Skip to main content
Log in

Discovery, properties and applications of rhenium and its compounds

  • Lecture Text
  • Published:
ChemTexts Aims and scope Submit manuscript

Abstract

After a historic excursus the basic properties of rhenium are summarized, followed by selected classes of its compounds (halides and oxyhalides, oxides, perrhenates, carbides, carbonyls, alkoxides). Subsequently, the analysis of rhenium and a variety of rhenium alloys as well as the use of rhenium as catalyst are described. Finally, the recycling of rhenium scrap is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. The word Japan is an exonym and is used by many languages. The Japanese names for Japan are Nippon and Nihon. They are both written in Japanese using the kanji 日本.

  2. Iron sow (in German: Eisensau/Ofensau/Härtling): Iron masses, which settle at the walls of the melting furnaces.

  3. A fumarole (Latin fumus, smoke) is an opening in the Earth’s crust, often in the neighborhood of volcanoes, where steam and gases come out, mostly CO2, SO2, HCl and H2S.

  4. The very thin Earth's crust is like the skin of an apple and accounts for < 1% of the Earth’s volume. It is only about 8 km thick under the oceans and about 40 km thick under the continents.

  5. Figures 6, 7, 8, 9, 10, 11, 14 and 15 were created with Diamond-Crystal and Molecular Structure Visualization.

  6. Metathesis reactions are chemical reactions in which two hydrocarbons (alkanes, alkenes or alkynes) are converted to two new hydrocarbons by the exchange of carbon–carbon single, double or triple bonds. These are usually catalyzed by a metal catalyst.

  7. A homoleptic compound is a chemical complex with only one type of ligand.

  8. A diol is a chemical compound containing two hydroxyl groups.

  9. In naming a complex wherein a single atom bridges two metals, the bridging ligand is preceded by the Greek character μ, with a subscript or superscript number denoting the number of metals bound to the bridging ligand.

  10. Oxide dispersion strengthened (ODS) alloys consist of a metal matrix with small oxide particles dispersed within it. They are used for high-temperature turbine blades and heat exchanger tubing.

  11. Billet metal is a solid length (often in a square or circle profile) of material that has been extruded into shape, by either continuous casting or hot rolling.

  12. Hydrodesulfurization (HDS) is a catalytic chemical process widely used to remove sulfur from natural gas and reined petroleum products.

  13. First pass yield (FPY) measures the effectiveness of a process by measuring how many products are produced correctly in the first attempt.

Abbreviations

AES:

Atomic emission spectroscopy

aka:

Also known as

at%:

Atomic percentage

b.p.:

Boiling point

BET:

Brunauer-Emmet-Teller

CC:

Coupled-cluster

CT:

Computer tumography

DBTT:

Ductile-to-brittle transition temperature

DFT:

Density functional theory

DTA:

Differential thermal analysis

EDS:

Energy-dispersive X-ray spectroscopy

ESI-MS:

Electrospray ionization mass spectrometry

ESR:

Electron spin resonance, aka EPR (electron paramagnetic resonance)

FBDE:

First bond dissociation energy

FPY:

First pass yield

FT-IR:

Fourier-transform infrared spectroscopy

GTP:

Global Tungsten & Powders Corp.

hcp:

Hexagonal close packed

ICP:

Inductively coupled plasma

IMA:

International Mineral Association

K:

Kelvin

kPa:

Kilopascal (101.3 kPa = 1 atm)

LA-TOF-MS:

Laser ablation time-of-flight mass spectrometry

mass%:

Mass percentage

m.p.:

Melting point

ML:

Machine learning

MS:

Mass spectrometry/mass spectrometer

N/A:

Not available

NMR:

Nuclear magnetic resonance

ODS:

Oxide dispersion strengthened

OES:

Optical emission spectroscopy

PM:

Powder metallurgy

ppb:

Parts per billion = 10–9

ρ :

Density

SCE:

Saturated calomel electrode

SCFH:

Standard cubic feet per hour

SEM:

Scanning electron microscopy

t 1/2 :

Half-life

TBO:

Tungsten blue oxide

TEM:

Transmission electron microscopy

TGA:

Thermogravimetric analysis

UV-Vis:

Ultraviolet visible spectroscopy

XAS:

X-ray absorption spectroscopy

XRF:

X-ray fluorescence

XPS:

X-ray photoelectron spectroscopy, aka ESCA (electron spectroscopy for chemical analysis)

XRD:

X-ray diffraction

Z :

Atomic number (Periodic Table); number of formula units in a unit cell

References

  1. Ogawa M (1908a) Preliminary note on a new element in thorianite. Chem News 98:249–251

    Google Scholar 

  2. Ogawa M (1908b) Preliminary note on a new element allied to molybdenum. Chem News 98:261–264

    Google Scholar 

  3. Loring FH (1909) Atomic weights as mathematical functions. Chem News 100:281–287

    Google Scholar 

  4. Yoshihara HK (2000) Ogawa’s discovery of nipponium and its re-evaluation. Hist Sci (Tokyo) 9:277–279

    Google Scholar 

  5. Yoshihara HK (2004) Discovery of a new element ’nipponiumʼ: re-evaluation of pioneering works of Masataka Ogawa and his son Eijiro Ogawa. Spectrochim Acta B 59:1305–1310

    Google Scholar 

  6. Yoshihara HK (2005) Ogawa Family and their Nipponium Research: H. K. Yoshihara, T. Kobayashi, M. Kaji, Successful separation of the element 75 before its discovery by Noddacks. Hist Sci (Tokyo) 15:177–190

    Google Scholar 

  7. Yoshihara HK (2008) Nipponium as a new element (Z = 75) separated by the Japanese chemist Masataka Ogawa: a scientific and science historical re-evaluation. Proc Jpn Acad Ser B 84:232–245

    CAS  Google Scholar 

  8. Kaji M (2002) Ogawa’s discovery of „nipponium“ – Modern Japanese chemistry in historic context (Ogawas Entdeckung des „Nipponiums“ - Moderne japanische Chemie im historischen Kontext) Mitteilungen, Gesellschaft Deutscher Chemiker/Fachgruppe Geschichte der Chemie (Frankfurt/Main) 16:87–92 (in German)

  9. Scerri E (2013) A tale of seven elements. Oxford University Press, Oxford, pp 109–114

    Google Scholar 

  10. Noddack W, Tacke I, Berg O (1925) Ekamanganeses (Die Ekamangane). Naturwissenschaften 13:567–574 (in German)

    CAS  Google Scholar 

  11. Popular library of the chemical elements. 2nd book, pp 195–205. , “Nauka”, Moscow 1977 (Пoпyляpнaя библиoтeкa xимичecкиx элeмeнтoв. Книгa втopaя, cтp. 195–205, “Hayкa“, Mocквa 1977) (in Russian)

  12. Noddack W, Noddack I (1929) Preparation of one gram rhenium (Die Herstellung von einem Gramm Rhenium). Z Anorg Allg Chem 183:353–375. https://doi.org/10.1002/zaac.19291830126 (in German)

    Article  CAS  Google Scholar 

  13. Ecke BK (2012) Mining history: About copper ore respectively cupriferous slate in Mansfeld district and its utilization (Bergbau Geschichte: Über das Kupfererz oder Kupferschiefer im Mansfelder Revier und seine Nutzung). https://Harz-Saale.de/tag/kupfer/(in German)

  14. Eisenächer W, Klett W, Prohl H (1999) From copper ore to metal—smelting (Vom Kupfererz zum Metall – Die Verhüttung). Chapter III in Mansfeld: Die Geschichte des Berg- und Hüttenwesens, Veröffentlichungen aus dem Deutschen Bergbau-Museum Bochum, vol 80, chapter III, pp 205–359 (in German)

  15. Korzhinsky MA, Tkachenko SI, Shmulovich KI, Taran YA, Steinberg GS (1994) Discovery of a pure rhenium mineral at Kudriavy volcano. Nature 369:51–52

    CAS  Google Scholar 

  16. mindat.org. https://www.mindat.org/min-7269.html

  17. Abisheva ZS, Zagorodnyaya AN, Bekturganov NS (2010) Recovery of rhenium from mineral raw materials of Kazakhstan. In: XXV International Mineral Processing Congress, pp 1–19

  18. Abundance of elements in the Earth’s crust and in the Sea, CRC Handbook of Chemistry and Physics, 97th edition (2016–2017), pp 14–17

  19. Rhenium Outlook to 2029, 11th Edition. https://roskill.com/market-report/rhenium/

  20. https://www.webelements.com/rhenium/

  21. https://periodictable.com/Elements/075/data.html

  22. Cotton FA, Wilkinson G, Murillo CA, Bochmann M (1999) Advanced Inorganic Chemistry, 6th edn. Wiley, New York, pp 974–1000

    Google Scholar 

  23. Holleman-Wiberg (1995) Textbook of inorganic chemistry (Lehrbuch der Anorganischen Chemie), 101st edn. Walter de Gruyter, Berlin, pp 1490–1503 (in German)

    Google Scholar 

  24. Lothar K (1990) Inorganic chemistry, textbook (Anorganische Chemie), 3rd edn. VEB Deutscher Verlag der Wissenschaften, Berlin, pp 705–711 (in German)

    Google Scholar 

  25. Chemistry and technology of rare and disperse elements (1978), section III, chapter VI, Rhenium, 2nd edition, pp 277–318, Moskva „Vysshaya shkola“(Xимя и тexнoлoгия peдкиx и pacceянныx элeмeнтoв, Чacть III, Глaвa VI, Peний, Издaниe 2-e, Mocквa “Bыcшaя Шкoлa“) (in Russian)

  26. Hwang I, Seppelt K (2000) The structures of ReF8 and UF82−. J Fluorine Chem 102:69–72. https://doi.org/10.1016/S0022-1139(99)00248-1

    Article  CAS  Google Scholar 

  27. Drews T, Supeł J, Hagenbach A, Seppelt K (2006) Solid state molecular structures of transition metal hexafluorides. Inorg Chem 45:3782–3788

    CAS  PubMed  Google Scholar 

  28. (1981) Handbook of preparative inorganic chemistry, ed. Georg Brauer (Handbuch der Präparativen Anorganischen Chemie in drei Bänden, Hrsg. Georg Brauer), 3rd edition. Ferdinand Enke Verlag, pp 1608–1609 (in German)

  29. Cotton FA, Mague JT (1964) The existence of the Re3Cl9 cluster in anhydrous rhenium(III) chloride and its persistence in solutions of rhenium(III) chloride. Inorg Chem 3:1402–1407

    CAS  Google Scholar 

  30. Lincoln R, Wilkinson G (1980) 12. Trirhenium nonachloride. Inorg Synth 20:44–45

    Google Scholar 

  31. (1981) Handbook of preparative inorganic chemistry, ed. Georg Brauer (Handbuch der Präparativen Anorganischen Chemie in drei Bänden, Hrsg. Georg Brauer), 3rd edition. Ferdinand Enke Verlag, pp 1610–1612 (in German)

  32. (1981) Handbook of preparative inorganic chemistry, ed. Georg Brauer (Handbuch der Präparativen Anorganischen Chemie in drei Bänden, Hrsg. Georg Brauer), 3rd edition. Ferdinand Enke Verlag, pp 1613–1614 (in German)

  33. Supeł J, Seppelt K (2006) Rhenium trichloride dioxide, ReO2Cl3. Angew Chem Int Ed 45:4675–4677

    Google Scholar 

  34. (1981) Handbook of preparative inorganic chemistry, ed. Georg Brauer (Handbuch der Präparativen Anorganischen Chemie in drei Bänden, Hrsg. Georg Brauer), 3rd edition. Ferdinand Enke Verlag, pp 1615–1618 (in German)

  35. Chemistry and technology of rare and disperse elements (1978), section III, pp 279–282, 2nd edition, Moskva „Vysshaya shkola“ (Xимя и тexнoлoгия peдкиx и pacceянныx элeмeнтoв, Чacть III, cтp. 279–282, Издaниe 2-e, Mocквa “Bыcшaя Шкoлa“) (in Russian)

  36. Tribalat S, Delafosse D, Piolet C (1965) About a new rhenium oxide: rhenium(V) oxide (Sur un nouvel oxide de rhénium: l’oxyde de rhénium(V)). Compt rend Acad Sci 261:1008–1011 (in French)

    CAS  Google Scholar 

  37. Hartmann T, Ehrenberg H, Miehe G, Buhrmester T, Wltschek G, Galy J, Fuess H (2001) Preparation and crystal structure of Re3O10. J Solid State Chem 160:317–321

    CAS  Google Scholar 

  38. (1981) Handbook of preparative inorganic chemistry, ed. Georg Brauer (Handbuch der Präparativen Anorganischen Chemie in drei Bänden, Hrsg. Georg Brauer), 3rd edition. Ferdinand Enke Verlag, pp 1632–1636 (in German)

  39. Chemistry and technology of rare and disperse elements (1978), section III, pp 282–283, 2nd edition, Moskva „Vysshaya shkola“ (Xимя и тexнoлoгия peдкиx и pacceянныx элeмeнтoв, Чacть III, cтp. 282–283, Издaниe 2-e, Mocквa “Bыcшaя Шкoлa“) (in Russian)

  40. Schrebler R, Cury P, Orellana M, Gómez H, Córdova R, Dalchiele EA (2001) Electrochemical and nanoelectrogravimetric studies of the nucleation and growth mechanisms of rhenium on polycrystalline gold electrode. Electrochim Acta 46:4309–4318

    CAS  Google Scholar 

  41. Noddack I, Noddack W (1929) Oxygen compounds of rhenium (Die Sauerstoffverbindungen des Rheniums). Z Anorg Allg Chem 181:1–37 (in German)

    CAS  Google Scholar 

  42. Swainson IP, Brown RJC (1997) Refinement of ammonium perrhenate structure using a pseudo-spin model for the ammonium ion orientation. Acta Cryst B53:76–81. https://doi.org/10.1107/S0108768196011160

    Article  CAS  Google Scholar 

  43. Varfolomeev MB, Ivanova ED, Lunk HJ, Hilmer W, Shamrai NB (1984) The thermal stability of lanthanide perrhenate tetrahydrates Ln(ReO4)3·4H2O. Russ J Inorg Chem 29:1711–1713

    Google Scholar 

  44. Varfolomeev MB, Šamraj NB, Fuchs J, Lunk HJ (1993) Crystal structure of strontium perrhenate sesquihydrate (Zur Kristallstruktur von Strontiumperrhenat-Sesquihydrat Sr(ReO4)2·1.5H2O). J Alloys Compd 201:261–265 (in German)

    CAS  Google Scholar 

  45. Varfolomeev MB, Zemenkova AN, Chrustalev VN, Stručkov JuT, Lunk HJ, Ziemer B (1994) Crystal structure of copper perrhenate tetrahydrate, Cu(ReO4)2·4H2O. J Alloys Compd 215:339–343

    CAS  Google Scholar 

  46. Mujica C, Peters K, Peters EM, von Schnering HG (1997) Crystal structure of tetraaquabis(perrhenato)copper(II), Cu(ReO4)2(H2O)4. Z Kristallogr NCS 212:294

    CAS  Google Scholar 

  47. Zhao Z, Cui L, Wang LM, Xu B, Liu Z, Yu D, He J, Zhou XF, Wang HT, Tian Y (2010) Bulk Re2C: crystal structure, hardness, and ultra-incompressibility. Cryst Growth Des 10:5024–5026

    CAS  Google Scholar 

  48. Granados-Fitch MG, Juarez-Arellano EA, Quintana-Melgoza JM, Avalos-Borja M (2016) Mechanosynthesis of rhenium carbide at ambient pressure and temperature. J Int Refract Met Hard Mat 55:11–15

    CAS  Google Scholar 

  49. Hieber W, Fuchs H (1941) About metal carbonyls. XXXVIII. About rhenium pentacarbonyl (Über Metallcarbonyle. XXXVIII. Über Rheniumpentacarbonyl). Z Anorg Allg Chem 248:256–268. https://doi.org/10.1002/zaac.19412480304 (in German)

    Article  CAS  Google Scholar 

  50. Escalona Platero E, Ruiz de Peralta F, Otero Areán C (1995) Vapour phase deposition and thermal decarbonylation of Re2(CO)10 on gamma-alumina: infrared studies. Catal Lett 34:65–73

    CAS  Google Scholar 

  51. Pershina V, Iliaš M (2018) Carbonyl compounds of Tc, Re, and Bh: electronic structure, bonding, and volatility. J Chem Phys 149(204306):1–13

    Google Scholar 

  52. Wang Y, Cao Sh, Zhang J, Fan F, Yang J, Haba H, Komori Y, Yokokita T, Morimoto K, Kaji D, Wittwer Y, Eichler R, Türler A, Qin Zh (2019) The study of rhenium pentacarbonyl complexes using single-atom chemistry in the gas phase. Phys Chem Chem Phys 21:7147–7154

    CAS  PubMed  Google Scholar 

  53. Turova NY, Turevskaya EP, Kessler VG, Yanovskaya MI (2002) The chemistry of metal alkoxides. Kluwer Academic Publishers, Boston, p 568

    Google Scholar 

  54. Seisenbaeva GA, Shevelkov AV, Tegenfeldt J, Kloo L, Drobot DV, Kessler VG (2001) Homo- and hetero-metallic rhenium oxomethoxide complexes with a M4(μ-O)2(μ-OMe)4 planar core—a new family of metal alkoxides displaying a peculiar structural disorder. Preparation and X-ray single crystal study. J Chem Soc Dalton Trans 2001:2762–2768

    Google Scholar 

  55. Sheglov PA, Drobot DV, Syrov JuV, Mal'tseva AC (2004) Alkoxytechnology of oxidic and metallic rhenium and molybdenum materials. Neorg Mater 40:1–8 (Щeглoв ПA, Дpoбoт ДB, Cыpoв ЮB, Maльцeвa AC (2004) Aлкoкcитexнoлoгия oкcидныx и мeтaлличecкиx мaтepиaлoв нa ocнoвe peния и мoлибдeнa. Heopг Maтep 40:1–8 (in Russian)

    Google Scholar 

  56. Drobot DV, Seisenbaeva GA, Kessler VG, Scheglov PA, Nikonova OA, Michnevich SN, Petrakova OV (2009) Cluster and heterometallic alkoxide derivatives of rhenium and d-elements of V-VI groups. J Clust Sci 20:23–36

    CAS  Google Scholar 

  57. Kulikova ES, Drobot DV, Yarzhemsky VG, Il’in EG (2018) Structure and thermodynamic stability of rhenium and ruthenium oxoalkoxo derivatives MxN4–xO6(OMe)10 (M, N = Re, Ru; x = 4–0). Russ J Inorg Chem 63:1446–1452

    CAS  Google Scholar 

  58. Drobot DV, Kulikova ES (2019) Dvi-manganese–rhenium is the youngest stable element of the Periodic Table. Fine Chem Technol 14:17–21 (Дpoбoт ДB, Кyликoвa EC (2019) Дви-мapгaнeц – peний: caмый «мoлoдoй» cтaбильный элeмeнт Пepиoдичecкoй cиcтeмы элeмeнтoв. Toнкиe xим тexнoл 14:17–21) (in Russian) https://doi.org/10.32362/2410-6593-2019-14-6-17-21

  59. Edwards PG, Wilkinson GM, Hursthouse MB, Malik KMA (1980) Improved syntheses of tetrachloro-oxorhenium(VI) and chlorotrioxo-rhenium(VII). Synthesis of alkoxo- and dialkylamido-rhenium com-pounds. The crystal and molecular structures of di-µ-methoxo-tetramethoxo-µ-oxdioxodirhenium(VI)(Re–Re), bis[lithium pentaiso-propoxo-oxorhenate(VI)–lithiumchloride–tetrahydrofuran(1/1/2)], and trans-tetraphenoxobis(trimethylphosphine)rhenium(IV). J Chem Soc Dalton Trans 1980:2467–2475

    Google Scholar 

  60. Evdokimova OV, Pechishcheva NV, Shunyaev KYu (2012) Up-to-date methods for the determination of rhenium. J Anal Chem 67:741–753

    CAS  Google Scholar 

  61. Guzmán M (2018) Rhenium–a rare metal (Rhenium–ein seltenes Metall). Liv Metals (The Plansee group) 16:44–49 (in German)

    Google Scholar 

  62. Zelikman AN, Kreyn OE, Samsonov GV (1978) Metallurgy of rare metals. Moscow, “Metallurgiya“, chapter VI Rhenium, pp. 355–380 (Зeликмaн AH, Кpeйн OE, Caмcoнoв ГB. Meтaллypгaя peдкиx мeтaллoв. Mocквa “Meтaллyгия“, Глaвa VI Peний, cтp. 355–380) (in Russian)

  63. Zelikman AN (1980) Metallurgy of rare metals. Moscow, “Metallurgiya“, chapter IV Rhenium, pp. 173–184 (Зeликмaн AH (1980) Meтaллypгaя peдкиx мeтaллoв. Mocквa “Meтaллyгия“, Глaвa IV Peний, cтp. 173–184) (in Russian)

  64. https://www.cmmarket.ru/markets/reworld.htm. Global market of rhenium (Mиpoвoй pынoк peния) (in Russian)

  65. Bauer EB, Haase AA, Reich RM, Crans DC, Kühn FE (2019) Organometallic and coordination rhenium compounds and their potential in cancer therapy. Coord Chem Rev 393:79–117

    CAS  Google Scholar 

  66. Liepe K, Kropp J, Runge R, Kotzerke J (2003) Therapeutic efficiency of rhenium-188-HEDP in human prostate cancer skeletal metastases. Brit J Cancer 89:625–629

    CAS  PubMed  Google Scholar 

  67. de Klerk JMH, Bernard A, Zonnenberg BA, van het Schip AD, van Dijk A, Han SH, Quirijnen JMSP, Blijham GH, van Rijk PP (1994) Dose escalation study of rhenium-186 hydroxyethylidene diphosphonate in patients with metastatic prostate cancer. Eur J Nucl Med 21:1114–2112

    PubMed  Google Scholar 

  68. Trasorras JRL, Wolfe TA, Knabl W, Venezia C, Lemus R, Lassner E, Schubert WD, Lüderitz E, Wolf HU (2016) Tungsten, tungsten alloys, and tungsten compounds. Ullmann’s encyclopedia of industrial chemistry. Wiley, New York, pp 1–53

    Google Scholar 

  69. Lunk HJ, Hartl H (2019) Discovery, properties and applications of tungsten and its inorganic compounds. ChemTexts 5:24. https://doi.org/10.1007/s40828-019-0088-1

    Article  CAS  Google Scholar 

  70. Mueller AJ, Bianco R, Buckman RW (2000) Evaluation of oxide dispersion strengthened (ODS) molybdenum and molybdenum-rhenium alloys. J Int Refract Met Hard Mat 18:205–211

    CAS  Google Scholar 

  71. Räty J, Pakkanen TA (2000) Controlled gas-phase preparation and HDS activity of Re2(CO)10/alumina catalysts. Catal Lett 34:175–180

    Google Scholar 

  72. Bouchmella K, Stoyanova M, Rodemerck U, Debecker DP, Mutina PH (2015) Avoiding rhenium loss in non-hydrolytic synthesis of highly active Re–Si–Al olefin metathesis catalysts. Catal Commun 58:183–186

    CAS  Google Scholar 

  73. Singh Gaur RP, Wolfe TA, Braymiller CA (2015) Recycling of rhenium-containing wire scrap. J Int Refract Met Hard Mat 50:79–85

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Eckhard Ettenhuber, Martin Fait, Monika Hartl, Ulrich Kortz, Hugo Ortner, Eric Scerri, Fritz Scholz, Konrad Seppelt, Michail Varfolomeev and Thomas Wolfe for providing references. Our special thanks go to Ralf T. Schmitt from the Museum für Naturkunde Berlin for providing pictures of five minerals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Joachim Lunk.

Additional information

Dedicated to Fritz Scholz on the occasion of his 65th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lunk, HJ., Drobot, D.V. & Hartl, H. Discovery, properties and applications of rhenium and its compounds. ChemTexts 7, 6 (2021). https://doi.org/10.1007/s40828-020-00123-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40828-020-00123-w

Keywords

Navigation