholar 

  18. Ma R, Peng C, Cai Z, et al. Enhanced strength of the selective laser melted Al-Mg-Sc-Zr alloy by cold rolling. Mater Sci Eng-A, 2020, 775: 138975

    Article  CAS  Google Scholar 

  19. Jia Q, Rometsch P, Kürnsteiner P, et al. Selective laser melting of a high strength Al Mn Sc alloy: Alloy design and strengthening mechanisms. Acta Mater, 2019, 171: 108–118

    Article  CAS  Google Scholar 

  20. Jia Q, Zhang F, Rometsch P, et al. Precipitation kinetics, microstructure evolution and mechanical behavior of a developed Al-Mn-Sc alloy fabricated by selective laser melting. Acta Mater, 2020, 193: 239–251

    Article  CAS  Google Scholar 

  21. Vlach M, Stulíková I, Smola B, et al. Annealing effects in hot-deformed Al-Mn-Sc-Zr alloys. Kovove Mater, 2015, 53: 295–304

    CAS  Google Scholar 

  22. Vlach M, Stulíková I, Smola B, et al. Precipitation in cold-rolled Al-Sc-Zr and Al-Mn-Sc-Zr alloys prepared by powder metallurgy. Mater Charact, 2013, 86: 59–68

    Article  CAS  Google Scholar 

  23. Croteau JR, Griffiths S, Rossell MD, et al. Microstructure and mechanical properties of Al-Mg-Zr alloys processed by selective laser melting. Acta Mater, 2018, 153: 35–44

    Article  CAS  Google Scholar 

  24. Kurz W, Trivedi R. Rapid solidification processing and microstructure formation. Mater Sci Eng-A, 1994, 179–180: 46–51

    Article  Google Scholar 

  25. Bai Y, Yang Y, Xiao Z, et al. Process optimization and mechanical property evolution of AlSiMg0.75 by selective laser melting. Mater Des, 2018, 140: 257–266

    Article  CAS  Google Scholar 

  26. Prashanth KG, Scudino S, Klauss HJ, et al. Microstructure and mechanical properties of Al-12Si produced by selective laser melting: Effect of heat treatment. Mater Sci Eng-A, 2014, 590: 153–160

    Article  CAS  Google Scholar 

  27. Kimura T, Nakamoto T, Ozaki T, et al. Microstructural formation and characterization mechanisms of selective laser melted Al-Si-Mg alloys with increasing magnesium content. Mater Sci Eng-A, 2019, 754: 786–798

    Article  CAS  Google Scholar 

  28. Wang M, Song B, Wei Q, et al. Effects of annealing on the microstructure and mechanical properties of selective laser melted AlSi7Mg alloy. Mater Sci Eng-A, 2019, 739: 463–472

    Article  CAS  Google Scholar 

  29. Kimura T, Nakamoto T. Microstructures and mechanical properties of A356 (AlSi7Mg0.3) aluminum alloy fabricated by selective laser melting. Mater Des, 2016, 89: 1294–1301

    Article  CAS  Google Scholar 

  30. Uzan NE, Shneck R, Yeheskel O, et al. High-temperature mechanical properties of AlSi10Mg specimens fabricated by additive manufacturing using selective laser melting technologies (AM-SLM). Addit Manuf, 2018, 24: 257–263

    CAS  Google Scholar 

  31. Xiong ZH, Liu SL, Li SF, et al. Role of melt pool boundary condition in determining the mechanical properties of selective laser melting AlSi10Mg alloy. Mater Sci Eng-A, 2019, 740–741: 148–156

    Article  Google Scholar 

  32. Varvenne C, Leyson GPM, Ghazisaeidi M, et al. Solute strengthening in random alloys. Acta Mater, 2017, 124: 660–683

    Article  CAS  Google Scholar 

  33. Ardell AJ. Precipitation hardening. Metall Trans A, 1985, 16: 2131–2165

    Article  Google Scholar 

  34. Wang Q, Li Z, Pang S, et al. Coherent precipitation and strengthening in compositionally complex alloys: A review. Entropy, 2018, 20: 878

    Article  CAS  Google Scholar 

  35. Hu J, Shi YN, Sauvage X, et al. Grain boundary stability governs hardening and softening in extremely fine nanograined metals. Science, 2017, 355: 1292–1296

    Article  CAS  Google Scholar 

  36. Ooi SW, Hill P, Rawson M, et al. Effect of retained austenite and high temperature Laves phase on the work hardening of an experimental maraging steel. Mater Sci Eng-A, 2013, 564: 485–492

    Article  CAS  Google Scholar 

  37. Sun Q, Wang X, Zhang S, et al. Effect of microstructure on fracture toughness of new type hot-rolled nano-scale precipitation strengthening steel. Acta Metall Sin, 2013, 49: 1501–1507

    Article  CAS  Google Scholar 

  38. Wu ZG, Song M, He YH. Effects of Er on the microstructure and mechanical properties of an as-extruded Al-Mg alloy. Mater Sci Eng-A, 2009, 504: 183–187

    Article  Google Scholar 

  39. Lv ZP, Jiang SH, He JY, et al. Second phase strengthening in advance materl materials. Acta Metall Sin, 2016, 52: 1183–1198

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51801079 and 52001140), and the Natural Science Foundation for Young Scientists of Jiangsu, China (BK20180985 and BK20180987).

Author information

Authors and Affiliations

Authors

Contributions

Geng Y and Xu J conceived the idea and wrote the paper. Tang H and Zhang Z performed the experiments. Xiao Y and Wu Y conducted the tensile testing. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Yaoxiang Geng  (耿遥祥) or Junhua Xu  (许俊华).

Additional information

Yaoxiang Geng is an associate professor at the School of Materials Science and Engineering, Jiangsu University of Science and Technology (China). He received his PhD degree in materials science (2016) from the School of Materials Science and Engineering, Dalian University of Technology (DUT). His research focuses on composition design and properties investigation of special aluminum alloys for selective laser melting and amorphous and nanocrystalline alloys.

Junhua Xu is a professor of the School of Materials Science and Engineering, Jiangsu University of Science and Technology (China). He received his PhD degree in materials science (2000) from the School of Materials Science and Engineering, Shanghai Jiao Tong University. His research focuses on thin film technologies and application of materials, composition design and property investigation of special aluminum alloys for selective laser melting.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, Y., Tang, H., Xu, J. et al. Strengthening mechanisms of high-performance Al-Mn-Mg-Sc-Zr alloy fabricated by selective laser melting. Sci. China Mater. 64, 3131–3137 (2021). https://doi.org/10.1007/s40843-021-1719-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-021-1719-8

Navigation