Skip to main content
Log in

Post-modification of MOF to fabricate single-atom dispersed hollow nanocages catalysts for enhancing CO2 conversion

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

During the catalytic process, the microenvironment and surface area of the catalyst will affect the catalytic performance. Hence, an assisted organic linker coated metal-organic framework (MOF) has been applied, to form Ni/HNC (HNC represents hollow nanocage) for electrocatalytic CO2 reduction. Remarkably, Ni/HNC achieves superb activity with high Faradaic efficiency (FE) of 97.2% at 0.7 V vs. reversible hydrogen electrode (RHE) towards CO2 conversion to CO. In contrast to Ni/NPC (afforded from the naked MOF), the Ni/HNC displays higher FE and selectivity on CO rather than H2, owing to the large nanocage which extraordinarily facilitates CO2 enrichment and the active sites easily accessible. This work provides a general and feasible route to construct high-efficient electrochemical CO2 reduction reaction (EC-CO2RR) catalysts via post-modified MOFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anagnostou, E.; John, E. H.; Edgar, K. M.; Foster, G. L.; Ridgwell, A.; Inglis, G. N.; Pancost, R. D.; Lunt, D. J.; Pearson, P. N. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate. Nature 2016, 533, 380–384.

    Article  CAS  Google Scholar 

  2. Mun, Y.; Kim, K.; Kim, S.; Lee, S.; Lee, S.; Kim, S.; Choi, W.; Kim, S. K.; Han, J. W.; Lee, J. A novel strategy to develop non-noble metal catalyst for CO2 electroreduction: Hybridization of metal-organic polymer. Appl. Catal. B: Environ. 2018, 236, 154–161.

    Article  CAS  Google Scholar 

  3. Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.

    Article  CAS  Google Scholar 

  4. Xu, X. F.; Lin, K.; Zhou, D.; Liu, Q.; Qin, X. Y.; Wang, S. W.; He, S.; Kang, F. Y.; Li, B. H.; Wang, G. X. Quasi-solid-state dual-ion sodium metal batteries for low-cost energy storage. Chem, 2020, 6, 902–918.

    Article  CAS  Google Scholar 

  5. Asadi, M.; Kim, K.; Liu, C.; Addepalli, A. V.; Abbasi, P.; Yasaei, P.; Phillips, P.; Behranginia, A.; Cerrato, J. M.; Haasch, R. et al. Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid. Science 2016, 353, 467–470.

    Article  CAS  Google Scholar 

  6. Wang, W. H.; Himeda, Y.; Muckerman, J. T.; Manbeck, G. F.; Fujita, E. CO2 hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction. Chem. Rev. 2015, 115, 12936–12973.

    Article  CAS  Google Scholar 

  7. Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of singleatom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

    Article  CAS  Google Scholar 

  8. Woldu, A. R.; Huang, Z. L.; Zhao, P. X.; Hu, L. S.; Astruc, D. Electrochemical CO2 reduction (CO2RR) to multi-carbon products over copper-based catalysts. Coord. Chem. Rev. 2022, 454, 214340.

    Article  CAS  Google Scholar 

  9. Shen, S. B.; He, J.; Peng, X. Y.; Xi, W.; Zhang, L. H.; Xi, D. S.; Wang, L.; Liu, X. J.; Luo, J. Stepped surface-rich copper fiber felt as an efficient electrocatalyst for the CO2RR to formate. J. Mater. Chem. A 2018, 6, 18960–18966.

    Article  CAS  Google Scholar 

  10. Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of erovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

    Article  CAS  Google Scholar 

  11. Dong, L. Z.; Lu, Y. F.; Wang, R.; Zhou, J.; Zhang, Y.; Zhang, L.; Liu, J.; Li, S. L.; Lan, Y. Q. Porous copper cluster-based MOF with strong cuprophilic interactions for highly selective electrocatalytic reduction of CO2 to CH4. Nano Res. 2022, 15, 10185–10193.

    Article  CAS  Google Scholar 

  12. Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

    Article  CAS  Google Scholar 

  13. Vo, C. H.; Mondelli, C.; Hamedi, H.; Pérez-Ramírez, J.; Farooq, S.; Karimi, I. A. Sustainability assessment of thermocatalytic conversion of CO2 to transportation fuels, methanol, and 1-propanol. ACS Sustainable Chem. Eng. 2021, 9, 10591–10600.

    Article  CAS  Google Scholar 

  14. Mehla, S.; Kandjani, A. E.; Babarao, R.; Lee, A. F.; Periasamy, S.; Wilson, K.; Ramakrishna, S.; Bhargava, S. K. Porous crystalline frameworks for thermocatalytic CO2 reduction: An emerging paradigm. Energy Environ. Sci. 2021, 14, 320–352.

    Article  CAS  Google Scholar 

  15. De, S.; Dokania, A.; Ramirez, A.; Gascon, J. Advances in the design of heterogeneous catalysts and thermocatalytic processes for CO2 utilization. ACS Catal. 2020, 10, 14147–14185.

    Article  CAS  Google Scholar 

  16. Wang, G.; Chen, Z.; Wang, T.; Wang, D. S.; Mao, J. J. P and Cu dual sites on graphitic carbon nitride for photocatalytic CO2 reduction to hydrocarbon fuels with high C2H6 evolution. Angew. Chem., Int. Ed. 2022, 61, e202210789.

    Article  CAS  Google Scholar 

  17. Duan, Z. Y.; Zhao, X. J.; Wei, C. W.; Chen, L. M. Ag-Bi/BiVO4 chain-like hollow microstructures with enhanced photocatalytic activity for CO2 conversion. Appl. Catal. A Gen. 2020, 594, 117459.

    Article  CAS  Google Scholar 

  18. Jiang, M. P.; Li, C.; Huang, K. K.; Wang, Y.; Liu, J. H.; Geng, Z. B.; Hou, X. Y.; Shi, J. Y.; Feng, S. H. Tuning W18O49/Cu2O {111} interfaces for the highly selective CO2 photocatalytic conversion to CH4. ACS Appl. Mater. Interfaces 2020, 12, 35113–35119.

    Article  CAS  Google Scholar 

  19. Sun, X. H.; Tuo, Y. X.; Ye, C. L.; Chen, C.; Lu, Q.; Li, G. N.; Jiang, P.; Chen, S. H.; Zhu, P.; Ma, M. et al. Phosphorus induced electron localization of single iron sites for boosted CO2 electroreduction reaction. Angew. Chem., Int. Ed. 2021, 60, 23614–23618.

    Article  CAS  Google Scholar 

  20. Cao, T.; Lin, R.; Liu, S. J.; Cheong, W. C. M.; Li, Z.; Wu, K. L.; Zhu, Y. Q.; Wang, X. L.; Zhang, J.; Li, Q. H. et al. Atomically dispersed Ni anchored on polymer-derived mesh-like N-doped carbon nanofibers as an efficient CO2 electrocatalytic reduction catalyst. Nano Res. 2022, 15, 3959–3963.

    Article  CAS  Google Scholar 

  21. Zhang, Z.; Wen, G. B.; Luo, D.; Ren, B. H.; Zhu, Y. F.; Gao, R.; Dou, H. Z.; Sun, G. R.; Feng, M.; Bai, Z. Y. et al. “Two ships in a bottle” design for Zn-Ag-O catalyst enabling selective and long-lasting CO2 electroreduction. J. Am. Chem. Soc. 2021, 143, 6855–6864.

    Article  CAS  Google Scholar 

  22. Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.

    Article  CAS  Google Scholar 

  23. Zhang, Z. D.; Zhu, J. X.; Chen, S. H.; Sun, W. M.; Wang, D. S. Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202215136.

    Article  CAS  Google Scholar 

  24. Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

    Article  Google Scholar 

  25. Zheng, T. T.; Jiang, K.; Ta, N.; Hu, Y. F.; Zeng, J.; Liu, J. Y.; Wang, H. T. Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst. Joule 2019, 3, 265–278.

    Article  CAS  Google Scholar 

  26. Li, R. Z.; Wang, D. S. Understanding the structure-performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

    Article  CAS  Google Scholar 

  27. Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

    Article  CAS  Google Scholar 

  28. Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 75, 1730–1752.

    Article  Google Scholar 

  29. Kaneti, Y. V.; Dutta, S.; Hossain, M. S. A.; Shiddiky, M. J. A.; Tung, K. L.; Shieh, F. K.; Tsung, C. K.; Wu, K. C. W.; Yamauchi, Y. Strategies for improving the functionality of zeolitic imidazolate frameworks: Tailoring nanoarchitectures for functional applications. Adv. Mater. 2017, 29, 1700213.

    Article  Google Scholar 

  30. Zhou, H. C.; Long, J. R.; Yaghi, O. M. Introduction to metal-organic frameworks. Chem. Rev. 2012, 112, 673–674.

    Article  CAS  Google Scholar 

  31. Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

    Article  CAS  Google Scholar 

  32. Yun, R. R.; Li, T. H.; Zhang, B. B.; He, L.; Liu, S. J.; Yu, C.; Chen, Z.; Luo, S. Z. Amino induced high-loading atomically dispersed Co sites on N-doped hollow carbon for efficient CO2 transformation. Chem. Commun. 2022, 58, 6602–6605.

    Article  CAS  Google Scholar 

  33. Yun, R. R.; Zhan, F. Y.; Wang, X. J.; Zhang, B. B.; Sheng, T.; Xin, Z. F.; Mao, J. J.; Liu, S. J.; Zheng, B. S. Design of binary Cu-Fe sites coordinated with nitrogen dispersed in the porous carbon for synergistic CO2 electroreduction. Small 2021, 17, 2006951.

    Article  CAS  Google Scholar 

  34. Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM-ESPRESSO: A modular and open-source software project for quantum simulation of materials. J. Phys. Condens. Matter. 2009, 21, 395502.

    Article  Google Scholar 

  35. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  36. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B. 1990, 41, 7892–7895.

    Article  CAS  Google Scholar 

  37. Yun, R. R.; Zhan, F. Y.; Li, N.; Zhang, B. B.; Ma, W. J.; Hong, L. R.; Sheng, T.; Du, L. T.; Zheng, B. S.; Liu, S. J. Fe single atoms and Fe2O3 clusters liberated from N-doped polyhedral carbon for chemoselective hydrogenation under mild conditions. ACS Appl. Mater. Interfaces 2020, 12, 34122–34129.

    Article  CAS  Google Scholar 

  38. Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

    Article  CAS  Google Scholar 

  39. Yan, C. C.; Li, H. B.; Ye, Y. F.; Wu, H. H.; Cai, F.; Si, R.; Xiao, J. P.; Miao, S.; Xie, S. H.; Yang, F. et al. Coordinatively unsaturated nickel-nitrogen sites towards selective and high-rate CO2 electroreduction. Energy Environ. Sci. 2018, 11, 1204–1210.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (NSFC) (No. 21401004), the Natural Science Foundation of Anhui Province (Nos. 1508085QB36 and 2008085MB52), the Key Research and Development Projects of Anhui Province (No. 2022a05020048), the Open Foundation of Anhui Laboratory of Molecule-based Materials (No. fzj19005), and the National Creative Plan of Students (No. 202110370044).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruirui Yun, Tian Sheng or Zheng Chen.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, R., Xu, R., Shi, C. et al. Post-modification of MOF to fabricate single-atom dispersed hollow nanocages catalysts for enhancing CO2 conversion. Nano Res. 16, 8970–8976 (2023). https://doi.org/10.1007/s12274-023-5626-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5626-x

Keywords

Navigation