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Highly dispersed L1,-PtZn intermetallic catalyst for

efficient oxygen reduction

Tuo Zhao'?, Ergui Luo'?, Yang Li"%, Xian Wangl’z, Changpeng Liu'?, Wei Xingl’2 and Junjie Ge"”’

ABSTRACT Highly active and durable electrocatalysts with
minimal Pt usage are desired for commercial fuel cell appli-
cations. Herein, we present a highly dispersed L1,-PtZn in-
termetallic catalyst for the oxygen reduction reaction (ORR),
in which a Zn-rich metal-organic framework (MOF) is used as
an in situ generated support to confine the growth of PtZn
particles. Despite requiring high-temperature treatment, the
intermetallic L1,-PtZn particles exhibit a small mean size of
3.95 nm, which confers the catalysts with high electrochemical
active surface area (81.9 m” gpt_l) and atomic utilization. The
Pt electron structure and binding strength between Pt and
oxygen intermediates are optimized through ligand effect and
compressive strain. These advantages result in ORR mass ac-
tivity and specific activity of 0.926 A mgy, ' and 1.13 mA cm 7,
respectively, which are 5.4 and 4.0 times those of commercial
Pt/C. The stable L1, structure provides the catalysts with su-
perb durability; only a halfwave potential loss of 11 mV is
observed after 30,000 cycles of accelerated stress tests, through
which the structure evolves into a more stable PtZn-Pt core-
shell structure. Therefore, the development of a Zn-based
MOF as a catalyst support is demonstrated, providing a sy-
nergy strategy to prepare highly dispersed intermetallic alloys
with high activity and durability.

Keywords: L1,-PtZn intermetallic catalyst, Zn vapor protect,
confinement effect, morphological evolution, ORR

INTRODUCTION

Proton exchange membrane fuel cells are attractive next-
generation power sources owing to their advantages in-
cluding high power density, high conversion efficiency
and low pollution [1]. Although Pt has been extensively
investigated as the most active monometallic element for
the oxygen reduction reaction (ORR) in the past years,
high Pt loading is required as a result of the sluggish ORR

kinetics at the cathode, which restricts the commerciali-
zation of fuel cells [2-4]. To address these issues, intense
efforts have been devoted to increase the Pt mass activity
and specific activity by optimizing the catalyst particle
composition, size, structure, and interaction between
carrier and particles [5,6].

Introducing secondary transition metals is effective for
enhancing the activity of Pt through ligand effect and
compressive strain [7-12]. Thus, by selecting appropriate
transition metal elements, the d-band center of Pt could
be effectively downshifted, thereby weakening the overly
strong binding to oxygen species [13,14]. Although first-
row transition metals can most effectively boost the cat-
alytic performance, they are unstable under electro-
chemical conditions due to their much lower standard
oxidation potential. To overcome such problem, the
synthesis of Pt-based intermetallic alloys as catalysts has
emerged as an ideal strategy [15-17], since the ordered Pt
structure not only ensures a strong lattice strain but also
stabilizes the second metal as a result of the reinforced
bonding between Pt and the latter [18-21]. In this regard,
Zn is a promising secondary metal for the formation of
Pt-Zn intermetallic structures. The smaller atomic radius
and lower electronegativity of Zn confer PtZn alloys with
much superior activity to that of pure Pt due to com-
pressive strain and a decreased Pt 5d-band center [22].
Moreover, PtZn alloys have lower formation energy than
PtCo and PtNi, which is ascribable to the stronger Pt-Zn
bonding energy, thus improving the structural stability
during fuel cell operation [23,24].

However, achieving ordered intermetallic catalysts is
not a trivial task, since high-temperature treatment is
typically required, which inevitably leads to severe ag-
gregation and sintering. Hence, the development of an
effective strategy to fabricate PtZn intermetallic alloys
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without sacrificing the mass activity is highly desirable.
Typically, aggregation during high-temperature annealing
can be prevented by using oxides such as MgO and SiO,
to form a protective shell on the catalyst particles [25,26].
However, such strategy requires additional post-treat-
ment to remove the protective layer, which complicates
the process and hinders upscale synthesis.

Herein, we report the synthesis of a highly efficient L1,-
PtZn intermetallic ORR catalyst, in which a Zn-based
metal-organic framework (MOF) is responsible for the
formation of the ordered structure. Specifically, Zn, as a
metal node in the MOF precursor, spontaneously in-
corporates into the Pt entity and forms a stable L1,-PtZn
intermetallic structure via high-temperature pyrolysis.
Moreover, the excessive Zn atoms are volatilized at high
temperature during the synthesis process, thus preventing
the aggregation of PtZn particles. This results in ordered
L1,-PtZn nanoparticles that are stable toward pyrolysis
and possess a small mean size of 3.95nm and high
electrochemical active surface area (81.9 m’ gpfl). This
L1,-PtZn  catalyst shows better ORR activity
(0.926 A mgy, ' of mass activity and 1.13 mA cm - of
specific activity) and durability (11 mV of halfwave po-
tential (E,) loss after 30,000 cycles) than commercial
20 wt.% Pt/C owing to the ligand effect and compressive
strain. The ORR performance of our catalyst is among the
best of recently reported intermetallic compounds
(Table S1). Morphological evolution of a Pt shell and a
residual L1,-PtZn intermetallic core are observed after
accelerated durability tests (ADTs). This study demon-
strates a synergy strategy to prepare atomically dispersed
L1,-PtZn intermetallic alloys with high activity and dur-
ability.

MATERIALS AND METHODS

Materials

Zinc acetate (99.0%, Aladdin), ellagic acid (96.0%, Alad-
din) and 1-methyl-2-pyrrolidinone (98.0 %, Aladdin)
were used as received without further purification.

Methods
In a typical synthesis of MOF, 0.316 g of ellagic acid and
0.46 g of zinc acetate were dissolved with 40 mL of 1-
methyl-2-pyrrolidinone in a beaker under stirring. After
two days of reaction, the precipitate was centrifuged by
centrifugation with 1-methyl-2-pyrrolidinone and etha-
nol, and then dried at 55°C in a drying baker.

For the synthesis of pyrolyzed carbon (Cycp), the as-
prepared MOF was heat-treated at 950°C for 2 h under
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Ar/H, with a gas flow ratio of 90/10.

For the synthesis of Pt/Cy;op, 75 mg of Cyor and 2.4 mg
of Pt (1 mgy mL ", chloroplatinic acid solution, home-
made) were stirred for 2 h in 40 mL ethanol. After cen-
trifuging and drying, the precursor was heat-treated at
950°C for 2 h under Ar/H, with a gas flow ratio of 90/10,
yielding around 50 mg of Pt/Cygp.

For the synthesis of L1y-PtZn/Cyop, 0.53 g of MOF and
4.4 mg of Pt (1 mgy mL ', chloroplatinic acid solution,
self-configured) were stirred for 2 h in 40 mL ethanol.
After centrifuging and drying, the precursor was heat-
treated at 950°C for 2 h under Ar/H, with a gas flow ratio
of 90/10. Around 100 mg of PtZn/Cy,or was obtained.

Characterizations

Scanning electron microscopy (SEM) measurements were
performed with an XL 30 ESEMFEG field emission
scanning electron microscope. Transmittance electron
microscopy (TEM) and elemental mapping analysis were
conducted on a Philips TECNAI G2 electron microscope
operated at 200 kV. Powder XRD measurements were
performed on a PW1700 diffractometer (Philips Co.) with
a Cu Ka (A = 0.15405 nm) radiation source operated at
40 kV and 30 mA. The textural and morphological fea-
tures of precursors and catalysts were determined by ni-
trogen physisorption at 77 K with a Micromeritics ASAP
2020. X-ray photoelectron spectroscopy (XPS) measure-
ments were performed using a Kratos XSAM-800 spec-
trometer with an Mg Ka radiation source.

Electrochemical measurements

The electrochemical measurements were conducted using
a 750E Bipotentiostat (CH Instruments). The catalyst ink
was prepared by dispersing 5 mg of catalyst ultrasonically
in a mixture containing 50 pL of Nafion (5 wt%) solution,
550 puL of isopropanol, and 400 pL of deionized water.
The catalyst film-coated electrode was obtained by dis-
persing the catalyst ink on a glassy carbon rotating disk
electrode (RDE) or a rotating ring-disk electrode (RRDE)
followed by drying in air. The catalyst loading on the
electrode was 20 pgy, cm ~ for Pt/C and 12 pgp cm - for
PtZn/Cyop- A conventional three-electrode cell compris-
ing a reversible hydrogen electrode (RHE) as the re-
ference electrode, a graphite rod as the counter electrode,
and the catalyst film-coated RDE or RRDE as the working
electrode was employed. A 0.1 mol L' HCIO, solution
was used as the electrolyte for the ORR test. A 90% IR
correction was performed during the ORR test. RRDE
measurements were conducted by linear sweep voltam-
metry (LSV) from 0.05 to 1.03 V with a scan rate of
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10 mV's ' at 1600 rpm. The H,0, collection coefficient at
the ring in the RRDE experiments was 0.37. The follow-
ing equations were used to calculate the apparent number
of electrons transferred during ORR (n) and the percen-
tage of H,O, released during ORR:

_ 4
N TNy 1
~ 2e/N
H.0,% = 100,47, 2)

where I, is the Faradaic current at the disk, I is the
Faradaic current at the ring, and N is the H,O, collection
coefficient at the ring.

The ORR results were presented after subtracting the
currents measured in N,-saturated 0.1 mol L' HCIO,
electrolyte to remove capacitive currents. ADTs were
performed at room temperature in O,-saturated
0.1 mol L™' HCIO, solution by applying cyclic potential
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Ellagic acid Self-assembly

sweeps between 0.6 and 1.0 V versus RHE at a sweep rate
of 200 mV s ' for 30,000 cycles, and the initial and final
LSV curves were collected. We collected electrolyte
samples at 5000, 10,000, 20,000, and 30,000 cycles to
determine the loss of Pt and Zn by inductively coupled
plasma (ICP).

RESULTS AND DISCUSSION

First, we synthesized a Zn-based MOF using ellagic acid
and Zn(OAc), as precursors (Fig. la) [27]. The MOF
structure consisted of staggered nanosheets and an overall
spherical morphology (Fig. 1b and Figs S1, S2), which was
well retained after pyrolysis (Fig. S3). The carbon ob-
tained after pyrolysis (denoted as Cyop hereafter) ex-
hibited interlaced nanosheets (Fig. S4) and much higher
specific surface area than the MOF precursor (882 m’ g '
for Cyop and 27.9 m” g71 for MOF). Specifically, the N,
adsorption—desorption isotherm of Cy;or exhibits a type

Pt loading
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o
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Figure 1 Synthetic scheme, structure with interlaced nanosheets, and morphology of L1)-PtZn/Cyos. (a) Synthetic procedures for L1y-PtZn/Cyop.
(b) SEM images of MOF. (c) TEM image and particle-size distribution of L1y-PtZn/Cyjop. (d) Pore-size distribution of L1y-PtZn/Cyop and Cyiop.
(e) HAADF-STEM image of L1,-PtZn/Cy;op. (f, g) EDS elemental mappings of Pt and Zn, respectively.
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IV hysteresis loop at medium relative pressure (Fig. S5),
revealing its mesoporous nature. The density functional
theory (DFT) analysis shows a major peak located at 2 nm
for MOF and 4 nm for Cyor (Fig. 1d and Fig. S5), further
verifying the mesoporous nature of the carbon material.
This mesoporous carbon structure, which is beneficial for
anchoring the metal particles and for mass transfer dur-
ing fuel cell operation, renders Cy;or an ideal support.

The synthesis of the Cyop-supported L1,-PtZn catalyst
was performed by simply introducing the Pt precursor
into the MOF structure before pyrolysis. In this system, a
host-guest mechanism can be considered responsible for
the high dispersion of the final Pt catalyst. As shown in
Fig. 1c, PtZn particles with a mean particle size of
3.95 nm and high dispersion were achieved after pyrolysis
at 950°C for 2 h. Interestingly, the particle size of PtZn is
in good correlation with the pore size of Cyor (both
around 4 nm), which suggests that the hierarchical pore
exerts a confinement effect limiting the particle growth.
This hypothesis was supported by DFT analysis, which
showed that the introduction of Pt led to a restricted pore
width of 4 nm (Fig. 1d). Meanwhile, the in situ generation
of Zn vapor was also crucial to prevent particle agglom-
eration. This was demonstrated by synthesizing a control
Pt/Cyior sample, in which Cyop was used to load Pt fol-
lowed by a second pyrolysis process. In the control
sample, the nanoparticle aggregation was observed
(Fig. S6). We then investigated the catalyst composition
by ICP optical emission spectrometry (ICP-OES). Inter-
estingly, the catalyst exhibited mass fractions of Pt and Zn
of 44% and 1.4%, respectively, demonstrating a Pt/Zn
atom ratio of 1:1. However, in the absence of Pt, Zn was
vaporized during the pyrolysis, leaving carbon as the sole
product (Table S2). These results indicate that Pt has a
strong tendency to bind with Zn, thereby leading to the
spontaneous formation of the PtZn bimetal structure.
Taken together, these results demonstrate that the com-
bination of the confinement effect of the MOF, according
to which mesopores of around 4 nm are filled with PtZn
nanoparticles, and the Zn vapor protecting strategy,
which restrains the particle growth, prevents particle ag-
gregation at high temperature.

High-annular dark-field scanning transmission electron
microscopy (HAADF-STEM) and scanning transmission
electron microscopy-energy dispersive spectrometry
(STEM-EDS) elemental mapping of L1,-PtZn/Cyp
(Fig. le-g) reveal that the distribution of Zn resembles
that of Pt, thus confirming the alloy feature. The atomic
ratio (Fig. S7) of Pt/Zn was determined to be 1:1 by EDS,
which is consistent with the ICP result. The powder X-ray
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diffraction (XRD) pattern of L1,-PtZn/Cy;or (Fig. 2c)
agrees well with the intermetallic L1,-PtZn PDF card
(PDF#06-0604) without any impurity peak, demonstrat-
ing the formation of an ordered L1,-PtZn intermetallic
structure. The super lattice peaks observed at 31.3° and
25.3° can be assigned to the (110) and (001) planes of L1,-
PtZn, and an intensity ratio of 0.30 for (110)/(111), which
is close to that of the bulk L1,-PtZn, and further verifies
the ordered structure [28]. The high-resolution TEM
(HRTEM) images depicted in Fig. 2a, b reveal the pre-
sence of lattice fringes of 0.221 and 0.351 nm, corre-
sponding to the (111) and (001) facets of the PtZn
intermetallic structure. An evident lattice shrinkage in
comparison to Pt/C (0.226 nm for (111)) was noticed,
corresponding to 2.2% compressive strain. The in-
tensified d-orbital overlapping caused the d-band center
to shift downward, resulting in weakened adsorption
properties of the reaction intermediates, which is bene-
ficial for the enhancement of the binding strength [29,30].
We then investigated the electronic property of L1,-PtZn/
Cyior and Pt/C by XPS. A negative shift was observed in
the Pt core levels (71.7 eV for Pt 4f) compared with those
of Pt/C (71.9 eV for Pt 4f) (Fig. 2d). Furthermore, the Zn
core levels (1022.0 eV for Zn 2p) (Fig. S8) underwent a
positive shift compared with pure Zn (1021.5eV for
Zn 2p). Since the XRD results reveal that Zn and Pt are
bonded strongly in the intermetallic alloy, these electronic
changes are most likely caused by electron donation from
Zn to Pt. This electron transfer can downshift the Pt d-
band center, thus optimizing the binding affinity between
Pt and oxygen intermediates [3,31-33].

We then conducted electrochemical tests to evaluate
the ORR performance of the catalyst. First, the electro-
chemical active surface area was evaluated through CO
stripping (Fig. 3a) and hydrogen underpotential deposi-
tion (Fig. S9, the hydrogen area was covered). The L1,-
PtZn/Cyor and Pt/C catalyst exhibited surface areas of
81.9 and 60.1m” gy ', respectively, with the former
higher due to its smaller particle size (3.95 nm). Second,
the E,, (Fig. 3b) of L1y-PtZn/Cyor (0.922 V) was much
higher than that of commercial Pt/C (0.880 V), Pt/Cyor
(0.881 V), and Cy,p, according to LSV recorded in an O,-
saturated 0.1 mol L~' HCIO, solution. The LSV analysis
also revealed that the Tafel slope of L1,-PtZn/Cyor
(67 mV dec') was smaller than that of Pt/C
(75 mV dec ), indicating the enhanced ORR kinetics for
the former (Fig. 3c). The electron transfer number (3.98)
calculated from the RRDE (Fig. S10) is consistent with a
complete four-electron pathway from O, to H,O with
scarce generation of H,0O,. Furthermore, L1y-PtZn/Cyop
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Figure 2 Structure and composition of L1y-PtZn/Cyio. (a, b) HRTEM images and lattice fringes of L1)-PtZn/Cyyop. (c) XRD patterns of L1,-PtZn/
Cyor and Cyjop. (d) XPS spectra of L1,-PtZn/Cy;or and Pt/C.
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Figure 4 Durability performance and morphological evolutions. (a) LSV curves of L1y-PtZn/Cyqr and Pt/C after ADTs. (b) Zn peak changes of the
XPS spectra. (c) Lattice fringes and Pt shell after ADTs. (d, e) HAADF line profiles showing the Pt shell. (f) XRD peak changes of L1,-PtZn/Cyop.

exhibited mass activity of 0.926 A mgp = and specific
activity of 1.13 mA cm ~ at 0.9 V versus an RHE (Fig. 3d),
which were respectively 5.4 and 4.0 times those of the Pt/
C reference sample (0.172 A mgpf1 and 0.28 mA cm ).
According to the electrochemical tests, it can be con-
cluded that the incorporation of Zn and the formation of
the intermetallic alloy between Pt and Zn are beneficial
for improving the ORR performance.

In addition to activity, durability is an important eva-
luation criterion for catalyst applicability; therefore, L1,-
PtZn/Cyor was subjected to ADTs for 30,000 cycles be-
tween 0.6 and 1.0 V in an O,-saturated 0.1 mol L ' HCIO,
solution. Its high durability was evidenced by an E,, loss
of 11 mV (Fig. 4a), which is much smaller than that of Pt/
C (24 mV E,, loss), demonstrating the more robust nature
of L1y-PtZn/Cyor compared with Pt/C during the test. To
explore the reason for this high durability, the mor-
phology, composition, electronic state, and structure of
L1,-PtZn/Cy;or were studied after ADTs. The particle size
did not change significantly (Fig. S11), and Zn and Pt
remained together (Fig. S12). This good morphology
stability toward migration and agglomeration is beneficial
for maintaining high ORR performance [34,35]. With
regard to composition changes, since the second metals
are usually difficult to preserve due to their more active
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chemical properties, we investigated the electrolyte
composition changes of Pt and Zn at different cycles
during ADTSs. The ICP results (Table S3) showed that Pt
was well retained during the whole ADTs, whereas 1/3 Zn
was lost before 5000 cycles. The rest of Zn remained until
30,000 cycles, indicating that L1,-PtZn/Cy;or was stable
after 5000 cycles. Interesting changes were observed when
evaluating the electronic state. Thus, the Zn peak dis-
appeared in the XPS spectra (Fig. 4b), suggesting that the
Zn on the nanoparticle surface dissolved, and a Pt shell
was eventually formed. This morphological evolution was
further demonstrated by HRTEM (Fig. 4c, Fig. S13); the
lattice fringes inside the nanoparticles no longer extended
to the surface, and a Pt shell was observed on the surface
[36]. The thickness of this Pt shell was about 0.6 nm
(Fig. 4c—e), which corresponds to 3-4 atomic Pt layers.
Structurally, the XRD patterns depicted in Fig. 4f show
that the peaks shifted slightly to lower angles because the
smaller atomic radius of Zn was reduced one third after
ADTs, being 0.353 nm for the (001) and 0.288 nm for the
(110) interplanar fringes (Fig. S13), further demonstrat-
ing that the L1,-PtZn structure changed throughout the
ADTs. Considering the above comprehensive analysis, we
conclude that a core-shell structure with a PtZn inter-
metallic core and a Pt shell eventually formed after ADTs.

July 2021 | Vol.64 No.7
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This core-shell structure contributes to maintain ORR
activity and stability, protecting the PtZn particles against
further Zn leaching from the inner region [32,37-41].

CONCLUSIONS

Benefiting from the confinement effect of the MOF and a
Zn vapor protective feature, we successfully prepared an
L1,-PtZn intermetallic ORR catalyst with small particle
size (3.95 nm) using a Zn-rich MOF as support for the
particle growth. The L1,-PtZn catalyst shows high mass
activity (0926 A mgp, ) and  specific activity
(1.13mA cm °), which are 5.4 and 4.0 times those of
commercial Pt/C. In ADTs, the catalyst shows robust
stability with an E,, decay of 11 mV after 30,000 cycles,
and the intermetallic particles undergo morphological
evolution to an intermetallic core with a Pt shell. XRD,
TEM, and other experimental results reveal that the ad-
mirable ORR performance can be ascribed to the alloying
affect and compressive strain around the L1,-PtZn in-
termetallic alloy. Therefore, a synergy strategy to prepare
highly dispersed intermetallic alloys is demonstrated,
which involves a clear morphology evolution that pre-
vents particle agglomeration at high temperature. This
study can contribute to the rational design of electro-
catalysts for practical applications.
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