Skip to main content

Advertisement

Log in

Analgesic and Anti-inflammatory Potential of Ricinus communis Linn.: Evidence from Pharmacology to Clinical Studies

  • Published:
Current Pharmacology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Ricinus communis Linn. is a rapidly growing perennial herb (aka Eranda or castor plant) that has long been used to cure a range of ailments in traditional medicine. An extensive search on its ethnomedicinal, phytochemistry, and pharmacotherapeutic potential is completed by meticulously examining information retrieved from Web of Science, PubMed, SciFinder, Google Scholar, Embase, and Infrastructure databases.

Recent Findings

The plant has yielded beneficial chemical compounds such as alkaloids, flavonoids, coumarins, terpenoids, sterols, and fatty acids. Several reports are available on the anti-inflammatory, antinociceptive, antiasthmatic, antifertility, antihistaminic, hepatoprotective, antimicrobial, free radical scavenging activities, antioxidant, and various other biological roles of the crude herb and its metabolites. This review comprehensively discusses the biopotential of R. communis in pain and inflammation, as evident from in vitro, in vivo, and clinical data, as well as safety and toxicity concerns, various market formulations, and drug-drug interactions. R. communis shows potent anti-inflammatory and analgesic activity possibly by NF-kB, Nrf2, RAF/ERK, Fas receptor, and caspase-mediate apoptosis and Wnt signalling pathways.

Summary

R. communis is widely distributed globally and is rich in bioactive phytoconstituents with multifaceted therapeutic roles. It modulates numerous inflammatory and biochemical markers and highlights its potential in the management of nociception and inflammation. These findings could pave the way for the identification and developing more effective strategies to combat nociception and inflammatory disorders.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data used to support the findings of this study are included within the article.

Abbreviations

NF-kB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

Nrf2:

Nuclear factor erythroid 2-related factor 2

ERK:

Extracellular-signal regulated kinase

NSAIDs:

Nonsteroidal anti-inflammatory medicines

COX:

Cyclooxygenase enzyme’s

R. communis :

Ricinus communis

EtOAc:

Ethyl acetate

NT:

Not tested

GC-MS:

Gas chromatography–mass spectrometry

LC-MS:

Liquid chromatography–mass spectrometry

MS-MS:

Tandem mass spectrometry

FTIR:

Fourier transform infrared

UV:

Ultraviolet

H-NMR:

Proton nuclear magnetic resonance

ATI-IR:

Attenuated total reflectance

C-NMR:

Carbon-13 nuclear magnetic resonance

HMGB1:

High mobility group box 1

PGE2:

Prostaglandin E2

NO:

Nitrogen oxides

IL:

Interleukins

P2RX4:

P2X purinoceptor 4

NLR:

NOD-like receptor

ASC:

Ascorbic acid

MMP:

Matrix metalloproteinases

ADAMTS:

Short for a disintegrin and metalloproteinase with thrombospondin motifs

TMPD:

N′-tetramethyl-para-phenylenediamine

DPPH:

α, α-Diphenyl-β-picrylhydrazyl

ROS:

Reactive oxygen species

CVD:

Cardiovascular disease

CRP:

C-reactive protein

SOD:

Superoxide dismutases

ABTS + assay:

2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)

OVCAR:

Overexpress claudin

MCF:

Michigan Cancer Foundation assay

MDA-MB:

M.D. Anderson—Metastatic Breast

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide

MMPs:

Matrix metalloproteinases

MERS:

Middle East respiratory syndrome

SARS-CoV2:

Severe acute respiratory syndrome coronavirus

JAK:

Janus kinase

STAT:

Signal transducers and activators of transcription

ARE:

Antioxidant response element

Keap1:

Kelch-like ECH-associated protein

OECD:

Organisation for Economic Co-operation and Development

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Chakrabarty S, Islam AKMA, Yaakob Z, Islam AKMM. Castor (Ricinus communis): an underutilized oil crop in the South East Asia. Agroecosyst–Very Complex Environ Syst. 2021. https://doi.org/10.5772/INTECHOPEN.92746.

  2. Rana M, Dhamija H, Prashar B, Sharma S. Ricinus communis L. – a review. Int J PharmTech Res. 2012;4(4):1706–11.

    Google Scholar 

  3. • Scarpa A, Guerci A. Various uses of the castor oil plant (Ricinus communis L.) a review. J Ethnopharmacol. 1982;5(2):117–137. https://doi.org/10.1016/0378-8741(82)90038-1. This is one of the oldest general reviews on uses of this plant.

  4. Varinder S, Saurabh S, Dhar KL, Kalia AN. Activity guided isolation of anti-inflammatory compound/fraction from root of Ricinus communis Linn. Int J Pharmtech Res. 2013;5(3):1142–9.

    Google Scholar 

  5. Bhattacharya S, Haldar PK. Exploration of anti-nociceptive and locomotor effects of Trichosanthes dioica root extracts in Swiss albino mice. Asian Pac J Trop Biomed. 2012;2(1):S224–8. https://doi.org/10.1016/S2221-1691(12)60164-6.

    Article  Google Scholar 

  6. Khanam T, Siddiqui N, Yasir M, Scholar PG. A review on Ricinus communis Linn. J Emerg Technol Innov Res. 2018;5(10). Accessed: Oct. 20, 2023. [Online]. Available: https://www.jetir.org.

  7. Nesar A, Anuradha M, Farogh A, Tarique M, Noorul H, Zafar K. Ricinus communis: pharmacological actions and marketed medicinal products. World J Pharm Life Sci. 2016;2(6):179–88.

    Google Scholar 

  8. Jitendra J, Ashish G. Ricinus communis Linn: a phytopharmacological review. Int J Pharm Pharm Sci. 2012;4(4):25–9.

    Google Scholar 

  9. Krunal D, Rabinarayan A. Therapeutic importance of Eranda (Ricinus communis Linn.) in Ayurveda - A review. Ayurpharm Int J Ayur Alli Sci. 2013;2(9):281–95.

  10. Bharati SK, Vashisht K, Ram B, Singh AK. A Review on Pushkara Moola (Inula ra-cemosa) - Its medicinal value in diseases of Pranavaha Srotas w.s.r to Brihattrayi. Journal of Ayurveda and Integrated Medical Sciences. 2017;2(4):211–16. https://doi.org/10.21760/jaims.v2i4.9354.

  11. Dipti, Kumar S, Rath SK. Vidarigandhadi Gana of Sushruta Samhita: A Review of its Clinical Indications. Journal of Natural & Ayurvedic Medicine. 2020;4(3):1–6. https://doi.org/10.23880/jonam-16000262.

  12. Bhakta S, Das S. In praise of the medicinal plant Ricinus communis L : a review. Global J Res Med Plants Indigen Med. 2015;4(5):95–105.

    Google Scholar 

  13. The wealth of India: a dictionary of Indian raw materials and industrial products (Industrial Products—Part I). Ind Med Gaz. 1949;84(10):476. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5189551/. Accessed: Jun. 10, 2023. [Online].

  14. Bentley R, Trimen H. Medicinal plants (Bentley R, Trimen H, Eds.). J and A Churchill, London, 183. - References - Scientific Research Publishing. 1880.Available: https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=1725357. Accessed: Jun. 10, 2023. [Online].

  15. Esteru Rani G, Gaddeyya G. A comprehensive review on botanical and pharmacological aspects of castor plant (Ricinus communis L.). Eur J Biomed Pharm Sci. 2017;4(12):300–306. Available: https://www.ejbps.com. Accessed: Oct. 20, 2023. [Online].

  16. Vandita P, Amin N, Khyati P, Monisha K. Effect of phytochemical constituents of Ricinus communis, Pterocarpus santalinus, Terminalia belerica on antibacterial, antifungal and cytotoxic activity. Int J Toxicol Pharmacol Res. 2013;5(2):47–54.

    Google Scholar 

  17. Vieira C, et al. Pro- and anti-inflammatory actions of ricinoleic acid: similarities and differences with capsaicin. Naunyn Schmiedebergs Arch Pharmacol. 2001;364(2):87–95. https://doi.org/10.1007/S002100100427/METRICS.

    Article  CAS  PubMed  Google Scholar 

  18. Marwat SK, et al. Review - Ricinus cmmunis - ethnomedicinal uses and pharmacological activities. Pak J Pharm Sci. 2017;30(5):1815–1827. Available: https://europepmc.org/article/med/29084706. Accessed: Aug. 17, 2023. [Online].

  19. • Kang SS, Cordell GA, Soejarto DD, Fong HHS. Alkaloids and flavonoids from Ricinus communis.J Nat Prod. 1985;48(1):155–156. https://doi.org/10.1021/NP50037A041/ASSET/NP50037A041.FP.PNG_V03. This interesting review covers phytochemistry of Ricinus communis.

  20. •• Singh PP, Ambika, Chauhan SMS. Activity guided isolation of antioxidants from the leaves of Ricinus communis L. Food Chem. 2009;114(3):1069–1072. https://doi.org/10.1016/J.FOODCHEM.2008.10.020. This study investigates isolation of key antioxidants of this botanical

  21. Thompson MJ, Bowers WS. Lupeol and 30-norlupan-3β-ol-20-one from the coating of the castor bean (Ricinus communis L.). Phytochemistry. 1968;7(5):845–7. https://doi.org/10.1016/S0031-9422(00)84841-4.

    Article  CAS  Google Scholar 

  22. Ilavarasan R, Mallika M, Venkataraman S. Anti-inflammatory and free radical scavenging activity of Ricinus communis root extract. J Ethnopharmacol. 2006;103(3):478–80. https://doi.org/10.1016/J.JEP.2005.07.029.

    Article  PubMed  Google Scholar 

  23. Inayor BN, Ibraheem O. Assessing Ricinus communis L. (castor) whole plant parts for phenolics and saponins constituents for Medicinal and Pharmaceutical applications. Int J Adv Inpharmacy Biol Chem. 2014;3(4). [Online]. Available: https://www.ijapbc.com.

  24. Ricinine | C8H8N2O2 | CID 10666 - PubChem. Available: https://pubchem.ncbi.nlm.nih.gov/compound/Ricinine. Accessed: Oct. 28, 2023. [Online].

  25. Wachira SW, et al. Toxicity of six plant extracts and two pyridone alkaloids from Ricinus communis against the malaria vector Anopheles gambiae. Parasit Vectors. 2014;7(1):312. https://doi.org/10.1186/1756-3305-7-312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wafa G, Amadou D, Larbi KM, Héla EFO. Larvicidal activity, phytochemical composition, and antioxidant properties of different parts of five populations of Ricinus communis L. Ind Crops Prod. 2014;56:43–51. https://doi.org/10.1016/J.INDCROP.2014.02.036.

    Article  CAS  Google Scholar 

  27. Lee W, Ku SK, Kim TH, Bae JS. Emodin-6-O-β-D-glucoside inhibits HMGB1-induced inflammatory responses in vitro and in vivo. Food Chem Toxicol. 2013;52:97–104. https://doi.org/10.1016/J.FCT.2012.10.061.

    Article  CAS  PubMed  Google Scholar 

  28. Zhao J, et al. Systems pharmacological study illustrates the immune regulation, anti-infection, anti-inflammation, and multi-organ protection mechanism of Qing-Fei-Pai-Du decoction in the treatment of COVID-19. Phytomedicine. 2021;85. https://doi.org/10.1016/J.PHYMED.2020.153315.

  29. Li W, et al. Combination of quercetin and hyperoside has anticancer effects on renal cancer cells through inhibition of oncogenic microRNA-27a. Oncol Rep. 2014;31(1):117–24. https://doi.org/10.3892/OR.2013.2811.

    Article  CAS  PubMed  Google Scholar 

  30. Xie T, Yuan J, Mei L, Li P, Pan R. Hyperoside ameliorates TNF-α-induced inflammation, ECM degradation and ER stress-mediated apoptosis via the SIRT1/NF-κB and Nrf2/ARE signaling pathways in vitro. Mol Med Rep. 2022;26(2). https://doi.org/10.3892/MMR.2022.12776.

  31. Lee EH, Park HJ, Jung HY, Kang IK, Kim BO, Cho YJ. Isoquercitrin isolated from newly bred green ball apple peel in lipopolysaccharide-stimulated macrophage regulates NF-κB inflammatory pathways and cytokines. 3 Biotech. 2022;12(4). https://doi.org/10.1007/S13205-022-03118-1.

  32. Li X, Jiang Q, Wang T, Liu J, Chen D. Comparison of the antioxidant effects of quercitrin and isoquercitrin: understanding the role of the 6″-OH group. Molecules. 2016;21(9). https://doi.org/10.3390/MOLECULES21091246.

  33. Soromou LW, et al. Astragalin attenuates lipopolysaccharide-induced inflammatory responses by down-regulating NF-κB signaling pathway. Biochem Biophys Res Commun. 2012;419(2):256–61. https://doi.org/10.1016/J.BBRC.2012.02.005.

    Article  CAS  PubMed  Google Scholar 

  34. Lee HB, Kim EK, Park SJ, Bang S-G, Kim TG, Chung D-W. Isolation and anti-inflammatory effect of astragalin synthesized by enzymatic hydrolysis of tea seed extract. J Sci Food Agric. 2011;91(13):2315–21. https://doi.org/10.1002/JSFA.4457.

    Article  CAS  PubMed  Google Scholar 

  35. Hu Y, et al. Astragalin attenuates AlCl 3/D-galactose-induced aging-like disorders by inhibiting oxidative stress and neuroinflammation. Neurotoxicology. 2022;91:60–8. https://doi.org/10.1016/J.NEURO.2022.05.003.

    Article  CAS  PubMed  Google Scholar 

  36. Kim MS, Kim SH. Inhibitory effect of astragalin on expression of lipopolysaccharide-induced inflammatory mediators through NF-κB in macrophages. Arch Pharm Res. 2011;34(12):2101–7. https://doi.org/10.1007/S12272-011-1213-X.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang Z, et al. Integrated transcriptomic and metabolomic analyses to characterize the anti-cancer effects of (-)-epigallocatechin-3-gallate in human colon cancer cells. Toxicol Appl Pharmacol. 2020;401. https://doi.org/10.1016/J.TAAP.2020.115100.

  38. Ponnian SMP. Preventive effects of (-) epicatechin on tachycardia, cardiac hypertrophy, and nuclear factor- κB inflammatory signaling pathway in isoproterenol-induced myocardial infarcted rats. Eur J Pharmacol. 2022;924. https://doi.org/10.1016/J.EJPHAR.2022.174909.

  39. Shi F, Zhou D, Ji Z, Xu Z, Yang H. Anti-arthritic activity of luteolin in Freund’s complete adjuvant-induced arthritis in rats by suppressing P2X4 pathway. Chem Biol Interact. 2015;226:82–7. https://doi.org/10.1016/J.CBI.2014.10.031.

    Article  CAS  PubMed  Google Scholar 

  40. Lin LJ, Wu CJ, Der Wang S, Te Kao S. Qi-Wei-Du-Qi-Wan and its major constituents exert an anti-asthmatic effect by inhibiting mast cell degranulation. J Ethnopharmacol. 2020;254. https://doi.org/10.1016/J.JEP.2019.112406.

  41. Tan XH, et al. Luteolin alleviates methamphetamine-induced neurotoxicity by suppressing PI3K/Akt pathway-modulated apoptosis and autophagy in rats. Food Chem Toxicol. 2020;137. https://doi.org/10.1016/J.FCT.2020.111179.

  42. Mahdiani S, Omidkhoda N, Heidari S, Hayes AW, Karimi G. Protective effect of luteolin against chemical and natural toxicants by targeting NF-κB pathway. BioFactors. 2022;48(4):744–62. https://doi.org/10.1002/BIOF.1876.

    Article  CAS  PubMed  Google Scholar 

  43. Senol FS, Yagci Tuzun C, Toker G, Orhan IE. An in vitro perspective to cholinesterase inhibitory and antioxidant activity of five Gentiana species and Gentianella caucasea. Int J Food Sci Nutr. 2012;63(7):802–12. https://doi.org/10.3109/09637486.2012.676031.

    Article  CAS  PubMed  Google Scholar 

  44. Knipping K, Garssen J, Vant Land B. An evaluation of the inhibitory effects against rotavirus infection of edible plant extracts. Virol J. 2012;9(1):1–8. https://doi.org/10.1186/1743-422X-9-137/FIGURES/4.

    Article  Google Scholar 

  45. Shukla P, Shukla P, Mishra SR, Gopalakrishna B. Screening of anti-inflammatory and antipyretic activity of Vitex leucoxylon Linn. Indian J Pharmacol. 2010;42(6):409–11. https://doi.org/10.4103/0253-7613.71891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Boukharta M, Jalbert G, Castonguay A. Biodistribution of ellagic acid and dose-related inhibition of lung tumorigenesis in A/J mice. Nutr Cancer. 1992;18(2):181–9. https://doi.org/10.1080/01635589209514218.

    Article  CAS  PubMed  Google Scholar 

  47. Altinoz MA, Elmaci I, Cengiz S, Emekli-Alturfan E, Ozpinar A. From epidemiology to treatment: aspirin’s prevention of brain and breast-cancer and cardioprotection may associate with its metabolite gentisic acid. Chem Biol Interact. 2018;291:29–39. https://doi.org/10.1016/J.CBI.2018.05.016.

    Article  CAS  PubMed  Google Scholar 

  48. Dong X, Zhang Q, Zeng F, Cai M, Ding D. The protective effect of gentisic acid on rheumatoid arthritis via the RAF/ERK signaling pathway. J Orthop Surg Res. 2022;17(1). https://doi.org/10.1186/S13018-022-03006-7.

  49. Prince PSM, Dhanasekar K, Rajakumar S. Vanillic acid prevents altered ion pumps, ions, inhibits Fas-receptor and caspase mediated apoptosis-signaling pathway and cardiomyocyte death in myocardial infarcted rats. Chem Biol Interact. 2015;232:68–76. https://doi.org/10.1016/J.CBI.2015.03.009.

    Article  Google Scholar 

  50. Jin J, et al. Isofraxidin targets the TLR4/MD-2 axis to prevent osteoarthritis development. Food Funct. 2018;9(11):5641–52. https://doi.org/10.1039/C8FO01445K.

    Article  CAS  PubMed  Google Scholar 

  51. Jin L, Ying ZH, Yu CH, Zhang HH, Yu WY, Wu XN. Isofraxidin ameliorated influenza viral inflammation in rodents via inhibiting platelet aggregation. Int Immunopharmacol. 2020;84. https://doi.org/10.1016/J.INTIMP.2020.106521.

  52. Lin J, et al. Isofraxidin inhibits interleukin-1β induced inflammatory response in human osteoarthritis chondrocytes. Int Immunopharmacol. 2018;64:238–45. https://doi.org/10.1016/J.INTIMP.2018.09.003.

    Article  CAS  PubMed  Google Scholar 

  53. Bigi MFMA, et al. Activity of Ricinus communis (Euphorbiaceae) and ricinine against the leaf-cutting ant Atta sexdens rubropilosa (Hymenoptera: Formicidae) and the symbiotic fungus Leucoagaricus gongylophorus. Pest Manag Sci. 2004;60(9):933–8. https://doi.org/10.1002/PS.892.

    Article  CAS  PubMed  Google Scholar 

  54. Alpha-tocopherol: looking beyond an antioxidant - PubMed. Available: https://pubmed.ncbi.nlm.nih.gov/19390643/. Accessed: Aug. 16, 2022. [Online].

  55. Elisia I, Kitts DD. Tocopherol isoforms (α-, γ-, and δ-) show distinct capacities to control Nrf-2 and NfκB signaling pathways that modulate inflammatory response in Caco-2 intestinal cells. Mol Cell Biochem. 2015;404(1–2):123–31. https://doi.org/10.1007/S11010-015-2372-8.

    Article  CAS  PubMed  Google Scholar 

  56. Gumustekin K, et al. Vitamin E and Hippophea rhamnoides L. extract reduce nicotine-induced oxidative stress in rat heart. Cell Biochem Funct. 2010;28(4):329–33. https://doi.org/10.1002/CBF.1663.

    Article  CAS  PubMed  Google Scholar 

  57. Smolarek AK, et al. Dietary tocopherols inhibit cell proliferation, regulate expression of ERα, PPARγ, and Nrf2, and decrease serum inflammatory markers during the development of mammary hyperplasia. Mol Carcinog. 2013;52(7):514–25. https://doi.org/10.1002/MC.21886.

    Article  CAS  PubMed  Google Scholar 

  58. Yang H, et al. Tocopherols inhibit esophageal carcinogenesis through attenuating NF-κB activation and CXCR3-mediated inflammation. Oncogene. 2018;37(29):3909–23. https://doi.org/10.1038/S41388-018-0246-8.

    Article  CAS  PubMed  Google Scholar 

  59. •• Kadri A, Gharsallah N, Damak M, Gdoura R. Chemical composition and in vitro antioxidant properties of essential oil of Ricinus communis L. Journal of Medicinal Plants Research. 2011;5(8):1466–70. https://doi.org/10.5897/JMPR.9000347. This research evaluates the antioxidant potential of essential oils of this plant.

  60. Chung MS. Antiviral activities of Artemisia princeps var. orientalis essential oil and its α-thujone against norovirus surrogates. Food Sci Biotechnol. 2017;26(5):1457–61. https://doi.org/10.1007/S10068-017-0158-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. de Maria de Albuquerque de Melo Júnior J, et al. Acute and neuropathic orofacial antinociceptive effect of eucalyptol. Inflammopharmacology. 2017;25(2):247-254. https://doi.org/10.1007/S10787-017-0324-5.

  62. Khan-Mohammadi-Khorrami MK, Asle-Rousta M, Rahnema M, Amini R. Neuroprotective effect of alpha-pinene is mediated by suppression of the TNF-α/NF-κB pathway in Alzheimer’s disease rat model. J Biochem Mol Toxicol. 2022;36(5). https://doi.org/10.1002/JBT.23006.

  63. Lakhera S, Devlal K, Ghosh A, Chowdhury P, Rana M. Modelling the DFT structural and reactivity study of feverfew and evaluation of its potential antiviral activity against COVID-19 using molecular docking and MD simulations. Chem Zvesti. 2022;76(5):2759–76. https://doi.org/10.1007/S11696-022-02067-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Belhassan A, et al. Camphor, artemisinin and sumac phytochemicals as inhibitors against COVID-19: computational approach. Comput Biol Med. 2021;136. https://doi.org/10.1016/J.COMPBIOMED.2021.104758.

  65. Gadotti VM, Huang S, Zamponi GW. The terpenes camphene and alpha-bisabolol inhibit inflammatory and neuropathic pain via Cav3.2 T-type calcium channels. Mol Brain. 2021;14(1). https://doi.org/10.1186/S13041-021-00876-6.

  66. Quintans-Júnior L, et al. Antinociceptive activity and redox profile of the monoterpenes (+)-camphene, p-cymene, and geranyl acetate in experimental models. ISRN Toxicol. 2013;2013:1–11. https://doi.org/10.1155/2013/459530.

    Article  CAS  Google Scholar 

  67. Chemical composition, antimicrobial, antioxidant and cytotoxic activity of essential oils of Plectranthus cylindraceus and Meriandra benghalensis from Yemen - PubMed. Available: https://pubmed.ncbi.nlm.nih.gov/22978239/. Accessed: Aug. 17, 2022. [Online].

  68. Lima DKS, et al. Evaluation of the antinociceptive, anti-inflammatory and gastric antiulcer activities of the essential oil from Piper aleyreanum C.DC in rodents. J Ethnopharmacol. 2012;142(1):274–82. https://doi.org/10.1016/J.JEP.2012.05.016.

    Article  CAS  PubMed  Google Scholar 

  69. Tungcharoen P, Wattanapiromsakul C, Tansakul P, Nakamura S, Matsuda H, Tewtrakul S. Anti-inflammatory effect of isopimarane diterpenoids from Kaempferia galanga. Phytother Res. 2020;34(3):612–23. https://doi.org/10.1002/PTR.6549.

    Article  CAS  PubMed  Google Scholar 

  70. Pita JCLR, et al. In vitro and in vivo antitumor effect of trachylobane-360, a diterpene from Xylopia langsdorffiana. Molecules. 2012;17(8):9573–89. https://doi.org/10.3390/MOLECULES17089573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fidelis QC, et al. Flavonoids and other compounds from Ouratea ferruginea (Ochnaceae) as anticancer and chemopreventive agents. Molecules. 2012;17(7):7989–8000. https://doi.org/10.3390/MOLECULES17077989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pradhan N, et al. Paederia foetida induces anticancer activity by modulating chromatin modification enzymes and altering pro-inflammatory cytokine gene expression in human prostate cancer cells. Food Chem Toxicol. 2019;130:161–73. https://doi.org/10.1016/J.FCT.2019.05.016.

    Article  CAS  PubMed  Google Scholar 

  73. Maurya VK, Kumar S, Bhatt MLB, Saxena SK. Antiviral activity of traditional medicinal plants from Ayurveda against SARS-CoV-2 infection. J Biomol Struct Dyn. 2022;40(4):1719–35. https://doi.org/10.1080/07391102.2020.1832577.

    Article  CAS  PubMed  Google Scholar 

  74. Sharma S, Sharma A, Bhattacharyya D, Chauhan RS. Computational identification of potential inhibitory compounds in Indian medicinal and aromatic plant species against major pathogenicity determinants of SARS-CoV-2. J Biomol Struct Dyn. 2021. https://doi.org/10.1080/07391102.2021.2000500.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Walker CIB, et al. Anti-nociceptive effect of stigmasterol in mouse models of acute and chronic pain. Naunyn Schmiedebergs Arch Pharmacol. 2017;390(11):1163–72. https://doi.org/10.1007/S00210-017-1416-X.

    Article  CAS  PubMed  Google Scholar 

  76. Liao H, et al. Stigmasterol sensitizes endometrial cancer cells to chemotherapy by repressing Nrf2 signal pathway. Cancer Cell Int. 2020;20(1). https://doi.org/10.1186/S12935-020-01470-X.

  77. Ribeiro PR, de Castro RD, Fernandez LG. Chemical constituents of the oilseed crop Ricinus communis and their pharmacological activities: a review. Ind Crops Prod. 2016;91:358–76. https://doi.org/10.1016/J.INDCROP.2016.07.010.

    Article  CAS  Google Scholar 

  78. Chen JJ, et al. A new benzenoid and anti-inflammatory constituent of Capparis acutifolia. Chem Nat Compd. 2017;53(1):21–3. https://doi.org/10.1007/S10600-017-1901-Y/FIGURES/1.

    Article  CAS  Google Scholar 

  79. Wu JH, et al. Antioxidant activity and constituents of extracts from the root of Garcinia multiflora. J Wood Sci. 2008;54(5):383–9. https://doi.org/10.1007/S10086-008-0961-9.

    Article  Google Scholar 

  80. • Srivastava P, Jyotshna, Gupta N, Maurya AK, Shanker K. New anti-inflammatory triterpene from the root of Ricinus communis. 2014;28(5):306–311. https://doi.org/10.1080/14786419.2013.861834. This research evaluates the antioxidant potential of essential oils of this plant.

  81. Ambrose JM, et al. Plant-derived antiviral compounds as potential entry inhibitors against spike protein of SARS-CoV-2 wild-type and delta variant: an integrative in silico approach. Molecules. 2022;27(6). https://doi.org/10.3390/MOLECULES27061773.

  82. Liu F, et al. PI3-kinase inhibition synergistically promoted the anti-tumor effect of lupeol in hepatocellular carcinoma. Cancer Cell Int. 2013;13(1). https://doi.org/10.1186/1475-2867-13-108.

  83. Rauth S, et al. Lupeol evokes anticancer effects in oral squamous cell carcinoma by inhibiting oncogenic EGFR pathway. Mol Cell Biochem. 2016;417(1–2):97–110. https://doi.org/10.1007/S11010-016-2717-Y.

    Article  CAS  PubMed  Google Scholar 

  84. Li SH, Deng Q, Zhu L, Lai CH, Wang HS, Tan QG. Terpenoids and sterols from Ricinus communis and their activities against diabetes. Zhongguo Zhong Yao Za Zhi. 2014;39(3):448–52. https://doi.org/10.4268/cjcmm20140317.

    Article  PubMed  Google Scholar 

  85. Kim JK, et al. PLGA microspheres containing hydrophobically modified magnesium hydroxide particles for acid neutralization-mediated anti-inflammation. Tissue Eng Regen Med. 2021;18(4):613–22. https://doi.org/10.1007/S13770-021-00338-Z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tofighi N, Asle-Rousta M, Rahnema M, Amini R. Protective effect of alpha-linoleic acid on Aβ-induced oxidative stress, neuroinflammation, and memory impairment by alteration of α7 nAChR and NMDAR gene expression in the hippocampus of rats. Neurotoxicology. 2021;85:245–53. https://doi.org/10.1016/J.NEURO.2021.06.002.

    Article  CAS  PubMed  Google Scholar 

  87. Anand R, Kaithwas G. Anti-inflammatory potential of alpha-linolenic acid mediated through selective COX inhibition: computational and experimental data. Inflammation. 2014;37(4):1297–306. https://doi.org/10.1007/S10753-014-9857-6.

    Article  CAS  PubMed  Google Scholar 

  88. Korbecki J, Bajdak-Rusinek K. The effect of palmitic acid on inflammatory response in macrophages: an overview of molecular mechanisms. Inflamm Res. 2019;68(11):915–32. https://doi.org/10.1007/S00011-019-01273-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Howe AM, Burke S, O’Reilly ME, McGillicuddy FC, Costello DA. Palmitic acid and oleic acid differently modulate TLR2-mediated inflammatory responses in microglia and macrophages. Mol Neurobiol. 2022;59(4):2348–62. https://doi.org/10.1007/S12035-022-02756-Z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lynett PT, Butts K, Vaidya V, Garrett GE, Pratt DA. The mechanism of radical-trapping antioxidant activity of plant-derived thiosulfinates. Org Biomol Chem. 2011;9(9):3320–30. https://doi.org/10.1039/C1OB05192J.

    Article  CAS  PubMed  Google Scholar 

  91. Aleuritic acid | C16H32O5 | CID 222178 - PubChem. Available: https://pubchem.ncbi.nlm.nih.gov/compound/Aleuritic-acid. Accessed: Jun. 09, 2023. [Online].

  92. Ahmad S, Ruby T, Shahzad MI, Rivera G, Carriola DVN, Khan AA. Antimicrobial, antioxidant, antiviral activity, and gas chromatographic analysis of Varanus griseus oil extracts. Arch Microbiol. 2022;204(8):531. https://doi.org/10.1007/S00203-022-03138-8.

    Article  CAS  PubMed  Google Scholar 

  93. Amirkia V, Heinrich M. Alkaloids as drug leads – a predictive structural and biodiversity-based analysis. Phytochem Lett. 2014;10:xlvii–liii. https://doi.org/10.1016/J.PHYTOL.2014.06.015.

    Article  Google Scholar 

  94. Souza CRM, Bezerra WP, Souto JT. Marine alkaloids with anti-inflammatory activity: current knowledge and future perspectives. Mar Drugs. 2020;18(3):147. https://doi.org/10.3390/MD18030147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hernández-Rodríguez P, Baquero LP, Larrota HR. Flavonoids: potential therapeutic agents by their antioxidant capacity. Bioact Compd: Health Benefits Potential Appl. 2019;265–288. https://doi.org/10.1016/B978-0-12-814774-0.00014-1.

  96. Hussain A, Aslam B, Muhammad F, Faisal MN. In vitro antioxidant activity and in vivo anti-inflammatory effect of Ricinus communis (L.) and Withania somnifera (L.) hydroalcoholic extracts in rats. Braz Arch Biol Technol. 2022;64:e21200783. https://doi.org/10.1590/1678-4324-2021200783.

    Article  CAS  Google Scholar 

  97. Ginwala R, Bhavsar R, Chigbu DGI, Jain P, Khan ZK. Potential role of flavonoids in treating chronic inflammatory diseases with a special focus on the anti-inflammatory activity of apigenin. Antioxidants. 2019;8(2):35. https://doi.org/10.3390/ANTIOX8020035.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Heravi MM, Khaghaninejad S, Mostofi M. Pechmann reaction in the synthesis of coumarin derivatives. Adv Heterocycl Chem. 2014;112:1–50. https://doi.org/10.1016/B978-0-12-800171-4.00001-9.

    Article  CAS  Google Scholar 

  99. Fylaktakidou K, Hadjipavlou-Litina D, Litinas K, Nicolaides D. Natural and synthetic coumarin derivatives with anti-inflammatory / antioxidant activities. Curr Pharm Des. 2005;10(30):3813–33. https://doi.org/10.2174/1381612043382710.

    Article  Google Scholar 

  100. Constantinou C, Papas A, Constantinou AI. Vitamin E and cancer: an insight into the anticancer activities of vitamin E isomers and analogs. Int J Cancer. 2008;123(4):739–52. https://doi.org/10.1002/IJC.23689.

    Article  CAS  PubMed  Google Scholar 

  101. Mathur P, Ding Z, Saldeen T, Mehta JL. Tocopherols in the prevention and treatment of atherosclerosis and related cardiovascular disease. Clin Cardiol. 2015;38(9):570–6. https://doi.org/10.1002/CLC.22422.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Benaiges A, Guillén P. Botanical extracts. Anal Cosmet Prod. 2007;345–363. https://doi.org/10.1016/B978-044452260-3/50044-9.

  103. Alexandrino TD, et al. Anti-inflammatory effects of monoterpenoids in rats with TNBS-induced colitis. PharmaNutrition. 2020;14:100240. https://doi.org/10.1016/J.PHANU.2020.100240.

    Article  Google Scholar 

  104. Ludwiczuk A, Skalicka-Woźniak K, Georgiev MI. Terpenoids. Pharmacogn: Fundam, Appl Strateg. 2017;233–266. https://doi.org/10.1016/B978-0-12-802104-0.00011-1.

  105. González Y, Torres-Mendoza D, Jones GE, Fernandez PL. Marine diterpenoids as potential anti-inflammatory agents. Mediators Inflamm. 2015;2015. https://doi.org/10.1155/2015/263543.

  106. Weatherby K, Carter D. Chromera velia: the missing link in the evolution of parasitism. Adv Appl Microbiol. 2013;85:119–44. https://doi.org/10.1016/B978-0-12-407672-3.00004-6.

    Article  PubMed  Google Scholar 

  107. Othman RA, Moghadasian MH. Beyond cholesterol-lowering effects of plant sterols: clinical and experimental evidence of anti-inflammatory properties. Nutr Rev. 2011;69(7):371–82. https://doi.org/10.1111/J.1753-4887.2011.00399.X.

    Article  PubMed  Google Scholar 

  108. Ríos JL, Recio MC, Máñez S, Giner RM. Natural triterpenoids as anti-inflammatory agents. Stud Nat Prod Chem. 2000;22(PART C):93–143. https://doi.org/10.1016/S1572-5995(00)80024-1.

    Article  Google Scholar 

  109. Makhutova ON, Sushchik NN, Gladyshev MI. Fatty acid—markers as foodweb tracers in inland waters. Encycl Inland Waters. 2022;713–726. https://doi.org/10.1016/B978-0-12-819166-8.00094-3.

  110. • Zarai Z, Ben Chobba I, Ben Mansour R, Békir A, Gharsallah N, Kadri A. Essential oil of the leaves of Ricinus communis L.: in vitro cytotoxicity and antimicrobial properties. Lipids Health Dis. 2012;11(1):1–7. https://doi.org/10.1186/1476-511X-11-102/TABLES/3. This report explores the antimicrobial potential of its leave-derived essential oils.

  111. •• Nath S, Dutta Choudhury M, Roychoudhury S, Das Talukdar A, Misro MM. Male contraceptive efficacy of Ricinus communis L. extract. J Ethnopharmacol. 2013;149(1):328–334. https://doi.org/10.1016/J.JEP.2013.06.044. This is an interesting study to evaluate male contraceptive role of plant extract.

  112. • Tunaru S, Althoff TF, Nüsing RM, Diener M, Offermanns S. Castor oil induces laxation and uterus contraction via ricinoleic acid activating prostaglandin EP3 receptors. Proc Natl Acad Sci U S A. 2012;109(23):9179–84. https://doi.org/10.1073/PNAS.1201627109/SUPPL_FILE/PNAS.201201627SI.PDF. The study explores laxation and uterine contraction role of castor oil.

  113. Okwuasaba FK, et al. Anticonceptive and estrogenic effects of a seed extract of Ricinus communis var. minor. J Ethnopharmacol. 1991;34(2–3):141–5. https://doi.org/10.1016/0378-8741(91)90031-8.

    Article  CAS  PubMed  Google Scholar 

  114. Beloti MM, Hiraki KRN, Barros VMR, Rosa AL. Effect of the chemical composition of Ricinus communis polyurethane on rat bone marrow cell attachment, proliferation, and differentiation. J Biomed Mater Res A. 2003;64A(1):171–6. https://doi.org/10.1002/JBM.A.10435.

    Article  CAS  Google Scholar 

  115. Taur DJ, Waghmare MG, Bandal RS, Patil RY. Antinociceptive activity of Ricinus communis L. leaves. Asian Pac J Trop Biomed. 2011;1(2):139. https://doi.org/10.1016/S2221-1691(11)60012-9.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Murade V, Deshmukh K, Murade R, Raut D, Chavan M, Hase D. Involvement of opioid receptors in antinociceptive activity of semi purified fraction and β-amyrin isolated from Ricinus communis Linn. leaves in mice. Orient Pharm Exp Med. 2017;17(4):355–64. https://doi.org/10.1007/S13596-017-0285-7/FIGURES/5.

    Article  CAS  Google Scholar 

  117. Taur DJ, Patil RY. Antiasthmatic activity of Ricinus communis L. roots. Asian Pac J Trop Biomed. 2011;1(1):S13–6. https://doi.org/10.1016/S2221-1691(11)60113-5.

    Article  Google Scholar 

  118. Beloti MM, De Oliveira PT, Tagliani MM, Rosa AL. Bone cell responses to the composite of Ricinus communis polyurethane and alkaline phosphatase. J Biomed Mater Res A. 2008;84A(2):435–41. https://doi.org/10.1002/JBM.A.31344.

    Article  Google Scholar 

  119. Weiss G, Goldsmith LT, Taylor RN, Bellet D, Taylor HS. Inflammation in reproductive disorders. Reprod Sci. 2009;16(2):216–29. https://doi.org/10.1177/1933719108330087/METRICS.

    Article  CAS  PubMed  Google Scholar 

  120. Sjaarda LA, et al. Preconception low-dose aspirin restores diminished pregnancy and live birth rates in women with low-grade inflammation: a secondary analysis of a randomized trial. J Clin Endocrinol Metab. 2017;102(5):1495–504. https://doi.org/10.1210/JC.2016-2917/16629887/JC.2016-2917.PDF.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Sandhyakumary K, Bobby RG, Indira M. Antifertility effects of Ricinus communis (Linn) on rats. Phytother Res. 2003;17(5):508–11. https://doi.org/10.1002/PTR.1308.

    Article  CAS  PubMed  Google Scholar 

  122. Assanasen P, Naclerio RM. Antiallergic anti-inflammatory effects of H1-antihistamines in humans. Clin Allergy Immunol. 2002;17:101–39.

    CAS  PubMed  Google Scholar 

  123. Lomash V, Parihar SK, Jain NK, Katiyar AK. Effect of Solanum nigrum and Ricinus communis extracts on histamine and carrageenan-induced inflammation in the chicken skin. Cell Mol Biol. 2010;56(3). Available: http://www.cellmolbiol.org/index.php/CMB/article/view/970. Accessed: May 26, 2023. [Online].

  124. Song X, et al. Anti-inflammatory and hepatoprotective effects of exopolysaccharides isolated from Pleurotus geesteranus on alcohol-induced liver injury. Sci Rep. 2018;8(1):1–13. https://doi.org/10.1038/s41598-018-28785-0.

    Article  CAS  Google Scholar 

  125. Visen PKS, et al. Hepatoprotective activity of Ricinus communis leaves. Pharm Biol. 1992;30(4):241–50. https://doi.org/10.3109/13880209209054007.

    Article  Google Scholar 

  126. Paes Leme RC, da Silva RB. Antimicrobial activity of non-steroidal anti-inflammatory drugs on biofilm: current evidence and potential for drug repurposing. Front Microbiol. 2021;12:707629–707629. https://doi.org/10.3389/FMICB.2021.707629.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Stroncek JD, Reichert WM. Overview of wound healing in different tissue types. Indwelling Neural Implants: Strateg Contending in Vivo Environ. 2008;3–38. https://doi.org/10.1201/9781420009309.pt1.

  128. Foley KP, et al. Inflammation promotes adipocyte lipolysis via IRE1 kinase. J Biol Chem. 2021;296. https://doi.org/10.1016/J.JBC.2021.100440.

  129. Lombard S, Helmy ME, Piéroni G. Lipolytic activity of ricin from Ricinus sanguineus and Ricinus communis on neutral lipids. Biochem J. 2001;358:773–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. (PDF) Modulatory effects of Ricinus communis leaf extract on cadmium chloride-induced hyperlipidemia and pancytopenia in rats. Available: https://www.researchgate.net/publication/329802614_Modulatory_effects_of_Ricinus_communis_leaf_extract_on_cadmium_chloride-induced_hyperlipidemia_and_pancytopenia_in_rats. Accessed: May 27, 2022. [Online].

  131. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860–7. https://doi.org/10.1038/nature01322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. •• Majumder M, et al. Ricinus communis L. fruit extract inhibits migration/invasion, induces apoptosis in breast cancer cells and arrests tumor progression in vivo. Sci Rep. 2019;9(1):1–14. https://doi.org/10.1038/s41598-019-50769-x. This is the first study showing that the fruit extract of the common R. communis has anticancer properties.

  133. Dekel N, Gnainsky Y, Granot I, Mor G. Inflammation and implantation. Am J Reprod Immunol. 2010;63(1):17. https://doi.org/10.1111/J.1600-0897.2009.00792.X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Okwuasaba FK, et al. Anticonceptive and estrogenic effects of a seed extract of Ricinus communis var. minor. J Ethnopharmacol. 1991;34(2–3):141–5. https://doi.org/10.1016/0378-8741(91)90031-8.

    Article  CAS  PubMed  Google Scholar 

  135. Newman H, Shih YV, Varghese S. Resolution of inflammation in bone regeneration: from understandings to therapeutic applications. Biomaterials. 2021;277:121114. https://doi.org/10.1016/J.BIOMATERIALS.2021.121114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kumar Saini A, Goyal R, Kumar Gauttam V, Nath Kalia A. Evaluation of anti-inflammatory potential of Ricinus communis Linn leaves extracts and its flavonoids content in Wistar rats. J Chem Pharm Res. 2010;2(5):690–5.

    Google Scholar 

  137. Antioxidant activity of ethanolic extract of Ricinus communis leaf | biomedical and pharmacology journal. Available: https://biomedpharmajournal.org/vol5no1/antioxidant-activity-of-ethanolic-extract-of-ricinus-communis-leaf/. Accessed: May 23, 2022. [Online].

  138. Prakash E. In vitro study of extracts of Ricinus communis Linn on human cancer cell lines. Available: https://www.academia.edu/37424829/In_Vitro_Study_of_Extracts_of_Ricinus_communis_Linn_on_Human_Cancer_Cell_lines. Accessed: May 31, 2023. [Online].

  139. Lee H, et al. Castor Oil Plant (Ricinus communis L.) Leaves improve dexamethasone-induced muscle atrophy via Nrf2 activation. Front Pharmacol. 2022;13:891762. https://doi.org/10.3389/FPHAR.2022.891762/BIBTEX.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Ihekuna O, Imaga NA, Adewusi B. Antioxidant and haematological activities of ethanolic extract of Ricinus communis. FASEB J. 2019;33(S1):491.9-491.9. https://doi.org/10.1096/FASEBJ.2019.33.1_SUPPLEMENT.491.9.

    Article  Google Scholar 

  141. Nemudzivhadi V, Masoko P. In vitro assessment of cytotoxicity, antioxidant, and anti-inflammatory activities of Ricinus communis (euphorbiaceae) leaf extracts. Evidence-based Complementary and Alternative Medicine. 2014;2014. https://doi.org/10.1155/2014/625961.

  142. Ganiyat OK. Antioxidant activities of methyl ricinoleate and ricinoleic acid dominated Ricinus communis seeds extract using lipid peroxidation and free radical scavenging methods. Res J Med Plants. 2012;6(7):511–20.

    Article  Google Scholar 

  143. • Elkousy RH, Said ZNA, Ali MA. Anti-SARS-CoV-2 in vitro potential of castor oil plant (Ricinus communis) leaf extract: in-silico virtual evidence. 2022, https://doi.org/10.21203/rs.3.rs-1979637/v1. The study covers the anti SARS-CoV-2 role of leaf extract of this plant.

  144. Račková L, et al. Mechanism of anti-inflammatory action of liquorice extract and glycyrrhizin. Nat Prod Res. 2007;21(14):1234–41. https://doi.org/10.1080/14786410701371280.

    Article  CAS  PubMed  Google Scholar 

  145. Xie S, et al. Acute toxicity study of tilmicosin-loaded hydrogenated castor oil-solid lipid nanoparticles. Part Fibre Toxicol. 2011;8:33. https://doi.org/10.1186/1743-8977-8-33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Salles MM, Oliveira VDC, de Souza RF, da Silva CHL, Paranhos HDFO. Antimicrobial action of sodium hypochlorite and castor oil solutions for denture cleaning – in vitro evaluation. Braz Oral Res. 2015;29(1):1–6. https://doi.org/10.1590/1807-3107BOR-2015.VOL29.0104.

    Article  PubMed  Google Scholar 

  147. Sandhyakumary K, Bobby RG, Indira M. Antifertility effects of Ricinus communis (Linn) on rats. Phytother Res. 2003;17(5):508–11. https://doi.org/10.1002/PTR.1308.

    Article  CAS  PubMed  Google Scholar 

  148. Bhaumik A, Naresh CR, Kalyani P, Krishnamachary K. Evaluation of in vivo hepatoprotective activity of ethanolic extract of roots of Ricinus communis (EE-R-RC) against CCL4 induced rat model. Int J 83 Panacea J Pharm Pharm Sci. 2012;2018(3):83–98. [Online]. Available: http://internationaljournal.org.in/journal/index.php/pjpps

  149. Rakesh MR, Prasad KM, Rajkumar VS. Evaluation of antiulcer activity of castor oil in rats. Int J Res Ayurveda Pharm. 2011;2(4):1349–53.

    Google Scholar 

  150. Oyewole IO, Shoremi OM, Oladele OJ. Modulatory effects of Ricinus communis leaf extract on cadmium chloride-induced hyperlipidemia and pancytopenia in rats. Am J Biomed Res. 2016;4(2):38–41.

    Google Scholar 

  151. Dr. Singh B. A clinical comparative study of some Vishaghna Dravaya and erand tail in the management of Amavata. World J Pharm Res. 2017;855–869. https://doi.org/10.20959/WJPR20179-9273.

  152. Nisargandha M, Parwe S, Jadhav S, Rizvi SAA. Comparative clinical trial on Aragwadha Erand and Trivrutta Eranda Nitya Virechana in Gridhrasi (Lumbago Sciatica Syndrome): a study protocol. J Pharm Res Int. 2021;33(39A):68–74. https://doi.org/10.9734/JPRI/2021/v33i39A32143.

    Article  Google Scholar 

  153. Fernando KPD, Thakar AB, Shukla VD. Clinical efficacy of Eranda Muladi Yapana Basti in the management of Kati Graha (Lumbar spondylosis). Ayu. 2013;34(1):36. https://doi.org/10.4103/0974-8520.115444.

    Article  Google Scholar 

  154. Laxmi L. A comparative clinical study to evaluate the efficacy of Eranda Beeja Payasa and Lashuna Ksheera along with Matrabasti in the management of Gridhrasi w.s.r to Sciatica Syndrome. J Ayurveda Integr Med Sci. 2019;4(5):72–8.

    Google Scholar 

  155. Gauridutt Mishra DHP. Efficacy of Erand Sneha (castor oil) in the management of Amavata (Rheumatoid arthritis) with respect to its Sama Stage. J Res Tradit Med. 2017;3(2):28–35.

    Google Scholar 

  156. Prashanth AS. A pre-test and post-test clinical study design to evaluate Ardhamatrika Nirooha Basti and Nimbamruthadi Eranda Virechana in. J Ayurveda Holistic Med. 2020;3(4). Available: http://jahm.co.in/index.php/jahm/article/view/72. Accessed: Aug. 27, 2022. [Online].

  157. Rajendra S, Sukumar G. A clinical study on the role of matra basti (eranda taila) and shaman chikitsa (shephalika, nirgundi patra agement of gridhrasi W.S.R to sciatica syndrome. Int Ayurvedic Med J. 2017;3(2):29–35.

    Google Scholar 

  158. Chacko VBJ, Kundagol MC, Soman D. An open label, randomized, parallel efficacy, active controlled clinical study to compare the efficacy of Nirgundi Patra and Erandamuladi Niruha Basti in Yoga Basti pattern in Gridhrasi (Sciatica). Int J Ayurvedic Med. 2020;11(3):540–6. https://doi.org/10.47552/IJAM.V11I3.1549.

    Article  Google Scholar 

  159. •• Medhi B, Kishore K, Singh U, Seth SD. Comparative clinical trial of castor oil and diclofenac sodium in patients with osteoarthritis. Phytother Res. 2009;23(10):1469–73. https://doi.org/10.1002/PTR.2804. This clinical report covers antiarthritic role of castor oil.

  160. Ashok AA. Clinical study to evaluate the efficacy of Eranda Phala Payas in the management of Ghridrasi. Unique J Ayurvedic Herbal Med. 2015;3(4):76–8.

    Google Scholar 

  161. Khot VS. Comparative clinical study of bhallatakadi churna and eranda sneha in the management of amavata with special reference to rheumatoid arthritis. Int J Res Ayurveda Pharm. 2015;6(1):35–8. https://doi.org/10.7897/2277-4343.0619.

    Article  Google Scholar 

  162. Sampat PD, Chandaliya SS. Comparative clinical study of basti in dhanyamla sahita erandamoola (Ricinus communis Linn) Basti and plain Erandamoola Basti in vata vyadhi with special reference to retention time. Int J Res Ayurveda Pharm. 2015;6(6):672–5. https://doi.org/10.7897/2277-4343.066125.

    Article  CAS  Google Scholar 

  163. Jagadale VA, Shrinivasarao M, Mohan GV, Dharmannavar G, Rudrapuri MB. A comparative clinical study of Amavatavidhwansa Rasa and Simhanaada Guggulu in the management of Amavata wsr to Rheumatoid Arthritis. J Ayurveda Integr Med Sci. 2020;5(03):27–31. https://doi.org/10.21760/JAIMS.V5I03.905.

    Article  Google Scholar 

  164. Mishra PK, Rai NP. A clinical study on Ajmodadi Churna and Eranda Taila in the management of Amavata (rheumatoid arthritis). Int Res J Pharm. 2013;4(6):211–3. https://doi.org/10.7897/2230-8407.04647.

    Article  Google Scholar 

  165. Pote AR, Dipankar DG. Ayurvedic management of Amavata- a case report. Int J Ayurvedic Med. 2022;13(1):181–4. https://doi.org/10.47552/IJAM.V13I1.2399.

    Article  Google Scholar 

  166. Patel S, Prasad R. A case report on the Amavata. eprajournals.com, Available: https://eprajournals.com/jpanel/upload/1213am_26.Shailendra%20Patel-1008.pdf. Accessed: Sep. 01, 2022. [Online].

  167. Deshpande SV, Deshpande VS, Potdar SS. Effect of panchakarma and Ayurvedic treatment in postpartum rheumatoid arthritis (amavata): a case study. J Ayurveda Integr Med. 2017;8(1):42–4. https://doi.org/10.1016/J.JAIM.2016.10.003.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Yang H, Tracey KJ. Targeting HMGB1 in inflammation. Biochim Biophys Acta (BBA)-Gene Regul Mech. 2010;1799(1–2):149–56. https://doi.org/10.1016/J.BBAGRM.2009.11.019.

    Article  CAS  Google Scholar 

  169. Chandrasekharan NV, Simmons DL. The cyclooxygenases. Genome Biol. 2004;5(9):1–7. https://doi.org/10.1186/GB-2004-5-9-241/FIGURES/3.

    Article  Google Scholar 

  170. Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2(1):1–9. https://doi.org/10.1038/sigtrans.2017.23.

    Article  CAS  Google Scholar 

  171. Ahmed SMU, Luo L, Namani A, Wang XJ, Tang X. Nrf2 signaling pathway: pivotal roles in inflammation. Biochim Biophys Acta (BBA)-Mol Basis Dis. 2017;1863(2):585–97. https://doi.org/10.1016/J.BBADIS.2016.11.005.

    Article  CAS  Google Scholar 

  172. Huang J, et al. Inflammatory diseases, inflammatory biomarkers, and Alzheimer disease. Neurology. 2023;100(6):e568–81. https://doi.org/10.1212/WNL.0000000000201489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Wong RSY. Inflammation in COVID-19: from pathogenesis to treatment. Int J Clin Exp Pathol. 2021;14(7):831. Accessed: Oct. 14, 2023. [Online]. Available: /pmc/articles/PMC8339720/

  174. Gillissen A, Paparoupa M. Inflammation and infections in asthma. Clin Respir J. 2015;9(3):257. https://doi.org/10.1111/CRJ.12135.

    Article  PubMed  Google Scholar 

  175. Peebles RS, Aronica MA. Proinflammatory pathways in the pathogenesis of asthma. Clin Chest Med. 2019;40(1):29. https://doi.org/10.1016/J.CCM.2018.10.014.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Libby P. Inflammatory mechanisms: the molecular basis of inflammation and disease. Nutr Rev. 2007;65(12 Pt):2. https://doi.org/10.1111/J.1753-4887.2007.TB00352.X.

    Article  Google Scholar 

  177. Chen L, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018;9(6):7204. https://doi.org/10.18632/ONCOTARGET.23208.

    Article  PubMed  Google Scholar 

  178. Ilavarasan R, Mallika M, Venkataraman S. Toxicological assessment of Ricinus communis Linn root extracts. 2011;21(3):246–250. https://doi.org/10.3109/15376516.2010.538752.

  179. Korcheva V, Wong J, Corless C, Iordanov M, Magun B. Administration of ricin induces a severe inflammatory response via nonredundant stimulation of ERK, JNK, and P38 MAPK and provides a mouse model of hemolytic uremic syndrome. Am J Pathol. 2005;166(1):323. https://doi.org/10.1016/S0002-9440(10)62256-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Worbs S, et al. Ricinus communis intoxications in human and veterinary medicine—a summary of real cases. Toxins. 2011;3(10):1332–72. https://doi.org/10.3390/TOXINS3101332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Herawati IE, Levita J, Lesmana R, Subarnas A. Ricin in castor bean (Ricinus communis L.) seeds: a review on its anticancer activity and the role of cytotoxicity enhancers. Res J Pharm Technol. 2022;15(1):405–8. https://doi.org/10.52711/0974-360X.2022.00067.

    Article  Google Scholar 

  182. Feldberg L, Elhanany E, Laskar O, Schuster O. Rapid, sensitive and reliable ricin identification in serum samples using LC–MS/MS. Toxins (Basel). 2021;13(2). https://doi.org/10.3390/TOXINS13020079.

  183. Janik E, Ceremuga M, Bijak JS, Bijak M. Biological toxins as the potential tools for bioterrorism. Int J Mol Sci. 2019;20(5). https://doi.org/10.3390/IJMS20051181.

  184. Bradberry SM, Dickers KJ, Rice P, Griffiths GD, Vale JA. Ricin poisoning. Toxicol Rev. 2003;22(1):65–70. https://doi.org/10.2165/00139709-200322010-00007.

    Article  CAS  PubMed  Google Scholar 

  185. Kumar RB, Suresh MX. A computational perspective of molecular interactions through virtual screening, pharmacokinetic and dynamic prediction on ribosome toxin A chain and inhibitors of Ricinus communis. Pharmacognosy Res. 2012;4(1):2. https://doi.org/10.4103/0974-8490.91027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Zhao Q, et al. Synergistic mechanisms of constituents in herbal extracts during intestinal absorption: focus on natural occurring nanoparticles. Pharmaceutics. 2020;12(2):128. https://doi.org/10.3390/PHARMACEUTICS12020128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Zhou SS, et al. Gut microbiota-involved mechanisms in enhancing systemic exposure of ginsenosides by coexisting polysaccharides in ginseng decoction. Sci Rep. 2016;6(1):1–13. https://doi.org/10.1038/srep22474.

    Article  CAS  Google Scholar 

  188. Wang X, et al. An integrated approach to characterize intestinal metabolites of four phenylethanoid glycosides and intestinal microbe-mediated antioxidant activity evaluation in vitro using UHPLC-Q-exactive high-resolution mass spectrometry and a 1,1-diphenyl-2-picrylhydrazyl-based assay. Front Pharmacol. 2019;10. https://doi.org/10.3389/FPHAR.2019.00826.

  189. Ma BL, Ma YM. Pharmacokinetic herb-drug interactions with traditional Chinese medicine: progress, causes of conflicting results and suggestions for future research. Drug Metab Rev. 2016;48(1):1–26. https://doi.org/10.3109/03602532.2015.1124888.

    Article  CAS  PubMed  Google Scholar 

  190. Narai A, Arai S, Shimizu M. Rapid decrease in transepithelial electrical resistance of human intestinal Caco-2 cell monolayers by cytotoxic membrane perturbents. Toxicol In Vitro. 1997;11(4):347–51. https://doi.org/10.1016/S0887-2333(97)00026-X.

    Article  CAS  PubMed  Google Scholar 

  191. Zhuang Y, Yan J, Zhu W, Chen L, Liang D, Xu X. Can the aggregation be a new approach for understanding the mechanism of Traditional Chinese Medicine? J Ethnopharmacol. 2008;117(2):378–84. https://doi.org/10.1016/J.JEP.2008.02.017.

    Article  PubMed  Google Scholar 

  192. Seidler J, McGovern SL, Doman TN, Shoichet BK. Identification and prediction of promiscuous aggregating inhibitors among known drugs. J Med Chem. 2003;46(21):4477–86. https://doi.org/10.1021/JM030191R.

    Article  CAS  PubMed  Google Scholar 

  193. Pohjala L, Tammela P. Aggregating behavior of phenolic compounds–a source of false bioassay results? Molecules. 2012;17(9):10774–90. https://doi.org/10.3390/MOLECULES170910774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Feng BY, Shoichet BK. Synergy and antagonism of promiscuous inhibition in multiple-compound mixtures. J Med Chem. 2006;49(7):2151. https://doi.org/10.1021/JM060029Z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Gao L, et al. Application of drug nanocrystal technologies on oral drug delivery of poorly soluble drugs. Pharm Res. 2013;30(2):307–24. https://doi.org/10.1007/S11095-012-0889-Z.

    Article  CAS  PubMed  Google Scholar 

  196. Acosta E. Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Curr Opin Colloid Interface Sci. 2009;14(1):3–15. https://doi.org/10.1016/J.COCIS.2008.01.002.

    Article  CAS  Google Scholar 

  197. Kohli K, Chopra S, Dhar D, Arora S, Khar RK. Self-emulsifying drug delivery systems: an approach to enhance oral bioavailability. Drug Discov Today. 2010;15(21–22):958–65. https://doi.org/10.1016/J.DRUDIS.2010.08.007.

    Article  CAS  PubMed  Google Scholar 

  198. Quercetin | C15H10O7 | CID 5280343 - PubChem. Available: https://pubchem.ncbi.nlm.nih.gov/compound/Quercetin. Accessed: Oct. 16, 2023. [Online].

  199. Sharifi-Rad J, et al. Ellagic acid: a review on its natural sources, chemical stability, and therapeutic potential. Oxid Med Cell Longev. 2022;2022:24. https://doi.org/10.1155/2022/3848084.

    Article  CAS  Google Scholar 

  200. Bai J, et al. Gallic acid: pharmacological activities and molecular mechanisms involved in inflammation-related diseases. Biomed Pharmacother. 2021;133:110985. https://doi.org/10.1016/J.BIOPHA.2020.110985.

    Article  CAS  PubMed  Google Scholar 

  201. Abedi F, Razavi BM, Hosseinzadeh H. A review on gentisic acid as a plant derived phenolic acid and metabolite of aspirin: comprehensive pharmacology, toxicology, and some pharmaceutical aspects. Phytother Res. 2020;34(4):729–41. https://doi.org/10.1002/PTR.6573.

    Article  CAS  PubMed  Google Scholar 

  202. Xia Y, Dai Y, Wang Q, Liang H. Determination of scopoletin in rat plasma by high performance liquid chromatographic method with UV detection and its application to a pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;857(2):332–6. https://doi.org/10.1016/J.JCHROMB.2007.07.023.

    Article  CAS  PubMed  Google Scholar 

  203. Jäger W, et al. Pharmacokinetic studies of the fragrance compound 1,8-cineol in humans during inhalation. Chem Senses. 1996;21(4):477–80. https://doi.org/10.1093/CHEMSE/21.4.477.

    Article  PubMed  Google Scholar 

  204. Cháirez-Ramírez MH, Gallegos-Infante JA, Moreno-Jiménez MR, González-Laredo RF, Rocha-Guzmán NE. Absorption and distribution of lupeol in CD-1 mice evaluated by UPLC–APCI+–MS/MS. Biomed Chromatogr. 2019;33(3):e4432. https://doi.org/10.1002/BMC.4432.

    Article  PubMed  Google Scholar 

  205. Hamelin EI, Johnson RC, Osterloh JD, Howard DJ, Thomas JD. Evaluation of ricinine, a ricin biomarker, from a non-lethal castor bean ingestion. J Anal Toxicol. 2012;36(9):660. https://doi.org/10.1093/JAT/BKS077.

    Article  CAS  PubMed  Google Scholar 

  206. Moon YJ, Wang L, DiCenzo R, Morris ME. Quercetin pharmacokinetics in humans. Biopharm Drug Dispos. 2008;29(4):205–17. https://doi.org/10.1002/BDD.605.

    Article  CAS  PubMed  Google Scholar 

  207. Wittemer SM, et al. Bioavailability and pharmacokinetics of caffeoylquinic acids and flavonoids after oral administration of Artichoke leaf extracts in humans. Phytomedicine. 2005;12(1–2):28–38. https://doi.org/10.1016/J.PHYMED.2003.11.002.

    Article  CAS  PubMed  Google Scholar 

  208. Seeram NP, Henning SM, Zhang Y, Suchard M, Li Z, Heber D. Pomegranate juice ellagitannin metabolites are present in human plasma and some persist in urine for up to 48 hours. J Nutr. 2006;136(10):2481–5. https://doi.org/10.1093/JN/136.10.2481.

    Article  CAS  PubMed  Google Scholar 

  209. Yu XA, et al. Simultaneous quantification of gallic acid, bergenin, epicatechin, epicatechin gallate, isoquercitrin, and quercetin-3-rhamnoside in rat plasma by LC-MS/MS method and its application to pharmacokinetics after oral administration of Ardisia japonica extract. Evid Based Complement Alternat Med. 2018;2018, https://doi.org/10.1155/2018/4964291.

  210. Su S, et al. UHPLC-MS simultaneous determination and pharmacokinetic study of three aromatic acids and one monoterpene in rat plasma after oral administration of Shaofu Zhuyu decoction. 2013;41(3):697–715. https://doi.org/10.1142/S0192415X13500481.

  211. Li Q, et al. High-performance liquid chromatographic determination of isofraxidin in rat plasma. Chromatographia. 2006;63(5–6):249–53. https://doi.org/10.1365/S10337-005-0706-5/METRICS.

    Article  CAS  Google Scholar 

  212. Qureshi AA, et al. Pharmacokinetics and bioavailability of annatto δ-tocotrienol in healthy fed subjects. Clin Exp Cardiol. 2015;6(11):1–13. https://doi.org/10.4172/2155-9880.1000411.

    Article  CAS  Google Scholar 

  213. Relas H, Gylling H, Miettinen TA. Fate of intravenously administered squalene and plant sterols in human subjects. J Lipid Res. 2001;42(6):988–94. https://doi.org/10.1016/s0022-2275(20)31623-0.

    Article  CAS  PubMed  Google Scholar 

  214. Dayton S, Hashimoto S, Dixon W, Pearce ML. Composition of lipids in human serum and adipose tissue during prolonged feeding of a diet high in unsaturated fat. J Lipid Res. 1966;7(1):103–11. https://doi.org/10.1016/s0022-2275(20)39591-2.

    Article  CAS  PubMed  Google Scholar 

  215. Stump DD, Fan X, Berk PD. Oleic acid uptake and binding by rat adipocytes define dual pathways for cellular fatty acid uptake. J Lipid Res. 2001;42(4):509–20. https://doi.org/10.1016/s0022-2275(20)31159-7.

    Article  CAS  PubMed  Google Scholar 

  216. Purdel C. Assessment report on Ricinus communis L., oleum. EMA/HMPC/572973/2014. https://www.ema.europa.eu/en/documents/herbal-report/final-assessment-report-ricinus-communis-l-oleum_en.pdf.

  217. Kamalakar K, Mahesh G, Prasad RBN, Karuna MSL. A novel methodology for the synthesis of acyloxy castor polyol esters: low pour point lubricant base stocks. J Oleo Sci. 2015;64(12):1283–95. https://doi.org/10.5650/JOS.ESS15133.

    Article  CAS  PubMed  Google Scholar 

  218. A S-I. crops and products and undefined 2011, Castor oil-based lubricant reduces smoke emission in two-stroke engines. Elsevier, Available: https://www.sciencedirect.com/science/article/pii/S0926669010003341. Accessed: Sep. 20, 2022. [Online].

  219. Rudnick L. Synthetics, mineral oils, and bio-based lubricants: chemistry and technology. 2020. Accessed: Sep. 20, 2022. [Online]. Available: https://books.google.com/books?hl=en&lr=&id=80jpDwAAQBAJ&oi=fnd&pg=PP1&dq=Rudnick+LR.+Synthetics,+Mineral+Oils,+and+Bio-Based+Lubricants:+Chemistry+and+Technology.+CRC+Press%3B+2013.+Available+from:+https://patents.google.com/patent/CA1098893A/en&ots=tUpRB3WVhW&sig=OgmfjgmHpZ95vm15SiVlNk-8s1M

  220. Akande TO, Odunsi AA, Akinfala EO. A review of nutritional and toxicological implications of castor bean (Ricinus communis L.) meal in animal feeding systems. J Anim Physiol Anim Nutr (Berl). 2016;100(2):201–10. https://doi.org/10.1111/JPN.12360.

    Article  CAS  PubMed  Google Scholar 

  221. Jadoun S, Arif R, Jangid NK, Meena RK. Green synthesis of nanoparticles using plant extracts: a review. Environ Chem Lett. 2021;19(1):355–74. https://doi.org/10.1007/S10311-020-01074-X.

    Article  CAS  Google Scholar 

  222. Shobha N, et al. Synthesis and characterization of zinc oxide nanoparticles utilizing seed source of Ricinus communis and study of its antioxidant, antifungal and anticancer activity. Mater Sci Eng C Mater Biol Appl. 2019;97:842–50. https://doi.org/10.1016/J.MSEC.2018.12.023.

    Article  CAS  PubMed  Google Scholar 

  223. Gul A, et al. Green synthesis, characterization, enzyme inhibition, antimicrobial potential, and cytotoxic activity of plant mediated silver nanoparticle using Ricinus communis leaf and root extracts. Biomolecules. 2021;11:206. https://doi.org/10.3390/BIOM11020206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Khan U, Shaikh MM, Gupta V, Lad G. Biosynthesis, characterization and evaluation of antimicrobial activity of copper and silver nanoparticles synthesized using Ricinus communis. Int J Pharm Biol Sci-IJPBS TM. (3):9. https://doi.org/10.21276/ijpbs.2019.9.3.50.

  225. Soto KM, et al. Gold nanoparticles synthesized with common mullein (Verbascum thapsus) and castor bean (Ricinus communis) ethanolic extracts displayed antiproliferative effects and induced caspase 3 activity in human HT29 and SW480 cancer cells. Pharmaceutics. 2022;14(10):2069. https://doi.org/10.3390/PHARMACEUTICS14102069/S1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Ghramh HA, Khan KA, Ibrahim EH, Setzer WN. Synthesis of gold nanoparticles (AuNPs) using Ricinus communis leaf ethanol extract, their characterization, and biological applications. Nanomaterials. 2019;9(5):765. https://doi.org/10.3390/NANO9050765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Rajoriya P, et al. Green silver nanoparticles: recent trends and technological developments. 2021;29:2711–2737. https://doi.org/10.1007/s10924-021-02071-z.

  228. Rahman A, Chowdhury MA, Hossain N. Green synthesis of hybrid nanoparticles for biomedical applications: a review. Appl Surf Sci Adv. 2022;11:100296. https://doi.org/10.1016/J.APSADV.2022.100296.

    Article  Google Scholar 

  229. Nasimi P, Haidari M. Medical use of nanoparticles: drug delivery and diagnosis diseases. Int J Green Nanotechnol. 2013;5(1):1–5. https://doi.org/10.1177/1943089213506978/ASSET/IMAGES/LARGE/10.1177_1943089213506978-FIG1.JPEG.

    Article  Google Scholar 

  230. Chouke PB, et al. Bioinspired metal/metal oxide nanoparticles: a road map to potential applications. Mater Today Adv. 2022;16:100314. https://doi.org/10.1016/J.MTADV.2022.100314.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Rashmi Gupta – Original Draft and Formal analysis; Anand K. Chaudhary: Editing; Rohit Sharma: Conceptualisation, Editing and Supervision. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Rohit Sharma.

Ethics declarations

Ethics Approval

No ethical approval is required.

Conflict of Interest

The authors declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, R., Chaudhary, A.K. & Sharma, R. Analgesic and Anti-inflammatory Potential of Ricinus communis Linn.: Evidence from Pharmacology to Clinical Studies. Curr. Pharmacol. Rep. 10, 27–67 (2024). https://doi.org/10.1007/s40495-023-00347-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40495-023-00347-7

Keywords

Navigation