Skip to main content

Advertisement

Log in

Asthma and Environmental Exposures to Phenols, Polycyclic Aromatic Hydrocarbons, and Phthalates in Children

  • Comment
  • Published:
Current Environmental Health Reports Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Eder W, Ege MJ, von Mutius E. The asthma epidemic. N Engl J Med. 2006;355(21):2226–35.

    Article  PubMed  CAS  Google Scholar 

  2. Chiu C-Y, et al. Early-onset eczema is associated with increased milk sensitization and risk of rhinitis and asthma in early childhood. J Microbiol Immunol Infect. 2020;53(6):1008–13.

    Article  PubMed  Google Scholar 

  3. Martinez FD, Vercelli D. Asthma. Lancet. 2013;382(9901):1360–72.

    Article  PubMed  Google Scholar 

  4. Antó JM. Recent advances in the epidemiologic investigation of risk factors for asthma: a review of the 2011 literature. Curr Allergy Asthma Rep. 2012;12(3):192–200.

    Article  PubMed  Google Scholar 

  5. Hartmann EM, et al. Antimicrobial chemicals are associated with elevated antibiotic resistance genes in the indoor dust microbiome. Environ Sci Technol. 2016;50(18):9807–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Bertelsen RJ, et al. Triclosan exposure and allergic sensitization in Norwegian children. Allergy. 2013;68(1):84–91.

    Article  PubMed  CAS  Google Scholar 

  7. Spanier AJ, et al. Prenatal exposure to bisphenol A and child wheeze from birth to 3 years of age. Environ Health Perspect. 2012;120(6):916–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Factor-Litvak P, et al. Persistent associations between maternal prenatal exposure to phthalates on child IQ at age 7 years. PLoS ONE. 2014;9(12):e114003.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Whyatt RM, et al. Prenatal phthalate and early childhood bisphenol A exposures increase asthma risk in inner-city children. J Allergy Clin Immunol. 2014;134(5):1195–1197.e2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Schug TT, et al. Endocrine disrupting chemicals and disease susceptibility. J Steroid Biochem Mol Biol. 2011;127(3-5):204–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Yang SN, et al. The effects of environmental toxins on allergic inflammation. Allergy Asthma Immunol Res. 2014;6(6):478–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Togias A, et al. Asthma in the inner city: the perspective of the National Institute of Allergy and Infectious Diseases. J Allergy Clin Immunol. 2010;125(3):540–4.

    Article  PubMed  Google Scholar 

  13. Shaw TE, et al. Eczema prevalence in the United States: data from the 2003 National Survey of Children’s Health. J Invest Dermatol. 2011;131(1):67–73.

    Article  PubMed  CAS  Google Scholar 

  14. Akinbami L. The state of childhood asthma, United States, 1980-2005. Adv Data. 2006;381:1–24.

    Google Scholar 

  15. Perez MF, Coutinho MT. An overview of health disparities in asthma. Yale J Biol Med. 2021;94(3):497–507.

    PubMed  PubMed Central  Google Scholar 

  16. Johnson CC, et al. US childhood asthma incidence rate patterns from the ECHO Consortium to identify high-risk groups for primary prevention. JAMA Pediatr. 2021;175(9):919–27.

    Article  PubMed  Google Scholar 

  17. Celedón JC, et al. Exposure to dust mite allergen and endotoxin in early life and asthma and atopy in childhood. J Allergy Clin Immunol. 2007;120(1):144–9.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bose S, et al. Prenatal nitrate exposure and childhood asthma. Influence of maternal prenatal stress and fetal sex. Am J Respir Crit Care Med. 2017;196(11):1396–403.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Forno E, Celedon JC. Asthma and ethnic minorities: socioeconomic status and beyond. Curr Opin Allergy Clin Immunol. 2009;9(2):154–60.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Garcia E, et al. Association of changes in air quality with incident asthma in children in California, 1993-2014. JAMA. 2019;321(19):1906–15.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Liu J, et al. Disparities in air pollution exposure in the United States by race/ethnicity and income, 1990-2010. Environ Health Perspect. 2021;129(12):127005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Moonie SA, et al. Asthma status and severity affects missed school days. J Sch Health. 2006;76(1):18–24.

    Article  PubMed  Google Scholar 

  23. Daniel LC, et al. Missed sleep and asthma morbidity in urban children. Ann Allergy Asthma Immunol. 2012;109(1):41–6.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jackson-Browne, M.S., et al., The impact of early-life exposure to antimicrobials on asthma and eczema risk in children. Curr environ health rep., 2019. 6(4):214-224. This is our prior review of phenol exposure and asthma risk in children.

  25. Buckley JP, et al. Associations of prenatal environmental phenol and phthalate biomarkers with respiratory and allergic diseases among children aged 6 and 7 years. Environ Int. 2018;115:79–88. This paper shows evidence that child sex modifies associations between prenatal triclosan concentrations and asthma and eczema.

  26. Quirós-Alcalá L, et al. Paraben exposures and asthma-related outcomes among children from the US general population. J Allergy Clin Immunol. 2019;143(3):948–956.e4. This paper shows evidence that paraben concentrations were associated with increased emergency department visits among asthmatic boys.

  27. Braun JM, et al. What can epidemiological studies tell us about the impact of chemical mixtures on human health? Environ Health Perspect. 2016;124(1):A6–9. This paper summarizes the benefits of evaluating chemical mixture exposures in epidemiological studies.

  28. Hamra GB, Buckley JP. Environmental exposure mixtures: questions and methods to address them. Curr epidemiol rep. 2018;5(2):160–5. This paper reviews different methods for measuring chemical mixture exposures.

  29. Gibson EA, Goldsmith J, Kioumourtzoglou M-A. Complex mixtures, complex analyses: an emphasis on interpretable results. Curr environ health rep. 2019;6(2):53–61. This paper explains the complexities of analyzing chemical mixtures in epidemiological studies.

  30. Stafoggia M, et al. Statistical approachs to address multi-pollutant mixtures and multiple exposures: the state of the science. Curr Environ Health Rep. 2017;4(4):481–90. This paper describes the statistical complexities of measuring chemical mixtures in epidemiology studies.

  31. Lazarevic N, et al. Statistical methodology in studies of prenatal exposure to mixtures of endocrine-disrupting chemicals: a review of existing approaches and new alternatives. Environ Health Perspect. 2019;127(2):26001–1. This paper describes the statistical complexities of measuring chemical mixtures in epidemiology studies.

  32. Carrico C, et al. Characterization of weighted quantile sum regression for highly correlated data in a risk analysis setting. J Agric Biol Environ Stat. 2015;20(1):100–20. This paper describes how to analyze highly correlated data.

  33. Reddam A, et al. Air pollution and human endogenous retrovirus methylation in the school inner-city asthma intervention study. Toxicol Sci. 2023;193(2):166–74.

    Article  PubMed  CAS  Google Scholar 

  34. Chiu YM, et al. Prenatal ambient air pollutant mixture exposure and neurodevelopment in urban children in the Northeastern United States. Environ Res. 2023;233:116394.

    Article  PubMed  CAS  Google Scholar 

  35. Phipatanakul W, et al. The school inner-city asthma intervention study: design, rationale, methods, and lessons learned. Contemp Clin Trials. 2017;60:14–23. This paper describes the study design of a school-based asthma intervention trial.

  36. Kalloo G, et al. Exposures to chemical mixtures during pregnancy and neonatal outcomes: the HOME study. Environ Int. 2020;134:105219. This paper utilizes a statistical method for measuring chemical mixtures.

  37. Adgent MA, et al. A combined cohort analysis of prenatal exposure to phthalate mixtures and childhood asthma. Environ Int. 2020;143:105970–0.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Berger K, et al. Prenatal phthalate, paraben, and phenol exposure and childhood allergic and respiratory outcomes: evaluating exposure to chemical mixtures. Sci Total Environ. 2020;725:138418–8. This paper utilizes a statistical method for measuring chemical mixtures and asthma in childen.

  39. Tang N, et al. Maternal bisphenol A and triclosan exposure and allergic diseases in childhood: a meta-analysis of cohort studies. Environ Sci Pollut Res Int. 2022;29(55):83389–403.

    Article  PubMed  CAS  Google Scholar 

  40. Dann AB, Hontela A. Triclosan: environmental exposure, toxicity and mechanisms of action. J Appl Toxicol. 2010;31(4):285–311.

    Article  Google Scholar 

  41. Geer LA, et al. Association of birth outcomes with fetal exposure to parabens, triclosan and triclocarban in an immigrant population in Brooklyn New York. J Hazard Mater. 2017;323(Pt A):177–83.

    Article  PubMed  CAS  Google Scholar 

  42. Rodricks JV, et al. Triclosan: a critical review of the experimental data and development of margins of safety for consumer products. Crit Rev Toxicol. 2010;40(5):422–84.

    Article  PubMed  CAS  Google Scholar 

  43. Sandborgh-Englund G, et al. Pharmacokinetics of triclosan following oral ingestion in humans. J Toxicol Environ Health A. 2006;69(20):1861–73.

    Article  PubMed  CAS  Google Scholar 

  44. Calafat AM, et al. Urinary concentrations of four parabens in the U.S. population: NHANES 2005-2006. Environ Health Perspect. 2010;118(5):679–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Arbuckle TE, et al. Exposure to free and conjugated forms of bisphenol A and triclosan among pregnant women in the MIREC cohort. Environ Health Perspect. 2015;123(4):277–84.

    Article  PubMed  Google Scholar 

  46. Manzano-Salgado CB, et al. Prenatal exposure to perfluoroalkyl substances and birth outcomes in a Spanish birth cohort. Environ Int. 2017;108:278–84.

    Article  PubMed  CAS  Google Scholar 

  47. Lin MH, et al. Effect of triclosan on the pathogenesis of allergic diseases among children. J Expo. Sci Environ Epidemiol. 2022;32(1):60–8.

    Article  PubMed  CAS  Google Scholar 

  48. Spanier AJ, et al. The associations of triclosan and paraben exposure with allergen sensitization and wheeze in children. Allergy Asthma Proc. 2014;35(6):475–81.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Savage JH, et al. Urinary triclosan levels and recent asthma exacerbations. Ann Aller Asthma Immunol. 2014;112(2):179–181.e2.

    Article  CAS  Google Scholar 

  50. Berger K, et al. Associations between prenatal maternal urinary concentrations of personal care product chemical biomarkers and childhood respiratory and allergic outcomes in the CHAMACOS study. Environ Int. 2018;121(Pt 1):538–49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Lee-Sarwar K, et al. Prenatal and early-life triclosan and paraben exposure and allergic outcomes. J. Allergy Clin. Immunol. 2018;142(1):269–278.e15.

    Article  PubMed  CAS  Google Scholar 

  52. Mitsui-Iwama M, et al. Exposure to paraben and triclosan and allergic diseases in Tokyo: a pilot cross-sectional study. Asia Pac Allergy. 2019;9(1):e5–5.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Vernet C, et al. In utero exposure to select phenols and phthalates and respiratory health in five-year-old boys: a prospective study. Environ Health Perspect. 2017;125(9):097006–6.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Food and Drug Administration, H., Safety and effectiveness of consumer antiseptics; topical antimicrobial drug products for over-the-counter human use. Final rule., F.a.D. Administration, Editor. 2016, HHS: Federal Register. FDA rule for discontinued use of  triclosan in consumer products.

  55. Sreevidya VS, et al. Benzalkonium chloride, benzethonium chloride, and chloroxylenol - three replacement antimicrobials are more toxic than triclosan and triclocarban in two model organisms. Environ Pollut. 2018;235:814–24.

    Article  PubMed  CAS  Google Scholar 

  56. Usman M, Farooq M, Hanna K. Environmental side effects of the injudicious use of antimicrobials in the era of COVID-19. Sci Total Environ. 2020;745:141053.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Mínguez-Alarcón L, et al. Pregnancy urinary concentrations of bisphenol A, parabens and other phenols in relation to serum levels of lipid biomarkers: Results from the EARTH study. Sci Total Environ. 2022;833:155191–1.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hu P, et al. Associations between exposure to a mixture of phenols, parabens, and phthalates and sex steroid hormones in children 6–19 years from NHANES, 2013–2016. Sci Total Environ. 2022;822:153548. This paper utilizes a statistical method for measuring chemical mixtures and sex hormones in childen.

  59. Zhang Y, et al. Association between exposure to a mixture of phenols, pesticides, and phthalates and obesity: comparison of three statistical models. Environ Int. 2019;123:325–36. This paper compares 3 statistical methods for measuring chemical mixtures.

  60. Patti MA, et al. Gestational triclosan exposure and infant birth weight: a systematic review and meta-analysis. Environ Int. 2021;157:106854–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Li R, et al. Temporal trends in risk of bisphenol A, benzophenone-3 and triclosan exposure among U.S. children and adolescents aged 6–19 years: findings from the National Health and Nutrition Examination Survey 2005–2016. Environ Res. 2023;216:114474.

    Article  PubMed  CAS  Google Scholar 

  62. Nowak K, Jabłońska E, Ratajczak-Wrona W. Immunomodulatory effects of synthetic endocrine disrupting chemicals on the development and functions of human immune cells. Environ Int. 2019;125:350–64.

    Article  PubMed  CAS  Google Scholar 

  63. Larsson K, et al. Exposure determinants of phthalates, parabens, bisphenol A and triclosan in Swedish mothers and their children. Environ Int. 2014;73:323–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Food and Drug Administration, H., Parabens in Cosmetics, F.a.D. Administration, Editor. 2022, HHS.

  65. Chan M, et al. Racial/ethnic disparities in pregnancy and prenatal exposure to endocrine-disrupting chemicals commonly used in personal care products. Curr Environ Health Rep. 2021;8(2):98–112.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Vindenes HK, et al. Exposure to environmental phenols and parabens, and relation to body mass index, eczema and respiratory outcomes in the Norwegian RHINESSA study. Environ health : a global access sci source. 2021;20(1):81–1.

    Article  CAS  Google Scholar 

  67. Berger K, et al. Prenatal high molecular weight phthalates and bisphenol A, and childhood respiratory and allergic outcomes. Pediatric aller immunol: official public Europ Soc Pediatr Allergy Immunol. 2019;30(1):36–46. This paper shows evidence that phthalate concentrations were associated with elevated immune biomarkers and respiratory measures in children.

  68. Aung, M.T., et al., Corrigendum to “Associations between maternal plasma measurements of inflammatory markers and urinary levels of phenols and parabens during pregnancy: A repeated measures study” [Sci. Total Environ. 650 (Pt 1) (2019) 1131–1140]. Sci. Total Environ., 2019. 658: p. 1640.

  69. Calafat AM, et al. Concentrations of the sunscreen agent benzophenone-3 in residents of the United States: National Health and Nutrition Examination Survey 2003--2004. Environ Health Perspect. 2008;116(7):893–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Harley KG, et al. Association of phthalates, parabens and phenols found in personal care products with pubertal timing in girls and boys. Hum Reprod. 2019;34(1):109–17.

    Article  PubMed  CAS  Google Scholar 

  71. Liao C, Kannan K. A Survey of alkylphenols, bisphenols, and triclosan in personal care products from China and the United States. Arch Environ Contam Toxicol. 2014;67(1):50–9.

    Article  PubMed  CAS  Google Scholar 

  72. Rogers JA, Metz L, Yong VW. Review: Endocrine disrupting chemicals and immune responses: a focus on bisphenol-A and its potential mechanisms. Mol Immunol. 2013;53(4):421–30.

    Article  PubMed  CAS  Google Scholar 

  73. Ferguson KK, et al. Personal care product use among adults in NHANES: associations between urinary phthalate metabolites and phenols and use of mouthwash and sunscreen. J Expo Sci Environ Epidemiol. 2017;27(3):326–32.

    Article  PubMed  CAS  Google Scholar 

  74. Artacho-Cordón F, et al. Assumed non-persistent environmental chemicals in human adipose tissue; matrix stability and correlation with levels measured in urine and serum. Environ Res. 2017;156:120–7.

    Article  PubMed  Google Scholar 

  75. Wu L-H, et al. Occurrence of bisphenol S in the environment and implications for human exposure: a short review. Sci Total Environ. 2018;615:87–98.

    Article  PubMed  CAS  Google Scholar 

  76. Mendy A, et al. Association of urinary levels of bisphenols F and S used as bisphenol A substitutes with asthma and hay fever outcomes. Environ Res. 2020;183:108944–4. The paper measures associations between  bisphenolA substitutes  with asthma and allergy outcomes.

  77. Xie M-Y, et al. Exposure to bisphenol A and the development of asthma: a systematic review of cohort studies. Reprod Toxicol. 2016;65:224–9.

    Article  PubMed  CAS  Google Scholar 

  78. Quirós-Alcalá L, et al. Exposure to bisphenols and asthma morbidity among low-income urban children with asthma. J Allergy Clin Immunol. 2021;147(2):577–586.e7. The paper measures associations between bisphenolA substitutes with asthma-related health outcomes in children.

  79. Rosa MJ, et al. Prenatal exposure to polycyclic aromatic hydrocarbons, environmental tobacco smoke and asthma. Respir Med. 2011;105(6):869–76.

    Article  PubMed  Google Scholar 

  80. Jung KH, et al. Polycyclic aromatic hydrocarbon exposure, obesity and childhood asthma in an urban cohort. Environ Res. 2014;128:35–41.

    Article  PubMed  CAS  Google Scholar 

  81. Gale SL, et al. Polycyclic aromatic hydrocarbon exposure and wheeze in a cohort of children with asthma in Fresno, CA. J Exposure Sci Environ Epidemiol. 2012;22(4):386–92.

    Article  CAS  Google Scholar 

  82. Jung KH, et al. Repeated exposure to polycyclic aromatic hydrocarbons and asthma: effect of seroatopy. Ann Allergy Asthma Immunol. 2012;109(4):249–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Jung KH, et al. Repeatedly high polycyclic aromatic hydrocarbon exposure and cockroach sensitization among inner-city children. Environ Res. 2015;140:649–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Wang IJ, Karmaus WJJ, Yang C-C. Polycyclic aromatic hydrocarbons exposure, oxidative stress, and asthma in children. Int Arch Occup Environ Health. 2017;90(3):297–303.

    Article  PubMed  CAS  Google Scholar 

  85. Hsu S-C, et al. Differential time-lag effects of ambient PM2.5 and PM2.5-bound PAHs on asthma emergency department visits. Environ Sci Pollut Res. 2020;27(34):43117–24.

    Article  CAS  Google Scholar 

  86. Miller RL, et al. Polycyclic aromatic hydrocarbons, environmental tobacco smoke, and respiratory symptoms in an inner-city birth cohort. Chest. 2004;126(4):1071–8.

    Article  PubMed  CAS  Google Scholar 

  87. Zhang Y, et al. Dietary and inhalation exposure to polycyclic aromatic hydrocarbons and urinary excretion of monohydroxy metabolites--a controlled case study in Beijing, China. Environ pollut Barking Essex. 1987;184:515–22.

    Article  Google Scholar 

  88. Guo H, et al. Women are more susceptible than men to oxidative stress and chromosome damage caused by polycyclic aromatic hydrocarbons exposure. Environ Mol Mutagen. 2014;55(6):472–81.

    Article  PubMed  CAS  Google Scholar 

  89. Wang Y, Zhu H, Kannan K. A review of biomonitoring of phthalate exposures. Toxics. 2019;7(2):21.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Zota AR, Calafat AM, Woodruff TJ. Temporal trends in phthalate exposures: findings from the National Health and Nutrition Examination Survey, 2001-2010. Environ Health Perspect. 2014;122(3):235–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Gascon M, et al. Prenatal exposure to bisphenol A and phthalates and childhood respiratory tract infections and allergy. J Allergy Clin Immunol. 2015;135(2):370–378.e7.

    Article  PubMed  CAS  Google Scholar 

  92. Jahreis S, et al. Maternal phthalate exposure promotes allergic airway inflammation over 2 generations through epigenetic modifications. J Allergy Clin Immunol. 2018;141(2):741–53.

    Article  PubMed  CAS  Google Scholar 

  93. Ku HY, et al. Prenatal and postnatal exposure to phthalate esters and asthma: a 9-year follow-up study of a taiwanese birth cohort. PloS one. 2015;10(4):e0123309–9.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Jaillon S, Berthenet K, Garlanda C. Sexual dimorphism in innate immunity. Clin Rev Allergy Immunol. 2017;56(3):308–21.

    Article  Google Scholar 

  95. Fuseini H, Newcomb DC. Mechanisms Driving Gender Differences in Asthma. Curr Allergy Asthma Rep. 2017;17(3):19–9.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Ketema RM, et al. Phthalates mixture on allergies and oxidative stress biomarkers among children: the Hokkaido study. Environ Int. 2022;160:107083.

    Article  PubMed  CAS  Google Scholar 

  97. Predieri B, Alves CAD, Iughetti L. New insights on the effects of endocrine-disrupting chemicals on children. J Pediatr. 2022;98 Suppl 1(Suppl 1):S73–s85.

    Article  Google Scholar 

  98. Zanobetti A, et al. Childhood asthma incidence, early and persistent wheeze, and neighborhood socioeconomic factors in the ECHO/CREW Consortium. JAMA Pediatr. 2022;176(8):759–67.

    Article  PubMed  PubMed Central  Google Scholar 

  99. James-Todd T, Senie R, Terry MB. Racial/ethnic differences in hormonally-active hair product use: a plausible risk factor for health disparities. J Immigr Minor Health. 2012;14(3):506–11. The paper summarizes racial differences in exposure to endocrine disrupting compounds.

  100. Pollack CE, et al. Association of a housing mobility program with childhood asthma symptoms and exacerbations. Jama. 2023;329(19):1671–81.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Dr. Jackson-Browne is supported by the National Institute of Allergy and Infectious Diseases U01AI126614-05S1. Dr. Marissa Hauptman is supported (in part) by the National Institute of Environmental Health Sciences of the National Institutes of Health under award K23ES031663. Dr. Hauptman is also supported (in part) by the cooperative agreement award number FAIN: NU61TS000296 from the Agency for Toxic Substances and Disease Registry (ATSDR). The U.S. EPA supports the Pediatric Environmental Health Specialty Units by providing partial funding to the ATSDR under Inter-Agency Agreement number DW-75-92301301. Dr. Wanda Phipatanakul and portions of this manuscript are supported by K24 AI106822 and U01AI110397.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Medina S. Jackson-Browne.

Ethics declarations

Competing Interests

Dr. Phipatanakul reports personal fees from Sanofi, Regeneron, Novartis, Genentech, GSK, Astra Zeneca, outside the submitted work. The other authors declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Disclaimer

The content is solely the responsibility of the authors and does not necessarily represent the official views of the ATSDR, U.S. EPA, nor NIH/NIEHS.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jackson-Browne, M.S., Patti, M.A., Henderson, N.B. et al. Asthma and Environmental Exposures to Phenols, Polycyclic Aromatic Hydrocarbons, and Phthalates in Children. Curr Envir Health Rpt 10, 469–477 (2023). https://doi.org/10.1007/s40572-023-00417-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40572-023-00417-4

Navigation