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Structure-induced hollow Co3O4 nanoparticles with
rich oxygen vacancies for efficient CO oxidation
Zhijie Chen, Yajing Wang, Qiannan Liang, Liyu Chen, Weiteng Zhan and Yingwei Li*

ABSTRACT Co3O4 has been considered as one kind of pro-
mising catalysts for the oxidation of CO. According to the
Mars-van Krevelen mechanism, oxygen vacancies of Co3O4
play a significant role in catalytic activity. Herein, we report a
novel structure-induced strategy to develop hollow Co3O4 with
rich oxygen vacancies for efficient oxidation of CO. Through a
reduction-oxidation pyrolysis process, the metal-organic fra-
meworks (MOFs) precursor (i.e., ZIF-67) is transformed into
H-Co3O4@H-C, in which hollow Co3O4 (H-Co3O4) nano-
particles (NPs) are embedded in hollow carbon (H-C) shell.
The hollow Co3O4 NPs feature rich oxygen vacancies and
finish a complete conversion of CO at 130°C, which is much
lower than that of solid Co3O4 (the temperature of full CO
conversion T100=220°C). Besides, the hollow carbon shell could
also reduce the diffusion resistance during the oxidation
process. Benefiting from the unique hollow structures,
H-Co3O4@H-C even shows comparable activity to noble metal
catalysts under high weight hourly space velocities (WHSVs)
up to 240,000 mL h–1 gcat.

–1. Furthermore, the H-Co3O4@H-C
catalyst also shows good durability with only a slight decline
after the reaction has been operated for 24 h.

Keywords: CO oxidation, metal-organic frameworks, cobalt
oxide, hollow structure, oxygen vacancy

INTRODUCTION
With the development of modern industry, oxidation of
carbon monoxide is increasingly important in relation to
in-door air quality control and automotive emissions
purification. Tricobalt tetraoxide (Co3O4) has been de-
monstrated to be an efficient catalyst for the oxidation of
CO [1–4]. It is generally accepted that the CO oxidation
catalyzed by Co3O4 proceeds via the Mars-van Krevelen
mechanism, in which the oxygen vacancies on the surface
of Co3O4 can activate O2 molecules to form actively ad-
sorbed oxygen (Oads) that would react with CO adsorbed

on Co3+ ions to produce CO2 [5–7]. The initial oxygen
vacancies determine the amount of Oads on the surface of
Co3O4 to affect the activity of CO oxidation [8–10]. In
this regard, it is desirable to effectively enrich the oxygen
vacancies on the surface of Co3O4.

The traditional way to create oxygen vacancies on the
surface of Co3O4 is to calcine Co3O4 at high temperature
[11]. During the calcination process, some oxygen species
on the Co3O4 surface would release to form oxygen va-
cancies. However, the treatments at high temperatures
would inevitably result in severe agglomeration of Co3O4.
Besides, it has been reported that the surface atomic con-
figuration of Co3O4 was strongly influenced by its mor-
phology [12]. Specially, metal oxides with hollow structures
were demonstrated to possess more defect sites on their
surfaces than the solid counterparts [13–18]. Therefore, we
could reasonably speculate that fabrication of Co3O4 with
hollow structure may maximize the oxygen vacancies on its
surface to achieve high catalytic efficiency in CO oxidation.

Recently, metal-organic frameworks (MOFs), con-
structed by inorganic nodes with organic linkers, have
been used as versatile templates for preparing a variety of
functional materials, including metal oxides [19–27].
Through controlling the pyrolysis atmosphere and tem-
peratures, metal oxides with different morphologies could
be synthesized [28–31], providing great opportunity to
tune their exposed surface configurations with enriched
oxygen vacancies. In this work, we report a novel struc-
ture-induced strategy to enrich the surface oxygen va-
cancies through fabricating Co3O4 NPs with hollow
structure derived from MOFs. As a proof of concept, we
selected a Co-based MOF (i.e., ZIF-67) as the precursor
for the synthesis of hollow Co3O4 NPs embedded in hol-
low carbon shell (denoted as H-Co3O4@H-C) via a re-
duction-oxidation pyrolysis process. The hollow Co3O4
structure possessed rich oxygen vacancies on the surface
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for the activation of O2, and the hollow carbon shell en-
hanced the substrate diffusion and also stabilized the
hollow Co3O4 NPs during the oxidation process. The re-
sulting H-Co3O4@H-C composites showed excellent cat-
alytic activity and durability for CO oxidation, achieving a
complete CO conversion at 130°C and a high weight
hourly space velocity (WHSV) of 60,000 mL h–1 gcat.

–1 for
up to 24 h of reaction time, representing a highly efficient
catalyst for CO oxidation.

EXPERIMENTAL SECTION
All chemicals used in this work were purchased from
commercial sources (Sigma-Aldrich, Alfa Aesar, and
others) and used without further purification.

Materials synthesis
In a typical synthesis of ZIF-67, cobalt nitrate hexahy-
drate (875.4 mg, 3 mmol) and 2-methylimidazole
(990 mg, 12 mmol) were dissolved into 75 mL of me-
thanol, respectively. Then the two solutions were quickly
mixed. After being stirred for a few seconds, the mixed
solution was left for aging for 24 h at room temperature.
The resulting purple precipitates were collected by cen-
trifugation, subsequently washed with methanol for 3
times, and finally dried under vacuum at 80°C for 24 h.

H-Co3O4@H-C was synthesized by using a reduction-
oxidation method. 0.5 g of ZIF-67 was placed in a tubular
furnace and then heated at 600°C for 3 h with a heating
rate of 2°C min–1 under an Ar/H2 (90%/10% in volume
ratio) atmosphere. After the temperature was cooled to
350°C, the Ar/H2 atmosphere was changed to air and held
for 10 min. Then an argon atmosphere was introduced
instead of air to end up the oxidation process and the
heating program was stopped.

For comparison purpose, another two samples were
prepared by using ZIF-67 as precursors. The synthesis of
H-Co3O4@C was the same as that of H-Co3O4@H-C ex-
cept that the Ar/H2 was replaced by pure Ar at the be-
ginning. Co3O4@H-C was prepared according to the
previous report with minor modifications [32]. 0.5 g of
ZIF-67 was placed in a tubular furnace and then heated at
450°C for 2 h with a heating rate of 2°C min–1 under air.
After being cooled down to room temperature, the
Co3O4@H-C material was obtained.

Co@C-Ar/H2 or Co@C-Ar was obtained directly by
calcinating ZIF-67 under an Ar/H2 or Ar atmosphere at
600°C for 3 h, respectively.

Materials characterization
Powder X-ray diffraction (XRD) patterns of the samples

were recorded with a Rigaku (40 kV, 30 mA, 0.1534 nm)
using Cu Kα radiation. The Brunauer-Emmett-Teller
(BET) surface area and pore size distribution were mea-
sured using N2 adsorption/desorption isotherms at
−196.15°C on a Micromeritics ASAP 2020M instrument.
Before the mensuration, the samples were degassed at
150°C for 4 h. X-ray photoelectron spectroscopy (XPS)
with a Thermo ESCALAB 250XI multifunctional imaging
electron spectrometer was used to analyze the electronic
states and the surface interaction among the elements of
the samples. The binding energies of all elements were
calibrated with the C 1s peak at 284.8 eV. The Co con-
tents of the samples were determined quantitatively by
atomic absorption spectroscopy (AAS) on a HITACHI Z-
2300 instrument. Temperature-programmed reduction
by H2 (H2-TPR) was performed on a DAS-7200 from
HUASI Instruments. Typically, 5.0 mg of sample was
pretreated in a flow of N2 at 200°C for 0.5 h with a
heating rate of 5°C min–1 to remove adsorbed water and
other impurities. After being cooled down to room
temperature, the sample was heated from room tem-
perature with a ramp rate of 10°C min–1 to 800°C under a
flow of Ar/H2 (90%/10% in volume ratio). Transmission
electron microscopy (TEM) images were taken on a JEOL
2100F analytical electron microscope operated at 200 kV.
A high-resolution scanning electron microscope (SEM,
Hatachi SU8220) was used to observe the morphology of
the samples.

Catalytic tests
The catalytic activities of the samples for CO oxidation
were measured in a fixed bed micro-reactor (9 mm i.d.)
under ambient pressure. Typically, 50 mg of the catalyst
was loaded into the reactor and pretreated in N2 at 200°C
for 2 h to remove moisture and adsorbed impurities.
After being cooled to room temperature, a gas mixture
containing 1 vol% CO and 99 vol% air were introduced
into the reactors at a flow rate of 50 mL min–1 using mass
flow controllers, corresponding to a WHSV of
60,000 mL gcat.

–1 h–1. The composition of the effluent ga-
ses was monitored using an online gas chromatograph
equipped with a thermal conductivity detector (TCD).
The catalytic data were collected after 30 min for each
temperature to ensure a steady-state condition. For the
stability test, the reactions were conducted under the
same reaction conditions as described above.

RESULTS AND DISCUSSION
Scheme 1 illustrated the synthetic routes for preparing
cobalt-based materials using ZIF-67 as template. Among
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these MOF-derived materials, H-Co3O4@H-C was pre-
pared through a reduction-oxidation pyrolysis process.
ZIF-67 was first treated in Ar/H2 at 600°C. During this

step, the cobalt cations in the ZIF-67 frameworks were
reduced into Co NPs, as was evident from the XRD
pattern of Co@C-Ar/H2 (Fig. S1). Then, air was in-
troduced as oxidant to implement the succedent oxida-
tion at 350°C to yield H-Co3O4@H-C. From the XRD
pattern of H-Co3O4@H-C in Fig. 1a, it was clear to
identify that the Co NPs were transformed into Co3O4
NPs within a short time of oxidation.

For comparisons, another two cobalt-based catalysts
(H-Co3O4@C and Co3O4@H-C) were prepared by using
different calcination processes. For the synthesis of H-
Co3O4@C, a similar preparation method as for
H-Co3O4@H-C was employed, only altering the initial
atmosphere for Ar/H2 to Ar (Scheme 1). Thus Co@C-Ar
was obtained after the pyrolysis of ZIF-67 under Ar at-
mosphere and then the followed oxidation converted the
Co NPs into Co3O4 NPs inside the final H-Co3O4@C
catalyst (Fig. S1 and Fig. 1a). It is worth noting that the
average sizes of Co NPs inside Co@C-Ar/H2 and Co@C-
Ar increased after oxidation as compared with those of
Co3O4 NPs in H-Co3O4@H-C and H-Co3O4@C (Table 1),
respectively. These results indicated that re-construction
might happen to the inner structure of those NPs during
the transformation. The Co3O4@H-C was synthesized

Scheme 1 Synthetic routes of H-Co3O4@C, H-Co3O4@H-C, and
Co3O4@H-C.

Figure 1 (a) XRD patterns of Co3O4@H-C, H-Co3O4@C, and H-Co3O4@H-C; (b) N2 adsorption/desorption isotherms of Co3O4@H-C, H-Co3O4@C,
and H-Co3O4@H-C.

Table 1 Physicochemical properties and CO oxidation activities of the Co-based catalysts

Samples BET surface
area (m2 g–1)

Crystalline
domain sizea) (nm)

Co contentb)

(wt%)
Oads/Olatt

molar ratioc) T100
d) (°C)

Co@C600-Ar/H2 192 15.1 44.2 − −

H-Co3O4@H-C 104 19.0 50.3 1.15 130

H-Co3O4@ C 172 18.9 46.8 0.98 170

Co3O4@H-C 51 23.5 60.0 0.44 220

a) Cobalt crystalline size was calculated from XRD reflection broadening with the Scherrer equation; b) Co contents were measured by AAS; c) Oads/
Olatt (lattice oxygen) molar ratio was calculated based on the XPS results; d) reaction condition: 1 vol% CO balanced by air, mcat.=50 mg, WHSV=
60,000 mL h–1 gcat.

–1.
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directly under air atmosphere at 450°C and the cobalt
compounds were assigned to Co3O4 (Fig. 1a).

Although different calcination processes were applied,
H-Co3O4@H-C, H-Co3O4@C and Co3O4@H-C displayed
similar porous structures. As shown in Fig. 1b, these
cobalt-based materials all displayed low adsorption ca-
pacities at low relative pressures, which indicated that the
catalysts possessed micropores in their structures. At high
relative pressures, all three catalysts exhibited hysteresis
loops that could be associated with the existence of me-
sopores, as evident from the pore distribution curves
(Fig. S2) [33–35]. The BET surface areas of the cobalt-
based materials are listed in Table 1. Interestingly, the Co
content followed the order of H-Co3O4@C < H-Co3O4@
H-C < Co3O4@H-C, which was opposite to that of their
BET surface areas. It probably reflected that H-Co3O4@C
could preserve the porous structure from the template to
a greater extent with more loss of the carbon and nitrogen
elements resulting in a higher Co content.

In order to investigate the morphology evolution, SEM
and TEM were employed to observe the formation of the
hollow cavities. After pyrolysis under Ar/H2, the obtained
Co@C-Ar/H2 (Fig. S3d–f) still preserved the rhomboic
dodecahedron morphology of the template ZIF-67
(Fig. S3a–c), while generating a hollow cavity with a size

of ca. 300 nm. It was proposed that, in presence of H2, the
Co species in ZIF-67 was reduced at relative low tem-
peratures and accelerated the pyrolysis process of imi-
dazole ligands and the consumption of carbon [36]. With
subsequent introduction of air instead of the reduction
gas, the hollow skeleton of Co@C-Ar/H2 was maintained
(Fig. 2a, d). Meanwhile, hollow Co3O4 NPs were formed
inside the H-Co3O4@H-C material (Fig. 2g). TEM and
high-resolution TEM (HRTEM) images of the Co3O4 NPs
in H-Co3O4@H-C (Fig. 3) were taken to observe their
structures. It was clear to note that most of the Co3O4 NPs
in Fig. 3a possessed a hollow cavity inside the Co3O4 shell,
which should be the reason that the average sizes of NPs
increased after the oxidation (Table 1). The HRTEM
image in Fig. 3b showed a lattice spacing of 0.233 nm,
which could be attributed to the (222) plane of Co3O4.

Solid carbon shells were obtained in H-Co3O4@C
(Fig. 2b, e, h) when the calcination atmosphere was
changed to pure Ar, demonstrating that the presence of
H2 was crucial to fabricate hollow carbon shells. However,
hollow Co3O4 NPs were observed in both H-Co3O4@H-C
and H-Co3O4@C, which proved that short time of the
oxidation process played a significant role. According to
the previous reports [37–40], the formation of small
cavities in Co3O4 particles was caused by the different

Figure 2 SEM (a–c) and TEM (d–i) images of Co3O4@H-C (a, d, g), H-Co3O4@C (b, e, h), and H-Co3O4@H-C (c, f, i).
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diffusion rates during the oxidation of Co NPs. The faster
migratory rate of Co atoms to the surface as compared
with that of O atoms to the core is well-known as the
Kirkendall effect. Direct calcination under air atmosphere
could only yield a hollow carbon shell with solid Co3O4
NPs, e.g., Co3O4@H-C, as shown in Fig. 2c, f, i. The
formation mechanism of hollow carbon shell in
Co3O4@H-C, which was different from that of H-Co3O4@
H-C, resulting from non-equilibrium heat treatment in
which two forces with the opposite direction that led to
the interface separation of the Co3O4 shell formed at the
initial stage and the ZIF-67 core [28]. The high-angle
annular dark field (HAADF)-STEM images (Fig. 4)
showed that both H-Co3O4@H-C and Co3O4@H-C pos-
sessed a hollow carbon shell. Energy dispersive spectro-
meter (EDS) mapping images of these three catalysts

demonstrated that the elements of C, Co, N, and O were
all evenly distributed on their bulk particles.

After structural characterizations, the catalytic perfor-
mances of the as-synthesized H-Co3O4@H-C, Co3O4@H-
C, and H-Co3O4@C materials in CO oxidation were then
investigated to disclose the relationship between their
structures and catalytic activities. The reactions were
carried out under 1 vol% CO and 99 vol% dry air with a
space velocity of 60,000 mL h–1 gcat.

–1. As shown in Fig. 5,
using H-Co3O4@H-C as the catalyst, the oxidation pro-
cess of CO began at 50°C and completed at 130°C (the
temperature of full CO conversion, T100). For Co3O4@H-
C, 100% conversion of CO was accomplished at 220°C.
The apparently higher catalytic activity achieved on
H-Co3O4@H-C suggested that the hollow cavities in
Co3O4 NPs played a significant role in enhancing the
activity. Although H-Co3O4@C also possessed hollow
Co3O4 NPs, the lack of hollow cavity of carbon shell
would affect the inner diffusion of the gases, resulting in
lower activity (T100=170°C) as compared with H-Co3O4@
H-C.

The surface chemical states of Co and O elements can
provide important information for the activity of the
catalysts for CO oxidation. In general, it is believed that
Co3+ is essential to the adsorption of CO molecule so that
the oxidation could happen with the oxygen atom next to
Co3+ [41]. For the oxygen element, three kinds of oxygen,
i.e., Olatt, Oads, and physisorbed and chemisorbed water

Figure 3 TEM (a) and HRTEM (b) images of H-Co3O4@H-C.

Figure 4 HAADF-STEM (a–c) and EDS (d–f) mapping images of Co3O4@H-C (a, d), H-Co3O4@C (b, e), and H-Co3O4@H-C (c, f).

SCIENCE CHINA Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ARTICLES

February 2020 | Vol. 63 No. 2 271© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019



(Owat), may exist in the Co3O4. Among them, the content
of Oads could reflect the amount of the initial oxygen
vacancies on the catalyst surfaces. Besides, the Oads is
considered to own higher mobility than the Olatt so that it
could react with CO adsorbed on Co3+ to generate oxygen
vacancies more quickly [42]. Therefore, the balance be-

tween the contents of Co3+ and Oads is essential for the
high activity of CO oxidation, as the equilibrium between
CO capture and oxygen supplement could reach the
highest efficiency.

To figure out the impact of Co3+ and initial oxygen
vacancies, XPS analysis was used to determine the surface
chemical states of the cobalt-based catalysts. As shown in
Fig. 6a, the compositions of H-Co3O4@H-C, Hb-Co3O4
@C, and H-Co3O4@C were identical with C, N, O and Co
as the main elements whose binding energies were 284.48,
399.44, 540.67, and 780.24 eV, respectively. According to
the literature [11], the Co 2p3/2 peak could be fitted with
five peaks that were at 779.85, 780.90, 782.40, 786.85 and
790.10 eV, assigning to Co3+, both of Co3+ and Co2+, Co2+,
satellite peak 1 (Sat. 1), and satellite peak 2 (Sat. 2), re-
spectively (Fig. 6b). The values of the relative areas of
these five peaks are listed in Table S1. Co3O4@H-C
calcined directly under dry air possessed higher Co3+

content compared with H-Co3O4@H-C and H-Co3O4@C.
Taking the catalytic behaviors into consideration, the
content of Co3+ in these catalysts seemed to be enough to
capture CO from the reaction gas, while the oxygen
supplement was limited. Therefore, the content of the
Oads was regarded as the key to affect the catalytic activity

Figure 5 CO conversion as a function of reaction temperature for
Co3O4@H-C (▲), H-Co3O4@C (●), and H-Co3O4@H-C (■). Reaction
condition: 1 vol% CO balanced by air, mcat.=50 mg, and WHSV=
60,000 mL h–1 gcat.

–1.

Figure 6 (a) XPS full spectrum analysis; XPS spectra of (b) Co 2p2/3, (c) O 1s; (d) H2-TPR profiles for Co3O4@H-C, H-Co3O4@C, and H-Co3O4@H-C.
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of CO oxidation.
In Fig. 6c, the XPS spectra of O 1s were fitted with three

types of peaks, including the Olatt at 530.00 eV, Oads at
531.40 eV, and Owat at 532.80 eV. The Oads/Olatt molar
ratios (Table 1) were calculated from their relative area to
evaluate the quantity of initial oxygen vacancies on the
catalyst surface [10]. As excepted, H-Co3O4@H-C owned
the highest value of the Oads/Olatt molar ratio among these
three catalysts, which was 2.6 times higher than that of
Co3O4@H-C. It has been reported that more Co2+ on
Co3O4 surface would result in more oxygen vacancies [8].
Combined with the Co 2p2/3 XPS analysis, Co3O4@H-C
showed more Co3+ but fewer Co2+ which caused fewer
oxygen vacancies on its surface. The H-Co3O4@H-C
catalyst with hollow Co3O4 NPs showed higher Oads/Olatt
molar ratio than Co3O4@H-C, which demonstrated that
the structure-induced strategy could successfully affect
the quantity of initial oxygen vacancies by introducing the
hollow structure into Co3O4 NPs.

Apart from XPS analysis, H2-TPR was employed to
study the oxygen species in the cobalt-based materials.
Normally, the profile of Co3O4 consisted of three peaks
which were assigned to the reductions of adsorbed oxy-
gen, Co3O4 to CoO, and CoO to Co, respectively [11,43].
The peaks below 200°C in Fig. 6d could be recognized as
the reaction of the adsorbed oxygen with H2. Their peak
areas were supposed to correspond roughly to the
quantity of Oads. As shown in Fig. 6d, the order of peak
intensities was H-Co3O4@H-C > H-Co3O4@C > Co3O4@
H-C, which was consistent with the XPS results
(Table S1). Interestingly, it was found that although H-
Co3O4@C possessed similar hollow Co3O4 NPs as H-
Co3O4@H-C, it had fewer Oads than the latter. H-
Co3O4@C could be affected by the structure of carbon
materials that might cover some oxygen vacancies for

adsorbing oxygen species. These results indicated that H-
Co3O4@H-C possessed the most oxygen vacancies in-
itially, producing more Oads to activate the CO oxidation
cycle.

In view of the significant effect of WHSV on catalytic
behaviors, the H-Co3O4@H-C catalyst was tested in CO
oxidation at different WHSVs. The values of T100 for each
reaction were recorded and displayed in Fig. 7a. Gen-
erally, the catalytic activity was lowered when the WHSV
increased because of the shortened residence time of re-
action gas on the surface of the catalyst. For the H-Co3O4
@H-C catalyst, the T100 value was enhanced from 130 to
200°C when the WHSV increased from 60,000 to
240,000 mL h–1 gcat.

–1. Up to now, there are few reports
achieving high activity for CO oxidation at relatively high
WHSVs [44,45]. For example, Yan et al. [42] prepared a
Pt/CeO2 catalyst which possessed single atomic Pt on the
CeO2 support and gave a full conversion of CO at 148°C
with a WHSV of 200,000 mL h–1 gcat.

–1. To our delight,
H-Co3O4@H-C showed comparable activity to the Pt/
CeO2 catalyst that achieved complete CO transformation
at 190°C at a WHSV of 210,000 mL h–1 gcat.

–1. Taking the
supervisor activity of single atom catalyst into con-
sideration, H-Co3O4@H-C exhibited remarkable catalytic
activity that is close to noble-metal catalysts at high
WHSVs. Moreover, as shown in Fig. 7b, H-Co3O4@H-C
also exhibited excellent durability in the oxidation of CO
at 130°C with only a slight decline in activity even after
24 h of online reaction.

CONCLUSIONS
In summary, we have developed a novel structure-
induced strategy to boost the quantity of oxygen
vacancies of Co3O4 materials for efficient oxidation of CO
by introducing hollow structures into the Co3O4 NPs.

Figure 7 (a) T100 of H-Co3O4@H-C for CO oxidation at different WHSVs; (b) CO conversion as a function of reaction time for H-Co3O4@H-C at
130°C. All the reactions were performed under the conditions: 1 vol% CO balanced by air, mcat.=50 mg, and WHSV=60,000 mL h–1 gcat.

–1 except the
reactions in (a) with various WHSVs.
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Thus, a hollow H-Co3O4@H-C catalyst is successfully
fabricated through reduction-oxidation with ZIF-67 as
precursor. H-Co3O4@H-C exhibits remarkable catalytic
activity, achieving a complete conversion at 130°C, which
is even comparable to that of noble-metal catalysts at high
WHSVs. The high activity of H-Co3O4@H-C would ori-
ginate from the hollow Co3O4 NPs featured rich oxygen
vacancies that could produce more Oads to accelerate the
CO oxidation cycle. Besides, the hollow carbon shell in
H-Co3O4@H-C can exactly expose its inner surface which
would increase the quantity of Oads. The combination of
the two kinds of hollow cavities enables the catalyst to
retain its high catalytic activity even at very high WHSVs,
and shows great durability during the longtime online
reaction. The structure-induced strategy might open up a
new avenue to the development of novel porous materials
with richened oxygen vacancies for highly efficient and
durable oxidation reactions.
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结构诱导富集氧空位的空心Co3O4催化CO高效
氧化
陈芝杰, 王亚晶, 梁倩楠, 陈立宇, 詹伟腾, 李映伟*

摘要 四氧化三钴(Co3O4)被认为是一种具有应用前景的CO氧化
催化剂. 根据Mars-van Krevelen机理, Co3O4的氧空位对提高催化
活性起到非常重要的作用. 本文提出一种新颖的结构诱导策略以
制备具有丰富氧空位的空心Co3O4, 实现高效CO氧化. 通过还原-
氧化热解过程, 金属有机骨架前驱体(如ZIF-67)被转化成镶嵌有空
心Co3O4颗粒的空心碳壳材料. 空心Co3O4颗粒具有丰富的氧空位,
在130°C时能催化CO完全氧化转化, 远低于实心Co3O4材料的完全
转化温度(220°C). 此外, 空心碳壳结构可以降低氧化过程中的分子
扩散阻力 . 得益于其独特的中空结构 , H-Co 3O 4@H-C在高达
240,000 mL h–1 gcat.

–1的空速下显示出与贵金属催化剂相媲美的活
性. 此外, H-Co3O4@H-C催化剂也显示出良好的稳定性, 反应24 h
后活性才略微下降.
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