Skip to main content
Log in

Current Trends in Anti-corrosion Studies of Surfactants on Metals and Alloys

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

The surfactants are eco-friendly, easily available, economical, and are proved to be an excellent corrosion inhibitor for metals. This review article aims to discuss and compare the reported capabilities of different surfactants against the corrosion inhibition of various metals and alloys. A variety of potential applications along with properties of diverse kinds of surfactants like non-ionic, cationic, anionic, Gemini, bolaamphiphile, and zwitterionic have been explained. Several parameters are discussed, including the influence of surfactant concentration and temperature on the process of corrosion inhibition by surfactant molecules. Method of adsorption of surfactants on the metal surface, as well as surface tension and Critical micelle concentration has also been discussed.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Adapted from [41]

Fig. 4

Adapted from [60]

Fig. 5

Adapted from [62]

Fig. 6

Adapted from [39]

Fig. 7

Adapted from [96]

Fig. 8
Fig. 9
Fig. 10
Fig. 11

Adapted from [130]

Fig. 12
Fig. 13

Adapted from [135]

Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Ashassi-Sorkhabi H, Shaabani B, Seifzadeh D (2005) Corrosion inhibition of mild steel by some Schiff base compounds in hydrochloric acid. Appl Surf Sci 239(2):154–164

    Article  CAS  Google Scholar 

  2. Fayyad EM, Sadasivuni KK, Ponnamma D, Al-Maadeed MAA (2016) Oleic acid-grafted chitosan/graphene oxide composite coating for corrosion protection of carbon steel. Carbohydr Polym 151:871–878

    Article  CAS  Google Scholar 

  3. Liao LL, Mo S, Luo HQ, Li NB (2018) Corrosion protection for mild steel by extract from the waste of lychee fruit in HCl solution: experimental and theoretical studies. J Colloid Interface Sci 520:41–49

    Article  CAS  Google Scholar 

  4. Prabakaran M, Kim SH, Mugila N, Hemapriya V, Parameswari K, Chitra S, Chung IM (2017) Aster koraiensis as nontoxic corrosion inhibitor for mild steel in sulfuric acid. J Ind Eng Chem 52:235–242

    Article  CAS  Google Scholar 

  5. Oguzie EE, Enenebeaku CK, Akalezi CO, Okoro SC, Ayuk AA, Ejike EN (2010) Adsorption and corrosion-inhibiting effect of Dacryodis edulis extract on low-carbon-steel corrosion in acidic media. J Colloid Interface Sci 349(1):283–292

    Article  CAS  Google Scholar 

  6. Gao M, Zhang J, Liu Q, Li J, Zhang R, Chen G (2019) Effect of the alkyl chain of quaternary ammonium cationic surfactants on corrosion inhibition in hydrochloric acid solution. C R Chim 22(5):355–362

    Article  CAS  Google Scholar 

  7. Krell PD, Li S, Cong H (2017) Synergistic effect of temperature and HCl concentration on the degradation of AISI 410 stainless steel. Corros Sci 122:41–52

    Article  CAS  Google Scholar 

  8. Liu FG, Du M, Zhang J, Qiu M (2009) Electrochemical behavior of Q235 steel in saltwater saturated with carbon dioxide based on new imidazoline derivative inhibitor. Corros Sci 51(1):102–109

    Article  Google Scholar 

  9. Hastuty S, Nishikata A, Tsuru T (2010) Pitting corrosion of Type 430 stainless steel under chloride solution droplet. Corros Sci 52(6):2035–2043

    Article  CAS  Google Scholar 

  10. Sherif EM, Park SM (2006) Effects of 1, 4-naphthoquinone on aluminum corrosion in 0.50 M sodium chloride solutions. Electrochim Acta 51(7):1313–1321

    Article  CAS  Google Scholar 

  11. Bashir S, Sharma V, Lgaz H, Chung IM, Singh A, Kumar A (2018) The inhibition action of analgin on the corrosion of mild steel in acidic medium: a combined theoretical and experimental approach. J Mol Liq 263:454–462

    Article  CAS  Google Scholar 

  12. Zhong X, Bali SC, Shoji T (2017) Accelerated test for evaluation of intergranular stress corrosion cracking initiation characteristics of non-sensitized 316 austenitic stainless steel in simulated pressure water reactor environment. Corros Sci 115:106–117

    Article  CAS  Google Scholar 

  13. Zhong X, Bali SC, Shoji T (2017) Effects of dissolved hydrogen and surface condition on the intergranular stress corrosion cracking initiation and short crack growth behavior of non-sensitized 316 stainless steel in simulated PWR primary water. Corros Sci 118:143–157

    Article  CAS  Google Scholar 

  14. Chen K, Wang J, Du D, Andresen PL, Zhang L (2018) dK/da effects on the SCC growth rates of nickel base alloys in high-temperature water. J Nucl Mater 503:13–21

    Article  CAS  Google Scholar 

  15. Sasikala T, Parameswari K, Chitra S, Kiruthika A (2017) Synthesis and corrosion inhibition study of benzodiazepines on mild steel in sulphuric acid medium. Measurement 101:175–182

    Article  Google Scholar 

  16. Sharma V, Kumar S, Bashir S, Ghelichkhah Z, Obot IB, Kumar A (2018) Use of Sapindus (reetha) as corrosion inhibitor of aluminium in acidic medium. Mater Res Express 5(7):076510

    Article  Google Scholar 

  17. Oguzie EE, Chidiebere MA, Oguzie KL, Adindu CB, Momoh-Yahaya H (2014) Biomass extracts for materials protection: corrosion inhibition of mild steel in acidic media by Terminalia chebula extracts. Chem Eng Commun 201(6):790–803

    Article  CAS  Google Scholar 

  18. Idir B, Kellou-Kerkouche F (2018) Experimental and theoretical studies on corrosion inhibition performance of phenanthroline for cast iron in acid solution. J Electrochem Sci Technol 9(4):260–275

    Article  CAS  Google Scholar 

  19. John S, Salam A, Baby AM, Joseph A (2019) Corrosion inhibition of mild steel using chitosan/Ti O2 nanocomposite coatings. Prog Org Coat 129:254–259

    Article  CAS  Google Scholar 

  20. Bashir S, Thakur A, Lgaz H, Chung IM, Kumar A (2019) Computational and experimental studies on phenylephrine as anti-corrosion substance of mild steel in acidic medium. J Mol Liq 293:111539

    Article  CAS  Google Scholar 

  21. Mishra A, Verma C, Lgaz H, Srivastava V, Quraishi MA, Ebenso EE (2018) Synthesis, characterization and corrosion inhibition studies of N-phenyl-benzamides on the acidic corrosion of mild steel: experimental and computational studies. J Mol Liq 251:317–332

    Article  CAS  Google Scholar 

  22. Walsh F, Ottewill G, Barker D (1993) Corrosion and protection of metals: II. Types of corrosion and protection methods. Trans IMF 71(3):117–120

    Article  CAS  Google Scholar 

  23. Palaniappan N, Chowhan LR, Jothi S, Bosco IG, Cole IS (2017) Corrosion inhibition on mild steel by phosphonium salts in 1 M HNO3 aqueous medium. Surf Interfaces 6:237–246

    Article  CAS  Google Scholar 

  24. Sığırcık G, Tüken T, Erbil M (2016) Assessment of the inhibition efficiency of 3, 4-diaminobenzonitrile against the corrosion of steel. Corros Sci 102:437–445

    Article  Google Scholar 

  25. El Aoufir Y, Sebhaoui J, Lgaz H, El Bakri Y, Zarrouk A, Bentiss F, Oudda H (2017) Corrosion inhibition of carbon steel in 1 M HCl by 1, 5-benzodiazepine derivative: experimental and molecular modeling studies. J Mater Environ Sci 8(6):2161–2173

    Google Scholar 

  26. Singh P, Kumar M, Quraishi MA, Haque J, Singh G (2018) Bispyranopyrazoles as green corrosion inhibitors for mild steel in hydrochloric acid: experimental and theoretical approach. ACS Omega 3(9):11151–11162

    Article  CAS  Google Scholar 

  27. Pedeferri P, Ormellese M (2018) Corrosion science and engineering. Springer, Cham, p 720

    Book  Google Scholar 

  28. Finšgar M, Jackson J (2014) Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: a review. Corros Sci 86:17–41

    Article  Google Scholar 

  29. Shubha HN, Venkatesha TV, Vathsala K, Pavitra MK, Punith KM (2013) Preparation of self assembled sodium oleate monolayer on mild steel and its corrosion inhibition behavior in saline water. ACS Appl Mater Interfaces 5(21):10738–10744

    Article  CAS  Google Scholar 

  30. Snihirova D, Lamaka SV, Taryba M, Salak AN, Kallip S, Zheludkevich ML, Montemor MF (2010) Hydroxyapatite microparticles as feedback-active reservoirs of corrosion inhibitors. ACS Appl Mater Interfaces 2(11):3011–3022

    Article  CAS  Google Scholar 

  31. Koch GH, Brongers MP, Thompson NG, Virmani YP, Payer JH (2005) Cost of corrosion in the United States. In: Handbook of environmental degradation of materials. William Andrew Publishing, New York, pp 3–24

  32. Rosen MJ, Kunjappu JT (2012) Surfactants and interfacial phenomena. Wiley, New York

    Book  Google Scholar 

  33. Holmberg K, Jönsson B, Kronberg B, Lindman B (2002) Polymers in aqueous solution. Wiley-Blackwell, New York

    Book  Google Scholar 

  34. Mehta SK, Bhasin KK, Chauhan R, Dham S (2005) Effect of temperature on critical micelle concentration and thermodynamic behavior of dodecyldimethylethylammonium bromide and dodecyltrimethylammonium chloride in aqueous media. Colloids Surf A 255(1–3):153–157

    Article  CAS  Google Scholar 

  35. Mata J, Varade D, Bahadur P (2005) Aggregation behavior of quaternary salt based cationic surfactants. Thermochim Acta 428(1–2):147–155

    Article  CAS  Google Scholar 

  36. Free ML, Wang W, Ryu DY (2004) Prediction of corrosion inhibition using surfactants. Corrosion 60(9):837–844

    Article  CAS  Google Scholar 

  37. Free ML (2002) Development and application of useful equations to predict corrosion inhibition by different surfactants in various aqueous environments. Corrosion 58(12):1025–1030

    Article  CAS  Google Scholar 

  38. Elewady GY, El-Said IA, Fouda AS (2008) Anion surfactants as corrosion inhibitors for aluminum dissolution in HCl solutions. Int J Electrochem Sci 3(2):177–190

    CAS  Google Scholar 

  39. El-Din MN, Farag RK, Elazbawy OE (2016) Utilization of new anionic polymeric surfactants for corrosion inhibition enhancement in petroleum industries. Int J Electrochem Sci 11:815–835

    CAS  Google Scholar 

  40. Zana R (2002) Dimeric and oligomeric surfactants behavior at interfaces and in aqueous solution: a review. Adv Colloid Interface Sci 97(1–3):205–253

    Article  CAS  Google Scholar 

  41. Zhu Y, Free ML, Woollam R, Durnie W (2017) A review of surfactants as corrosion inhibitors and associated modeling. Prog Mater Sci 90:159–223

    Article  CAS  Google Scholar 

  42. Xiong Y, Brown B, Kinsella B, Nešić S, Pailleret A (2014) Atomic force microscopy study of the adsorption of surfactant corrosion inhibitor films. Corrosion 70(3):247–260

    Article  CAS  Google Scholar 

  43. Malik MA, Hashim MA, Nabi F, Al-Thabaiti SA, Khan Z (2011) Anti-corrosion ability of surfactants: a review. Int J Electrochem Sci 6(6):1927–1948

    CAS  Google Scholar 

  44. Masroor S, Mobin M (2016) Application of surfactants as corrosion inhibitor for different metals and alloys: a review. Int J Sci Eng Res 7:575–585

    Google Scholar 

  45. Free ML (2002) Understanding the effect of surfactant aggregation on corrosion inhibition of mild steel in acidic medium. Corros Sci 44(12):2865–2870

    Article  CAS  Google Scholar 

  46. Revie RW (ed) (2011) Uhlig’s corrosion handbook, vol 51. Wiley, New York

    Google Scholar 

  47. Evans UR (1967) The mechanism of rusting. Q Rev Chem Soc 21(1):29–42

    Article  CAS  Google Scholar 

  48. Gowri S, Sathiyabama J, Rajendran S (2014) Corrosion inhibition effect of carbon steel in sea water by l-arginine–system. Int J Chem Eng 2014:607209

    Article  Google Scholar 

  49. Badawi AM, Hegazy MA, El-Sawy AA, Ahmed HM, Kamel WM (2010) Novel quaternary ammonium hydroxide cationic surfactants as corrosion inhibitors for carbon steel and as biocides for sulfate reducing bacteria (SRB). Mater Chem Phys 124(1):458–465

    Article  CAS  Google Scholar 

  50. Ashassi-Sorkhabi H, Rafizadeh SH (2004) Effect of coating time and heat treatment on structures and corrosion characteristics of electroless Ni–P alloy deposits. Surf Coat Technol 176(3):318–326

    Article  CAS  Google Scholar 

  51. Madaan P, Tyagi VK (2008) Quaternary pyridinium salts: a review. J Oleo Sci 57(4):197–215

    Article  CAS  Google Scholar 

  52. Schramm LL, Stasiuk EN, Marangoni DG (2003) Surfactants and their applications. Annu Rep C 99:3–48

    Article  CAS  Google Scholar 

  53. Pakiet M, Tedim J, Kowalczyk I, Brycki B (2019) Functionalised novel Gemini surfactants as corrosion inhibitors for mild steel in 50 mM NaCl: experimental and theoretical insights. Colloids Surf A 580:123699

    Article  CAS  Google Scholar 

  54. Chauhan V, Singh S, Bhadani A (2012) Synthesis, characterization and surface properties of long chain β-hydroxy-γ-alkyloxy-N-methylimidazolium surfactants. Colloids Surf A 395:1–9

    Article  CAS  Google Scholar 

  55. Negm NA, Kandile NG, Aiad IA, Mohammad MA (2011) New eco-friendly cationic surfactants: synthesis, characterization and applicability as corrosion inhibitors for carbon steel in 1 N HCl. Colloids Surf A 391(1–3):224–233

    Article  CAS  Google Scholar 

  56. Shaban SM, Aiad I, El-Sukkary MM, Soliman EA, El-Awady MY (2015) Inhibition of mild steel corrosion in acidic medium by vanillin cationic surfactants. J Mol Liq 203:20–28

    Article  CAS  Google Scholar 

  57. Fouda AS, Elewady YA, Abd E-AK, Ahmed AM (2012) Corrosion inhibition of carbon steel in 0.5 M HCl solution using cationic surfactants. Int J Electrochem Sci 7(10):456–510

    Google Scholar 

  58. Shaban SM, Aiad I, El-Sukkary MM, Soliman EA, El-Awady MY (2015) Evaluation of some cationic surfactants based on dimethylaminopropylamine as corrosion inhibitors. J Ind Eng Chem 21:1029–1038

    Article  CAS  Google Scholar 

  59. Azzam EMS, Hegazy MA, Kandil NG, Badawi AM, Sami RM (2015) The performance of hydrophobic and hydrophilic moieties in synthesized thiol cationic surfactants on corrosion inhibition of carbon steel in HCl. Egypt J Pet 24(4):493–503

    Article  Google Scholar 

  60. Hegazy MA, Abd E-RS, Badr EA, Kamel WM, Youssif AH (2015) Mono-, di- and tetra-cationic surfactants as carbon steel corrosion inhibitors. J Surfactants Deterg 18(6):1033–1042

    Article  CAS  Google Scholar 

  61. Liao LL, Mo S, Lei JL, Luo HQ, Li NB (2016) Application of a cosmetic additive as an eco-friendly inhibitor for mild steel corrosion in HCl solution. J Colloid Interface Sci 474:68–77

    Article  CAS  Google Scholar 

  62. Adawy AI, Abbas MA, Zakaria K (2016) New Schiff base cationic surfactants as corrosion inhibitors for carbon steel in acidic medium: weight loss, electrochemical and SEM characterization techniques. Res Chem Intermed 42(4):3385–3411

    Article  CAS  Google Scholar 

  63. Eldougdoug WI, Ali AI, Elaraby A, Mabrouk EM (2018) Corrosion inhibition of tri-cationic surfactant on carbon steel in hydrochloric acid solution. J Basic Environ Sci 5:289–300

    CAS  Google Scholar 

  64. Shaban SM, Aiad I, Moustafa AH, Aljoboury OH (2019) Some alginates polymeric cationic surfactants; surface study and their evaluation as biocide and corrosion inhibitors. J Mol Liq 273:164–176

    Article  CAS  Google Scholar 

  65. Smart BE (2001) Fluorine substituent effects (on bioactivity). J Fluor Chem 109(1):3–11

    Article  CAS  Google Scholar 

  66. Nuer M, Duan J, Wei Z, Wu W, Ma J, Zhang A (2020) Fluorocarbon–hydrocarbon hybrid cationic surfactants: synthesis, surface-activity properties and anti-corrosion performance. J Mol Liq 306:112897

    Article  CAS  Google Scholar 

  67. Fouda AS, Rashwan SM, Shaban SM, Ibrahim HE, Elbhrawy MF (2018) Evaluation of a novel cationic surfactant based on 2-(2 (dimethylamino) ethoxy) ethanol as a corrosion inhibitor for carbon steel 1018 in 1.0 M HCl solution. Egypt J Pet 27(3):295–306

    Article  Google Scholar 

  68. Fouda AS, Elmorsi MA, Fayed T, Shaban SM, Azazy O (2018) Corrosion inhibition of novel prepared cationic surfactants for API N80 carbon steel pipelines in oil industries. Surf Eng Appl Electrochem 54(2):180–193

    Article  Google Scholar 

  69. Wei Z, Chen X, Duan J, Zhan G, Wei Y, Zhang A (2019) Branched chain versus straight chain fluorinated surfactant: a comparative study of their anticorrosion performance on carbon steel. J Mol Liq 280:327–333

    Article  CAS  Google Scholar 

  70. Masroor S, Mobin M, Alam MJ, Ahmad S (2017) The novel iminium surfactant p-benzylidene benzyldodecyl iminium chloride as a corrosion inhibitor for plain carbon steel in 1 M HCl: electrochemical and DFT evaluation. RSC Adv 7(37):23182–23196

    Article  CAS  Google Scholar 

  71. Tawfik SM, Sayed A, Aiad I (2012) Corrosion inhibition by some cationic surfactants in oil fields. J Surfactants Deterg 15(5):577–585

    Article  CAS  Google Scholar 

  72. Shaban SM, Saied A, Tawfik SM, Abd-Elaal A, Aiad I (2013) Corrosion inhibition and biocidal effect of some cationic surfactants based on Schiff base. J Ind Eng Chem 19(6):2004–2009

    Article  CAS  Google Scholar 

  73. Abdrabo WS, Elgendy B, Soliman KA, Abd E-LM, Tantawy AH (2020) Synthesis, assessment and corrosion protection investigations of some novel peptidomimetic cationic surfactants: empirical and theoretical insights. J Mol Liq 315:113672

    Article  CAS  Google Scholar 

  74. Hegazy MA, Badawi AM, Abd El Rehim SS, Kamel WM (2013) Corrosion inhibition of carbon steel using novel N-(2-(2-mercaptoacetoxy) ethyl)-N, N-dimethyl dodecan-1-aminium bromide during acid pickling. Corros Sci 69:110–122

    Article  CAS  Google Scholar 

  75. Wang D, Li Y, Chen B, Zhang L (2020) Novel surfactants as green corrosion inhibitors for mild steel in 15% HCl: experimental and theoretical studies. Chem Eng Technol 402:126219

    Article  CAS  Google Scholar 

  76. Hegazy MA, El-Etre AY, El-Shafaie M, Berry KM (2016) Novel cationic surfactants for corrosion inhibition of carbon steel pipelines in oil and gas wells applications. J Mol Liq 214:347–356

    Article  CAS  Google Scholar 

  77. Fouda AS, Elmorsi MA, Shaban SM, Fayed T, Azazy O (2018) Evaluation of N-(3-(dimethyl hexadecyl ammonio) propyl) palmitamide bromide as cationic surfactant corrosion inhibitor for API N80 steel in acidic environment. Egypt J Pet 27(4):683–694

    Article  Google Scholar 

  78. Shalabi K, Helmy AM, El-Askalany AH, Shahba MM (2019) New pyridinium bromide mono-cationic surfactant as corrosion inhibitor for carbon steel during chemical cleaning: experimental and theoretical studies. J Mol Liq 293:111480

    Article  CAS  Google Scholar 

  79. Aiad I, Shaban SM, Moustafa HY, Hamed A (2018) Experimental investigation of newly synthesized Gemini cationic surfactants as corrosion inhibitors of mild steel in 1.0 M HCl. Prot Met Phys Chem Surf 54(1):135–147

    Article  CAS  Google Scholar 

  80. Aiad I, El-Sukkary MM, Soliman EA, El-Awady MY, Shaban SM (2014) Inhibition of mild steel corrosion in acidic medium by some cationic surfactants. J Ind Eng Chem 20(5):3524–3535

    Article  CAS  Google Scholar 

  81. Amin MA (2009) Understanding the inhibitory effect of sodium oleate on the corrosion of Al and Al–Cu alloys in 1.0 M solution—polarization studies. J Appl Electrochem 39(5):689–696

    Article  CAS  Google Scholar 

  82. Badr EA (2014) Inhibition effect of synthesized cationic surfactant on the corrosion of carbon steel in 1 M HCl. J Ind Eng Chem 20(5):3361–3366

    Article  CAS  Google Scholar 

  83. Fouda AS, Migahed MA, Atia AA, Mousa IM (2016) Corrosion inhibition and adsorption behavior of some cationic surfactants on carbon steel in hydrochloric acid solution. J Bio Tribo Corros 2(4):1–12

    Article  Google Scholar 

  84. Abd E-LM, Tantawy AH, Abdelhamid AA (2017) Novel quaternary ammonium-based cationic surfactants: synthesis, surface activity and evaluation as corrosion inhibitors for C1018 carbon steel in acidic chloride solution. J Surfactants Deterg 20(3):735–753

    Article  Google Scholar 

  85. Han P, Chen C, Li W, Yu H, Xu Y, Ma L, Zheng Y (2018) Synergistic effect of mixing cationic and nonionic surfactants on corrosion inhibition of mild steel in HCl: experimental and theoretical investigations. J Colloid Interface Sci 516:398–406

    Article  CAS  Google Scholar 

  86. Li X, Deng S, Xie X (2017) Inhibition effect of tetradecylpyridinium bromide on the corrosion of cold rolled steel in 7.0 M H3PO4. Arab J Chem 10:S3715–S3724

    Article  CAS  Google Scholar 

  87. Pakiet M, Kowalczyk IH, Garcia RL, Akid R, Brycki BE (2018) Influence of different counterions on Gemini surfactants with polyamine platform as corrosion inhibitors for stainless steel AISI 304 in 3 M HCl. J Mol Liq 268:824–831

    Article  CAS  Google Scholar 

  88. Aiad I, Shaban SM, Elged AH, Aljoboury OH (2018) Cationic surfactant based on alginate as green corrosion inhibitors for the mild steel in 1.0 M HCl. Egypt J Pet 27(4):877–885

    Article  Google Scholar 

  89. Fouda AS, Etaiw SH, El-Habab AT, Wahba AM (2020) Synthesis, characterization, and application of new nonionic surfactant as a corrosion inhibitor for carbon steel in 1 M hydrochloric acid solution. J Bio Tribo Corros 6(3):1–9

    Article  Google Scholar 

  90. Balbo A, Frignani A, Grassi V, Zucchi F (2013) Corrosion inhibition by anionic surfactants of AA2198 Li-containing aluminium alloy in chloride solutions. Corros Sci 73:80–88

    Article  CAS  Google Scholar 

  91. Tawfik SM, Negm NA (2016) Synthesis, characterization and evaluation of some anionic surfactants with phosphate group as a biodegradable corrosion inhibitor for carbon steel in acidic solution. J Mol Liq 215:185–196

    Article  CAS  Google Scholar 

  92. Zheng T, Liu J, Wang L, Jia G, Wang J (2021) Eco-friendly rosin-based 6-dehydroabietic acylamino sodium as corrosion inhibitor for AA2024-T3 in alkaline solution by experimental and theoretical studies. J Mol Liq 328:115506

    Article  CAS  Google Scholar 

  93. Wang Y, Zuo Y, Tang Y (2018) Inhibition effect and mechanism of sodium oleate on passivation and pitting corrosion of steel in simulated concrete pore solution. Constr Build Mater 167:197–204

    Article  CAS  Google Scholar 

  94. Negm NA, Kandile NG, Badr EA, Mohammed MA (2012) Gravimetric and electrochemical evaluation of environmentally friendly nonionic corrosion inhibitors for carbon steel in 1 M HCl. Corros Sci 65:94–103

    Article  CAS  Google Scholar 

  95. Ayukayeva VN, Boiko GI, Lyubchenko NP, Sarmurzina RG, Mukhamedova RF, Karabalin US, Dergunov SA (2019) Polyoxyethylene sorbitan trioleate surfactant as an effective corrosion inhibitor for carbon steel protection. Colloids Surf A 579:123636

    Article  Google Scholar 

  96. Negm NA, Tawfik SM, Badr EA, Abdou MI, Ghuiba FM (2015) Evaluation of some nonionic surfactants derived from vanillin as corrosion inhibitors for carbon steel during drilling processes. J Surfactants Deterg 18(3):413–420

    Article  CAS  Google Scholar 

  97. Migahed MA, Farag AA, Elsaed SM, Kamal R, Mostfa M, Abd El-Bary H (2011) Synthesis of a new family of Schiff base nonionic surfactants and evaluation of their corrosion inhibition effect on X-65 type tubing steel in deep oil wells formation water. Mater Chem Phys 125(1–2):125–135

    Article  CAS  Google Scholar 

  98. Hegazy MA, El-Tabei AS, Bedair AH, Sadeq MA (2012) An investigation of three novel nonionic surfactants as corrosion inhibitor for carbon steel in 0.5 M H2SO4. Corros Sci 54:219–230

    Article  CAS  Google Scholar 

  99. Al-Sabagh AM, Kandile NG, Nasser NM, Mishrif MR, El-Tabey AE (2013) Novel surfactants incorporated with 1, 3, 5-triethanolhexahydro-1, 3, 5-triazine moiety as corrosion inhibitors for carbon steel in hydrochloric acid: Electrochemical and quantum chemical investigations. Egypt J Pet 22(3):351–365

    Article  Google Scholar 

  100. Abbasov VM, El-Lateef HMA, Aliyeva LI, Ismayilov IT, Qasimov EE, Narmin MM (2013) Efficient complex surfactants from the type of fatty acids as corrosion inhibitors for mild steel C1018 in CO2-environments. J Korean Chem Soc 57(1):25–34

    Article  CAS  Google Scholar 

  101. Farag AA, El-Din MN (2012) The adsorption and corrosion inhibition of some nonionic surfactants on API X65 steel surface in hydrochloric acid. Corros Sci 64:174–183

    Article  CAS  Google Scholar 

  102. Migahed MA, Attya MM, Rashwan SM, Abd El-Raouf M, Al-Sabagh AM (2013) Synthesis of some novel non ionic surfactants based on tolyltriazole and evaluation their performance as corrosion inhibitors for carbon steel. Egypt J Pet 22(1):149–160

    Article  Google Scholar 

  103. El-Mahdy GA, Atta AM, Al-Lohedan HA (2013) Water soluble nonionic rosin surfactants as corrosion inhibitor of carbon steel in 1 M HCl. Int J Electrochem Sci 8:5052–5066

    CAS  Google Scholar 

  104. Farag AA, Ibrahim IM (2014) Influence of nonionic surfactant on the carbon steel corrosion in hydrochloric acid solution. IJSR 3:1087–1091

    Google Scholar 

  105. Deyab MA (2015) Application of nonionic surfactant as a corrosion inhibitor for zinc in alkaline battery solution. J Power Sources 292:66–71

    Article  CAS  Google Scholar 

  106. Yu Y, Zhang D, Zeng H, Xie B, Gao L, Lin T (2015) Synergistic effects of sodium lauroyl sarcosinate and glutamic acid in inhibition assembly against copper corrosion in acidic solution. Appl Surf Sci 355:1229–1237

    Article  CAS  Google Scholar 

  107. Bedair MA, Soliman SA, Metwally MS (2016) Synthesis and characterization of some nonionic surfactants as corrosion inhibitors for steel in 1.0 M HCl (experimental and computational study). J Ind Eng Chem 41:10–22

    Article  CAS  Google Scholar 

  108. Shaban SM, Abd-Elaal AA, Tawfik SM (2016) Gravimetric and electrochemical evaluation of three nonionic dithiol surfactants as corrosion inhibitors for mild steel in 1 M HCl solution. J Mol Liq 216:392–400

    Article  CAS  Google Scholar 

  109. Branzoi F, Branzoi V (2017) Investigation of some nonionic surfactants as corrosion inhibitors for carbon steel in sulfuric acid medium. Int J Electrochem Sci 12(8):7638–7658

    Article  CAS  Google Scholar 

  110. Bedair MA, El-Sabbah MMB, Fouda AS, Elaryian HM (2017) Synthesis, electrochemical and quantum chemical studies of some prepared surfactants based on azodye and Schiff base as corrosion inhibitors for steel in acid medium. Corros Sci 128:54–72

    Article  CAS  Google Scholar 

  111. Negm NA, El Hashash MA, Abd-Elaal A, Tawfik SM, Gharieb A (2018) Amide type nonionic surfactants: synthesis and corrosion inhibition evaluation against carbon steel corrosion in acidic medium. J Mol Liq 256:574–580

    Article  CAS  Google Scholar 

  112. Liu JY, Wang ZS, Yang WY, Zhou X (2016) Inhibition performance of amphoteric fluorinated surfactant and its mixed systems on carbon steel in hydrochloric acid. J Surfactants Deterg 19(6):1297–1304

    Article  Google Scholar 

  113. Zhou T, Yuan J, Zhang Z, Xin X, Xu G (2019) The comparison of imidazolium Gemini surfactant [C14-4-C14im]Br2 and its corresponding monomer as corrosion inhibitors for A3 carbon steel in hydrochloric acid solutions: experimental and quantum chemical studies. Colloids Surf A 575:57–65

    Article  CAS  Google Scholar 

  114. Mahdavian M, Tehrani-Bagha AR, Holmberg K (2011) Comparison of a cationic Gemini surfactant and the corresponding monomeric surfactant for corrosion protection of mild steel in hydrochloric acid. J Surfactants Deterg 14(4):605–613

    Article  CAS  Google Scholar 

  115. Aslam R, Mobin M, Zehra S, Obot IB, Ebenso EE (2017) N, N′-dialkylcysteine Gemini and monomeric N-alkyl cysteine surfactants as corrosion inhibitors on mild steel corrosion in 1 M HCl solution: a comparative study. ACS Omega 2(9):5691–5707

    Article  CAS  Google Scholar 

  116. Han T, Guo J, Zhao Q, Wu Y, Zhang Y (2020) Enhanced corrosion inhibition of carbon steel by pyridyl Gemini surfactants with different alkyl chains. Mater Chem Phys 240:122156

    Article  CAS  Google Scholar 

  117. El Aoufir Y, El Bakri Y, Lgaz H, Zarrouk A, Salghi R, Warad I, Oudda H (2017) Understanding the adsorption of benzimidazole derivative as corrosion inhibitor for carbon steel in 1 M HCl: experimental and theoretical studies. J Mater Environ Sci 8(9):3290–3302

    Google Scholar 

  118. Lgaz H, Chung IM, Salghi R, Ali IH, Chaouiki A, El Aoufir Y, Khan MI (2019) On the understanding of the adsorption of Fenugreek gum on mild steel in an acidic medium: insights from experimental and computational studies. Appl Surf Sci 463:647–658

    Article  CAS  Google Scholar 

  119. Olasunkanmi LO, Sebona MF, Ebenso EE (2017) Influence of 6-phenyl-3 (2H)-pyridazinone and 3-chloro-6-phenylpyrazine on mild steel corrosion in 0.5 M HCl medium: experimental and theoretical studies. J Mol Struct 1149:549–559

    Article  CAS  Google Scholar 

  120. Aslam R, Mobin M, Aslam J, Lgaz H (2018) Sugar based N, N′-didodecyl-N, N′ digluconamideethylenediamine Gemini surfactant as corrosion inhibitor for mild steel in 3.5% NaCl solution-effect of synergistic KI additive. Sci Rep 8(1):1–20

    Article  CAS  Google Scholar 

  121. Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37(1):123–150

    Article  CAS  Google Scholar 

  122. Verma C, Ebenso EE, Quraishi MA (2017) Ionic liquids as green and sustainable corrosion inhibitors for metals and alloys: an overview. J Mol Liq 233:403–414

    Article  CAS  Google Scholar 

  123. Tawfik SM (2016) Ionic liquids based Gemini cationic surfactants as corrosion inhibitors for carbon steel in hydrochloric acid solution. J Mol Liq 216:624–635

    Article  CAS  Google Scholar 

  124. Feng L, Yin C, Zhang H, Li Y, Song X, Chen Q, Liu H (2018) Cationic Gemini surfactants with a bipyridyl spacer as corrosion inhibitors for carbon steel. ACS Omega 3(12):18990–18999

    Article  CAS  Google Scholar 

  125. Asefi D, Mahmoodi NM, Arami M (2010) Effect of nonionic co-surfactants on corrosion inhibition effect of cationic Gemini surfactant. Colloids Surf A 355(1–3):183–186

    Article  CAS  Google Scholar 

  126. Ansari FA, Quraishi MA (2010) Inhibitive performance of Gemini surfactants as corrosion inhibitors for mild steel in formic acid. Port Electrochim Acta 28(5):321–335

    CAS  Google Scholar 

  127. Hegazy MA, Abdallah M, Ahmed H (2010) Novel cationic Gemini surfactants as corrosion inhibitors for carbon steel pipelines. Corros Sci 52(9):2897–2904

    Article  CAS  Google Scholar 

  128. Negm NA, Al Sabagh AM, Migahed MA, Bary HA, El Din HM (2010) Effectiveness of some diquaternary ammonium surfactants as corrosion inhibitors for carbon steel in 0.5 M HCl solution. Corros Sci 52(6):2122–2132

    Article  CAS  Google Scholar 

  129. Zhao J, Duan H, Jiang R (2015) Synergistic corrosion inhibition effect of quinoline quaternary ammonium salt and Gemini surfactant in H2S and CO2 saturated brine solution. Corros Sci 91:108–119

    Article  CAS  Google Scholar 

  130. Abd E-LM, Abo-Riya MA, Tantawy AH (2016) Empirical and quantum chemical studies on the corrosion inhibition performance of some novel synthesized cationic Gemini surfactants on carbon steel pipelines in acid pickling processes. Corros Sci 108:94–110

    Article  Google Scholar 

  131. Tawfik SM, Abd-Elaal AA, Aiad I (2016) Three Gemini cationic surfactants as biodegradable corrosion inhibitors for carbon steel in HCl solution. Res Chem Intermed 42(2):1101–1123

    Article  CAS  Google Scholar 

  132. Kaczerewska O, Leiva-Garcia R, Akid R, Brycki B, Kowalczyk I, Pospieszny T (2018) Effectiveness of O-bridged cationic Gemini surfactants as corrosion inhibitors for stainless steel in 3 M HCl: experimental and theoretical studies. J Mol Liq 249:1113–1124

    Article  CAS  Google Scholar 

  133. Kaczerewska O, Leiva-Garcia R, Akid R, Brycki B (2017) Efficiency of cationic Gemini surfactants with 3-azamethylpentamethylene spacer as corrosion inhibitors for stainless steel in hydrochloric acid. J Mol Liq 247:6–13

    Article  CAS  Google Scholar 

  134. Mobin M, Aslam R, Aslam J (2019) Synergistic effect of cationic Gemini surfactants and butanol on the corrosion inhibition performance of mild steel in acid solution. Mater Chem Phys 223:623–633

    Article  CAS  Google Scholar 

  135. Deyab MA, Mohsen Q (2021) Inhibitory influence of cationic Gemini surfactant on the dissolution rate of N80 carbon steel in 15% HCl solution. Sci Rep 11(1):1–12

    Article  Google Scholar 

  136. Li J, Xie Y, Li W, Zhu R, Wu W (2019) Synthesis and inhibition behavior of the quaternary ammonium salt-type tetrameric surfactant for corrosion of N80 steel in HCl medium. Prot Met Phys Chem Surf 55(4):789–794

    Article  CAS  Google Scholar 

  137. El-Tabei AS, Hegazy MA (2013) A corrosion inhibition study of a novel synthesized Gemini nonionic surfactant for carbon steel in 1 M HCl solution. J Surfactants Deterg 16(5):757–766

    Article  CAS  Google Scholar 

  138. Khalaf MM, Tantawy AH, Soliman KA, Abd El-Lateef HM (2020) Cationic Gemini-surfactants based on waste cooking oil as new ‘green’ inhibitors for N80-steel corrosion in sulphuric acid: a combined empirical and theoretical approaches. J Mol Struct 1203:127442

    Article  CAS  Google Scholar 

  139. Zhou T, Yuan J, Zhang Z, Xin X, Xu G (2019) The comparison of imidazolium Gemini surfactant [C14-4-C14 im] Br 2 and its corresponding monomer as corrosion inhibitors for A3 carbon steel in hydrochloric acid solutions: experimental and quantum chemical studies. Colloids Surf A 575:57–65

    Article  CAS  Google Scholar 

  140. Mona A, Abdelhamed S, Allah MD (2020) Synthesis of novel Gemini surfactants based on succinic acid and their application as inhibitors for carbon steel corrosion. J Bio Tribo Corros 6(4):1–12

    Google Scholar 

  141. Labena A, Hamed A, Ismael EH, Shaban SM (2020) Novel Gemini cationic surfactants: thermodynamic, antimicrobial susceptibility, and corrosion inhibition behavior against Acidithiobacillus ferrooxidans. J Surfactants Deterg 23(5):991–1004

    CAS  Google Scholar 

  142. El-Tabei AS, Hegazy MA (2015) Synthesis and characterization of a novel nonionic Gemini surfactant as corrosion inhibitor for carbon steel in acidic solution. Chem Eng Commun 202(7):851–863

    Article  CAS  Google Scholar 

  143. Elkholy AE, Heakal FET (2018) Electrochemical measurements and semi-empirical calculations for understanding adsorption of novel cationic Gemini surfactant on carbon steel in H2SO4 solution. J Mol Struct 1156:473–482

    Article  CAS  Google Scholar 

  144. Mahdavian M, Tehrani-Bagha AR, Alibakhshi E, Ashhari S, Farashi PMJS, Ektefa F (2018) Corrosion of mild steel in hydrochloric acid solution in the presence of two cationic Gemini surfactants with and without hydroxyl substituted spacers. Corros Sci 137:62–75

    Article  CAS  Google Scholar 

  145. Öztürk S (2018) Synthesis and corrosion inhibition behavior of novel amide-based quaternary di-cationic surfactants on carbon steel in HCl solutions. Prot Met Phys Chem Surf 54(5):953–962

    Article  Google Scholar 

  146. Hamed I, Osman MM, Abdelraheem OH, Nessim MI (2019) Inhibition of API 5L X52 pipeline steel corrosion in acidic medium by Gemini surfactants: electrochemical evaluation and computational study. Int J Corros 2019:4857181

    Article  Google Scholar 

  147. Bin-Hudayb NS, Badr EE, Hegazy MA (2020) Adsorption and corrosion performance of new cationic Gemini surfactants derivatives of fatty amido ethyl aminium chloride with ester spacer for mild steel in acidic solutions. Materials 13(12):2790

    Article  CAS  Google Scholar 

  148. Shaban SM, Abd Elsamad S, Tawfik SM, Adel AH, Aiad I (2020) Studying surface and thermodynamic behavior of a new multi-hydroxyl Gemini cationic surfactant and investigating their performance as corrosion inhibitor and biocide. J Mol Liq 316:113881

    Article  CAS  Google Scholar 

  149. Hegazy MA, Samy RM, Labena A, Wadaan MA, Hozzein WN (2020) 4, 4′-(((1E, 5E)-pentane-1, 5-diylidene) bis (azanylylidene)) bis (1-dodecylpyridin-1-ium) bromide as a novel corrosion inhibitor in an acidic solution (part I). Mater Sci Eng C 110:110673

    Article  CAS  Google Scholar 

  150. Mobin M, Noori S (2016) Adsorption and corrosion inhibition behaviour of zwitterionic Gemini surfactant for mild steel in 0.5 M HCl. Tenside Surfactants Deterg 53(4):357–367

    Article  CAS  Google Scholar 

  151. Migahed MA, Elgendy A, El-Rabiei MM, Nady H, Zaki EG (2018) Novel Gemini cationic surfactants as anti-corrosion for X-65 steel dissolution in oilfield produced water under sweet conditions: combined experimental and computational investigations. J Mol Struct 1159:10–22

    Article  CAS  Google Scholar 

  152. Mahdavian M, Tehrani-Bagha AR, Alibakhshi E, Ashhari S, Palimi MJ, Farashi S, Ektefa F (2018) Corrosion of mild steel in hydrochloric acid solution in the presence of two cationic Gemini surfactants with and without hydroxyl substituted spacers. Corros Sci 137:62–75

    Article  CAS  Google Scholar 

  153. El Basiony NM, Badr EE, Baker SA, El-Tabei AS (2021) Experimental and theoretical (DFT&MC) studies for the adsorption of the synthesized Gemini cationic surfactant based on hydrazide moiety as X-65 steel acid corrosion inhibitor. Appl Surf Sci 539:148246

    Article  CAS  Google Scholar 

  154. Mishrif MR, El-Din MN, Khamis EA (2018) Utilization of ethoxylated pentamine oleamide as new Gemini surfactants for corrosion inhibition effectiveness in 1 M HCl solution. Egypt J Pet 27(4):1357–1370

    Article  Google Scholar 

  155. Ansari FA, Quraishi MA (2011) Inhibitive effect of some Gemini surfactants as corrosion inhibitors for mild steel in acetic acid media. Arab J Sci Eng 36(1):11–20

    Article  CAS  Google Scholar 

  156. Chafiq M, Chaouiki A, Damej M, Lgaz H, Salghi R, Ali IH, Chung IM (2020) Bolaamphiphile-class surfactants as corrosion inhibitor model compounds against acid corrosion of mild steel. J Mol Liq 309:113070

    Article  CAS  Google Scholar 

  157. Javadian S, Yousefi A, Neshati J (2013) Synergistic effect of mixed cationic and anionic surfactants on the corrosion inhibitor behavior of mild steel in 3.5% NaCl. Appl Surf Sci 285:674–681

    Article  CAS  Google Scholar 

  158. Pakiet M, Kowalczyk IH, Garcia RL, Akid R, Brycki BE (2020) Cationic clevelable surfactants as highly efficient corrosion inhibitors of stainless steel AISI 304: electrochemical study. J Mol Liq 315:113675

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

RG—paper writing, AK—Conceptualization, guidance, and review.

Corresponding author

Correspondence to Ashish Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganjoo, R., Kumar, A. Current Trends in Anti-corrosion Studies of Surfactants on Metals and Alloys. J Bio Tribo Corros 8, 2 (2022). https://doi.org/10.1007/s40735-021-00597-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-021-00597-2

Keywords

Navigation