Skip to main content

Advertisement

Log in

Do Marine Polysaccharides Carrageenans Modulate Non-apoptotic Regulated Cell Deaths ? (a Review)

  • Published:
Current Pharmacology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

A growing number of studies indicate that a network of regulated cell death (RCD) pathways plays a vital role in tumorigenesis suggesting its targeting to be a promising therapeutic avenue for cancer treatment. In this review, we firstly systematically summarize the current knowledge on the impact of carrageenans on different non-conventional non-apoptotic RCDs and explore a therapeutic potential of carrageenans as RCDs-modulating agents. Furthermore, we cover the knowledge gaps and controversies in our understanding of cell death-related carrageenan-mediated effects and highlight the directions of further research aiming at studying the pharmacological potential of carrageenans.

Recent Findings

A compelling body of evidence indicates that non-apoptotic RCDs, including necroptosis, ferroptosis, pyroptosis, and autophagy-related cell death, are involved in modulating tumorigenesis and immune response in cancer. Recent advances in our understanding of the role of distinct non-apoptotic RCDs suggest that pharmacological modulation of diverse RCDs is a tempting anti-cancer therapeutic strategy. In particular, carrageenans, which are a group of heterogenous anionic hydrocolloids of polysaccharide nature widely used as food additives (E407 and E407a), have been shown to have anti-viral, anti-cancer, and immunomodulatory activity. The anti-cancer activity of carrageenans is attributed to a certain extent to activation of apoptosis, but the effects of carrageenan on other RCD modes, which can be targeted in oncopathology, are poorly summarized.

Summary

Anti-cancer, immunomodulatory, and anti-viral properties of marine polysaccharides carrageenans are at least partly explained by their modulation of RCD modalities, primarily pyroptosis. Thus, carrageenans can be considered promising RCD-regulating agents, which can be therapeutically exploitable. Furthermore, we emphasize the need to consider induction of non-conventional RCDs as one of the possible molecular mechanisms of carrageenan toxicity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data that supports this study is available from the authors upon reasonable request.

References 

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Rupert R, Rodrigues KF, Thien VY, Yong WTL. Carrageenan from Kappaphycus alvarezii (Rhodophyta, Solieriaceae): metabolism, structure, production, and application. Front Plant Sci. 2022;13:859635. https://doi.org/10.3389/fpls.2022.859635.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jiang JL, Zhang WZ, Ni WX, Shao JW. Insight on structure-property relationships of carrageenan from marine red algal: a review. Carbohydr Polym. 2021;257:117642. https://doi.org/10.1016/j.carbpol.2021.117642.

    Article  PubMed  CAS  Google Scholar 

  3. Álvarez-Viñas M, Souto S, Flórez-Fernández N, Torres MD, Bandín I, Domínguez H. Antiviral activity of carrageenans and processing implications. Mar Drugs. 2021;19(8). https://doi.org/10.3390/md19080437.

  4. Zhu B, Ni F, Sun Y, Zhu X, Yin H, Yao Z, et al. Insight into carrageenases: major review of sources, category, property, purification method, structure, and applications. Crit Rev Biotechnol. 2018;38(8):1261–76. https://doi.org/10.1080/07388551.2018.1472550.

    Article  PubMed  CAS  Google Scholar 

  5. Qureshi D, Nayak SK, Maji S, Kim D, Banerjee I, Pal K. Carrageenan: a wonder polymer from marine algae for potential drug delivery applications. Curr Pharm Des. 2019;25(11):1172–86. https://doi.org/10.2174/1381612825666190425190754.

    Article  PubMed  CAS  Google Scholar 

  6. Kalsoom Khan A, Saba AU, Nawazish S, Akhtar F, Rashid R, Mir S, et al. Carrageenan based bionanocomposites as drug delivery tool with special emphasis on the influence of ferromagnetic nanoparticles. Oxid Med Cell Longev. 2017;2017:8158315. https://doi.org/10.1155/2017/8158315.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Dattilo M, Patitucci F, Prete S, Parisi OI, Puoci F. Polysaccharide-based hydrogels and their application as drug delivery systems in cancer treatment: a review. J Funct Biomater. 2023;14(2). https://doi.org/10.3390/jfb14020055.

  8. Berton SBR, de Jesus GAM, Sabino RM, Monteiro JP, Venter SAS, Bruschi ML, et al. Properties of a commercial κ-carrageenan food ingredient and its durable superabsorbent hydrogels. Carbohydr Res. 2020;487:107883. https://doi.org/10.1016/j.carres.2019.107883.

    Article  PubMed  CAS  Google Scholar 

  9. Błaszak BB, Gozdecka G, Shyichuk A. Carrageenan as a functional additive in the production of cheese and cheese-like products. Acta Sci Pol Technol Aliment. 2018;17(2):107–16. https://doi.org/10.17306/j.Afs.0550.

    Article  PubMed  Google Scholar 

  10. Feferman L, Bhattacharyya S, Oates E, Haggerty N, Wang T, Varady K, et al. Carrageenan-free diet shows improved glucose tolerance and insulin signaling in prediabetes: a randomized. Pilot Clinical Trial J Diabetes Res. 2020;2020:8267980. https://doi.org/10.1155/2020/8267980.

    Article  PubMed  CAS  Google Scholar 

  11. McKim JM. Food additive carrageenan: part I: a critical review of carrageenan in vitro studies, potential pitfalls, and implications for human health and safety. Crit Rev Toxicol. 2014;44(3):211–43. https://doi.org/10.3109/10408444.2013.861797.

    Article  PubMed  CAS  Google Scholar 

  12. Leet WS. California’s living marine resources: a status report. California Sea Grant; Oakland, CA, USA: University of California, Division of Agriculture and Natural Resources; 2001.

  13. Boukid F, Castellari M. Food and beverages containing algae and derived ingredients launched in the market from 2015 to 2019: a front-of-pack labeling perspective with a special focus on Spain. Foods. 2021;10(1). 10.3390/foods10010173.

  14. Ścieszka S, Klewicka E. Algae in food: a general review. Crit Rev Food Sci Nutr. 2019;59(21):3538–47. https://doi.org/10.1080/10408398.2018.1496319.

    Article  PubMed  CAS  Google Scholar 

  15. Zarzycki P, Ciołkowska AE, Jabłońska-Ryś E, Gustaw W. Rheological properties of milk-based desserts with the addition of oat gum and κ-carrageenan. J Food Sci Technol. 2019;56(11):5107–15. https://doi.org/10.1007/s13197-019-03983-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Skryplonek K, Henriques M, Gomes D, Viegas J, Fonseca C, Pereira C, et al. Characteristics of lactose-free frozen yogurt with κ-carrageenan and corn starch as stabilizers. J Dairy Sci. 2019;102(9):7838–48. https://doi.org/10.3168/jds.2019-16556.

    Article  PubMed  CAS  Google Scholar 

  17. Gafour W, Aly E. Organoleptic, textural and whipping properties of whipped cream with different stabilizer blends. Acta Sci Pol Technol Aliment. 2020;19(4):425–33. https://doi.org/10.17306/j.Afs.0784.

    Article  PubMed  CAS  Google Scholar 

  18. Kamińska-Dwórznicka A, Janczewska-Dupczyk A, Kot A, Łaba S, Samborska K. The impact of ι- and κ-carrageenan addition on freezing process and ice crystals structure of strawberry sorbet frozen by various methods. J Food Sci. 2020;85(1):50–6. https://doi.org/10.1111/1750-3841.14987.

    Article  PubMed  CAS  Google Scholar 

  19. Ward PA, Cochrane CG. Bound complement and immunologic injury of blood vessels. J Exp Med. 1965;121(2):215–34. https://doi.org/10.1084/jem.121.2.215.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Rocha e Silva M, Cavalcanti RQ, Reis ML. Anti-inflammatory action of sulfated polysaccharides. Biochem Pharmacol. 1969;18(6):1285–95.

    Article  PubMed  CAS  Google Scholar 

  21. Cater DB, Wallington TB. Inflammatory changes in newly formed vessels of carrageenin-induced granulomas after systemic 5-hydroxytryptamine, bradykinin, kallikrein, or lysolecithin. Br J Exp Pathol. 1968;49(1):74–80.

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Oswald NT, Cater DB. Effect of endotoxin from Serratia marcescens on the permeability of vessels in hepatomas and carrageenin granulomas of rats. Br J Exp Pathol. 1969;50(1):84–96.

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Younes M, Aggett P, Aguilar F, Crebelli R, Filipič M, Frutos MJ, et al. Efsa j. 2018;16(4):e05238. https://doi.org/10.2903/j.efsa.2018.5238.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Al-Suhail AA, Reid PE, Culling CF, Dunn WL, Clay MG. Studies of the degraded carrageenan-induced colitis of rabbits. II. Changes in the epithelial glycoprotein O-acylated sialic acids associated with the induction and healing phases. Histochem J. 1984;16(5):555–64. https://doi.org/10.1007/bf01041355.

    Article  PubMed  CAS  Google Scholar 

  25. Fath RB Jr, Deschner EE, Winawer SJ, Dworkin BM. Degraded carrageenan-induced colitis in CF1 mice. A clinical, histopathological and kinetic analysis. Digestion. 1984;29(4):197–203. https://doi.org/10.1159/000199033.

    Article  PubMed  Google Scholar 

  26. Kitano A, Matsumoto T, Hiki M, Hashimura H, Yoshiyasu K, Okawa K, et al. Epithelial dysplasia of the rabbit colon induced by degraded carrageenan. Cancer Res. 1986;46(3):1374–6.

    PubMed  CAS  Google Scholar 

  27. Moyana TN, Lalonde JM. Carrageenan-induced intestinal injury in the rat–a model for inflammatory bowel disease. Ann Clin Lab Sci. 1990;20(6):420–6.

    PubMed  CAS  Google Scholar 

  28. Borthakur A, Bhattacharyya S, Dudeja PK, Tobacman JK. Carrageenan induces interleukin-8 production through distinct Bcl10 pathway in normal human colonic epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2007;292(3):G829–38. https://doi.org/10.1152/ajpgi.00380.2006.

    Article  PubMed  CAS  Google Scholar 

  29. Bhattacharyya S, Borthakur A, Dudeja PK, Tobacman JK. Carrageenan induces cell cycle arrest in human intestinal epithelial cells in vitro. J Nutr. 2008;138(3):469–75. https://doi.org/10.1093/jn/138.3.469.

    Article  PubMed  CAS  Google Scholar 

  30. Benard C, Cultrone A, Michel C, Rosales C, Segain JP, Lahaye M, et al. Degraded carrageenan causing colitis in rats induces TNF secretion and ICAM-1 upregulation in monocytes through NF-kappaB activation. PLoS One. 2010;5(1):e8666. https://doi.org/10.1371/journal.pone.0008666.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Borthakur A, Bhattacharyya S, Anbazhagan AN, Kumar A, Dudeja PK, Tobacman JK. Prolongation of carrageenan-induced inflammation in human colonic epithelial cells by activation of an NFκB-BCL10 loop. Biochim Biophys Acta. 2012;1822(8):1300–7. https://doi.org/10.1016/j.bbadis.2012.05.001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Jiang HY, Wang F, Chen HM, Yan XJ. κ-carrageenan induces the disruption of intestinal epithelial Caco-2 monolayers by promoting the interaction between intestinal epithelial cells and immune cells. Mol Med Rep. 2013;8(6):1635–42. https://doi.org/10.3892/mmr.2013.1726.

    Article  PubMed  CAS  Google Scholar 

  33. Gubina-Vakyulyk GI, Gorbach TV, Tkachenko AS, Tkachenko MO. Damage and regeneration of small intestinal enterocytes under the influence of carrageenan induces chronic enteritis. Comp Clin Pathol. 2015;24(6):1473–7. https://doi.org/10.1007/s00580-015-2102-3.

    Article  CAS  Google Scholar 

  34. Tkachenko A, Marakushyn D, Kalashnyk I, Korniyenko Y, Onishchenko A, Gorbach T, et al. A study of enterocyte membranes during activation of apoptotic processes in chronic carrageenan-induced gastroenterocolitis. Med Glas (Zenica). 2018;15(2):87–92. https://doi.org/10.17392/946-18.

    Article  PubMed  Google Scholar 

  35. Pogozhykh D, Posokhov Y, Myasoedov V, Gubina-Vakulyck G, Chumachenko T, Knigavko O, et al. Experimental evaluation of food-grade semi-refined carrageenan toxicity. Int J Mol Sci. 2021;22(20). https://doi.org/10.3390/ijms222011178.

  36. Tobacman JK. Review of harmful gastrointestinal effects of carrageenan in animal experiments. Environ Health Perspect. 2001;109(10):983–94. https://doi.org/10.1289/ehp.01109983.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Necas J, Bartosikova L. Carrageenan: a review. Vet Med. 2013;58(4):187–205.

    Article  CAS  Google Scholar 

  38. Martino JV, Van Limbergen J, Cahill LE. The role of carrageenan and carboxymethylcellulose in the development of intestinal inflammation. Front Pediatr. 2017;5:96. https://doi.org/10.3389/fped.2017.00096.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Liu F, Hou P, Zhang H, Tang Q, Xue C, Li RW. Food-grade carrageenans and their implications in health and disease. Compr Rev Food Sci Food Saf. 2021;20(4):3918–36. https://doi.org/10.1111/1541-4337.12790.

    Article  PubMed  CAS  Google Scholar 

  40. Guo J, Shang X, Chen P, Huang X. How does carrageenan cause colitis? A review Carbohydr Polym. 2023;302:120374. https://doi.org/10.1016/j.carbpol.2022.120374.

    Article  PubMed  CAS  Google Scholar 

  41. McKim JM, Willoughby JA Sr, Blakemore WR, Weiner ML. Clarifying the confusion between poligeenan, degraded carrageenan, and carrageenan: a review of the chemistry, nomenclature, and in vivo toxicology by the oral route. Crit Rev Food Sci Nutr. 2019;59(19):3054–73. https://doi.org/10.1080/10408398.2018.1481822.

    Article  PubMed  CAS  Google Scholar 

  42. David S, Shani Levi C, Fahoum L, Ungar Y, Meyron-Holtz EG, Shpigelman A, et al. Revisiting the carrageenan controversy: do we really understand the digestive fate and safety of carrageenan in our foods? Food Funct. 2018;9(3):1344–52. https://doi.org/10.1039/c7fo01721a.

    Article  PubMed  CAS  Google Scholar 

  43. Capron I, Yvon M, Muller G. In-vitro gastric stability of carrageenan. Food Hydrocoll. 1996;10:239–44.

    Article  CAS  Google Scholar 

  44. Shang Q, Sun W, Shan X, Jiang H, Cai C, Hao J, et al. Carrageenan-induced colitis is associated with decreased population of anti-inflammatory bacterium, Akkermansia muciniphila, in the gut microbiota of C57BL/6J mice. Toxicol Lett. 2017;279:87–95. https://doi.org/10.1016/j.toxlet.2017.07.904.

    Article  PubMed  CAS  Google Scholar 

  45. Wu W, Zhou J, Xuan R, Chen J, Han H, Liu J, et al. Dietary κ-carrageenan facilitates gut microbiota-mediated intestinal inflammation. Carbohydr Polym. 2022;277:118830. https://doi.org/10.1016/j.carbpol.2021.118830.

    Article  PubMed  CAS  Google Scholar 

  46. Wu W, Zhou D, Xuan R, Zhou J, Liu J, Chen J, et al. λ-carrageenan exacerbates Citrobacter rodentium-induced infectious colitis in mice by targeting gut microbiota and intestinal barrier integrity. Pharmacol Res. 2021;174:105940. https://doi.org/10.1016/j.phrs.2021.105940.

    Article  PubMed  CAS  Google Scholar 

  47. Mi Y, Chin YX, Cao WX, Chang YG, Lim PE, Xue CH, et al. Native κ-carrageenan induced-colitis is related to host intestinal microecology. Int J Biol Macromol. 2020;147:284–94. https://doi.org/10.1016/j.ijbiomac.2020.01.072.

    Article  PubMed  CAS  Google Scholar 

  48. Wu X, Huang X, Ma W, Li M, Wen J, Chen C, et al. Bioactive polysaccharides promote gut immunity via different ways. Food Funct. 2023;14(3):1387–400. https://doi.org/10.1039/d2fo03181g.

    Article  PubMed  CAS  Google Scholar 

  49. Borsani B, De Santis R, Perico V, Penagini F, Pendezza E, Dilillo D, et al. The role of carrageenan in inflammatory bowel diseases and allergic reactions: where do we stand? Nutrients. 2021;13(10). https://doi.org/10.3390/nu13103402.

  50. Bhattacharyya S, Shumard T, Xie H, Dodda A, Varady KA, Feferman L, et al. A randomized trial of the effects of the no-carrageenan diet on ulcerative colitis disease activity. Nutr Healthy Aging. 2017;4(2):181–92. https://doi.org/10.3233/nha-170023.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. McKim JM, Willoughby JA, Blakemore WR, Weiner ML. A critical review of “a randomized trial of the effects of the no-carrageenan diet on ulcerative colitis disease activity ( Nutr. Healthy Aging. 2017; 4(2): 181–192). Nutrition and Healthy Aging. 2019;5:149–58. https://doi.org/10.3233/NHA-180051.

    Article  CAS  Google Scholar 

  52. Tkachenko AS, Kot YG, Kapustnik VA, Myasoedov VV, Makieieva NI, Chumachenko TO, et al. Semi-refined carrageenan promotes generation of reactive oxygen species in leukocytes of rats upon oral exposure but not in vitro. Wien Med Wochenschr. 2021;171(3–4):68–78. https://doi.org/10.1007/s10354-020-00786-7.

    Article  PubMed  Google Scholar 

  53. Bhattacharyya S, Feferman L, Borthakur S, Tobacman JK. Common food additive carrageenan stimulates Wnt/ β-catenin signaling in colonic epithelium by inhibition of nucleoredoxin reduction. Nutr Cancer. 2014;66(1):117–27. https://doi.org/10.1080/01635581.2014.852228.

    Article  PubMed  CAS  Google Scholar 

  54. Bhattacharyya S, Gill R, Chen ML, Zhang F, Linhardt RJ, Dudeja PK, et al. Toll-like receptor 4 mediates induction of the Bcl10-NFkappaB-interleukin-8 inflammatory pathway by carrageenan in human intestinal epithelial cells. J Biol Chem. 2008;283(16):10550–8. https://doi.org/10.1074/jbc.M708833200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Fahoum L, Moscovici A, David S, Shaoul R, Rozen G, Meyron-Holtz EG, et al. Digestive fate of dietary carrageenan: evidence of interference with digestive proteolysis and disruption of gut epithelial function. Mol Nutr Food Res. 2017;61(3). https://doi.org/10.1002/mnfr.201600545.

  56. Bhattacharyya S, Feferman L, Unterman T, Tobacman JK. Exposure to common food additive carrageenan alone leads to fasting hyperglycemia and in combination with high fat diet exacerbates glucose intolerance and hyperlipidemia without effect on weight. J Diabetes Res. 2015;2015:513429. https://doi.org/10.1155/2015/513429.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Alves A, Sousa E, Kijjoa A, Pinto M. Marine-derived compounds with potential use as cosmeceuticals and nutricosmetics. Molecules. 2020;25(11). https://doi.org/10.3390/molecules25112536.

  58. Aziz E, Batool R, Khan MU, Rauf A, Akhtar W, Heydari M, et al. An overview on red algae bioactive compounds and their pharmaceutical applications. J Complement Integr Med. 2020. https://doi.org/10.1515/jcim-2019-0203.

    Article  PubMed  Google Scholar 

  59. Alam MA, Parra-Saldivar R, Bilal M, Afroze CA, Ahmed MN, Iqbal HMN, et al. Algae-derived bioactive molecules for the potential treatment of SARS-CoV-2. Molecules. 2021;26(8). https://doi.org/10.3390/molecules26082134.

  60. Pagarete A, Ramos AS, Puntervoll P, Allen MJ, Verdelho V. Antiviral potential of algal metabolites-a comprehensive review. Mar Drugs. 2021;19(2). https://doi.org/10.3390/md19020094.

  61. Grice ID, Mariottini GL. Glycans with antiviral activity from marine organisms. Results Probl Cell Differ. 2018;65:439–75. https://doi.org/10.1007/978-3-319-92486-1_20.

    Article  PubMed  CAS  Google Scholar 

  62. Ahmadi A, Zorofchian Moghadamtousi S, Abubakar S, Zandi K. Antiviral potential of algae polysaccharides isolated from marine sources: a review. Biomed Res Int. 2015;2015:825203. https://doi.org/10.1155/2015/825203.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Cicinskas E, Begun MA, Tiasto VA, Belousov AS, Vikhareva VV, Mikhailova VA, et al. In vitro antitumor and immunotropic activity of carrageenans from red algae Chondrus armatus and their low-molecular weight degradation products. J Biomed Mater Res A. 2020;108(2):254–66. https://doi.org/10.1002/jbm.a.36812.

    Article  PubMed  CAS  Google Scholar 

  64. Khotimchenko M, Tiasto V, Kalitnik A, Begun M, Khotimchenko R, Leonteva E, et al. Antitumor potential of carrageenans from marine red algae. Carbohydr Polym. 2020;246:116568. https://doi.org/10.1016/j.carbpol.2020.116568.

    Article  PubMed  CAS  Google Scholar 

  65. Liu Z, Gao T, Yang Y, Meng F, Zhan F, Jiang Q, et al. Anti-cancer activity of porphyran and carrageenan from red seaweeds. Molecules. 2019;24(23). https://doi.org/10.3390/molecules24234286.

  66. de Jesus Raposo MF, de Morais AM, de Morais RM. Emergent sources of prebiotics: seaweeds and microalgae. Mar Drugs. 2016;14(2). https://doi.org/10.3390/md14020027.

  67. Pangestuti R, Shin KH, Kim SK. Anti-photoaging and potential skin health benefits of seaweeds. Mar Drugs. 2021;19(3). https://doi.org/10.3390/md19030172.

  68. Khotimchenko YS, Khozhaenko EV, Khotimchenko MY, Kolenchenko EA, Kovalev VV. Carrageenans as a new source of drugs with metal binding properties. Mar Drugs. 2010;8(4):1106–21. https://doi.org/10.3390/md8041106.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Amin ML, Mawad D, Dokos S, Koshy P, Martens PJ, Sorrell CC. Immunomodulatory properties of photopolymerizable fucoidan and carrageenans. Carbohydr Polym. 2020;230:115691. https://doi.org/10.1016/j.carbpol.2019.115691.

    Article  PubMed  CAS  Google Scholar 

  70. Sanjivkumar M, Chandran MN, Suganya AM, Immanuel G. Investigation on bio-properties and in-vivo antioxidant potential of carrageenans against alloxan induced oxidative stress in Wistar albino rats. Int J Biol Macromol. 2020;151:650–62. https://doi.org/10.1016/j.ijbiomac.2020.02.227.

    Article  PubMed  CAS  Google Scholar 

  71. Dos Santos-Fidencio GC, Gonçalves AG, Noseda MD, Duarte MER, Ducatti DRB. Effects of carboxyl group on the anticoagulant activity of oxidized carrageenans. Carbohydr Polym. 2019;214:286–93. https://doi.org/10.1016/j.carbpol.2019.03.057.

    Article  PubMed  CAS  Google Scholar 

  72. Lee C. Carrageenans as broad-spectrum microbicides: current status and challenges. Mar Drugs. 2020;18(9). https://doi.org/10.3390/md18090435.

  73. Solov’eva T, Davydova V, Krasikova I, Yermak I. Marine compounds with therapeutic potential in gram-negative sepsis. Mar Drugs. 2013;11(6):2216–29. https://doi.org/10.3390/md11062216.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Yermak IM, Volod'ko AV, Khasina EI, Davydova VN, Chusovitin EA, Goroshko DL, et al. Inhibitory effects of carrageenans on endotoxin-induced inflammation. Mar Drugs. 2020;18(5). https://doi.org/10.3390/md18050248.

  75. Manna S, Jana S. Marine polysaccharides in tailor-made drug delivery. Curr Pharm Des. 2022;28(13):1046–66. https://doi.org/10.2174/1381612828666220328122539.

    Article  PubMed  CAS  Google Scholar 

  76. Pacheco-Quito EM, Ruiz-Caro R, Veiga MD. Carrageenan: drug delivery systems and other biomedical applications. Mar Drugs. 2020;18(11). https://doi.org/10.3390/md18110583.

  77. Cardoso MJ, Costa RR, Mano JF. Marine origin polysaccharides in drug delivery systems. Mar Drugs. 2016;14(2). https://doi.org/10.3390/md14020034.

  78. Bedoui S, Herold MJ, Strasser A. Emerging connectivity of programmed cell death pathways and its physiological implications. Nat Rev Mol Cell Biol. 2020;21(11):678–95. https://doi.org/10.1038/s41580-020-0270-8.

    Article  PubMed  CAS  Google Scholar 

  79. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26(4):239–57. https://doi.org/10.1038/bjc.1972.33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Erekat NS. Programmed cell death in diabetic nephropathy: a review of apoptosis, autophagy, and necroptosis. Med Sci Monit. 2022;28:e937766. https://doi.org/10.12659/msm.937766.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Repsold L, Joubert AM. Eryptosis: an erythrocyte’s suicidal type of cell death. Biomed Res Int. 2018;2018:9405617. https://doi.org/10.1155/2018/9405617.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Lang F, Lang E, Föller M. Physiology and pathophysiology of eryptosis. Transfus Med Hemother. 2012;39(5):308–14. https://doi.org/10.1159/000342534.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Dreischer P, Duszenko M, Stein J, Wieder T. Eryptosis: programmed death of nucleus-free, iron-filled blood cells. Cells. 2022;11(3). https://doi.org/10.3390/cells11030503.

  84. Tkachenko A, Onishchenko A. Casein kinase 1α mediates eryptosis: a review. Apoptosis. 2022. https://doi.org/10.1007/s10495-022-01776-3.

    Article  PubMed  Google Scholar 

  85. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25(3):486–541. https://doi.org/10.1038/s41418-017-0012-4.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Kist M, Vucic D. Cell death pathways: intricate connections and disease implications. Embo. 2021;40(5):e106700. https://doi.org/10.15252/embj.2020106700.

    Article  CAS  Google Scholar 

  87. Christgen S, Tweedell RE, Kanneganti TD. Programming inflammatory cell death for therapy. Pharmacol Ther. 2022;232:108010. https://doi.org/10.1016/j.pharmthera.2021.108010.

    Article  PubMed  CAS  Google Scholar 

  88. Kolb JP, Oguin TH 3rd, Oberst A, Martinez J. Programmed cell death and inflammation: winter is coming. Trends Immunol. 2017;38(10):705–18. https://doi.org/10.1016/j.it.2017.06.009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Ouyang L, Shi Z, Zhao S, Wang FT, Zhou TT, Liu B, et al. Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif. 2012;45(6):487–98. https://doi.org/10.1111/j.1365-2184.2012.00845.x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Aman Y, Schmauck-Medina T, Hansen M, Morimoto RI, Simon AK, Bjedov I, et al. Autophagy in healthy aging and disease. Nat Aging. 2021;1(8):634–50. https://doi.org/10.1038/s43587-021-00098-4.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Das G, Shravage BV, Baehrecke EH. Regulation and function of autophagy during cell survival and cell death. Cold Spring Harb Perspect Biol. 2012;4(6). https://doi.org/10.1101/cshperspect.a008813.

  92. Parzych KR, Klionsky DJ. An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal. 2014;20(3):460–73. https://doi.org/10.1089/ars.2013.5371.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Russell RC, Yuan HX, Guan KL. Autophagy regulation by nutrient signaling. Cell Res. 2014;24(1):42–57. https://doi.org/10.1038/cr.2013.166.

    Article  PubMed  CAS  Google Scholar 

  94. Khandia R, Dadar M, Munjal A, Dhama K, Karthik K, Tiwari R, et al. A comprehensive review of autophagy and its various roles in infectious, non-infectious, and lifestyle diseases: current knowledge and prospects for disease prevention, novel drug design, and therapy. Cells. 2019;8(7). https://doi.org/10.3390/cells8070674.

  95. Zachari M, Ganley IG. The mammalian ULK1 complex and autophagy initiation. Essays Biochem. 2017;61(6):585–96. https://doi.org/10.1042/ebc20170021.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Foerster EG, Mukherjee T, Cabral-Fernandes L, Rocha JDB, Girardin SE, Philpott DJ. How autophagy controls the intestinal epithelial barrier. Autophagy. 2022;18(1):86–103. https://doi.org/10.1080/15548627.2021.1909406.

    Article  PubMed  CAS  Google Scholar 

  97. Klapan K, Simon D, Karaulov A, Gomzikova M, Rizvanov A, Yousefi S, et al. Autophagy and skin diseases. Front Pharmacol. 2022;13:844756. https://doi.org/10.3389/fphar.2022.844756.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Mizushima N. The ATG conjugation systems in autophagy. Curr Opin Cell Biol. 2020;63:1–10. https://doi.org/10.1016/j.ceb.2019.12.001.

    Article  PubMed  CAS  Google Scholar 

  99. Licheva M, Raman B, Kraft C, Reggiori F. Phosphoregulation of the autophagy machinery by kinases and phosphatases. Autophagy. 2022;18(1):104–23. https://doi.org/10.1080/15548627.2021.1909407.

    Article  PubMed  CAS  Google Scholar 

  100. Lystad AH, Carlsson SR, Simonsen A. Toward the function of mammalian ATG12-ATG5-ATG16L1 complex in autophagy and related processes. Autophagy. 2019;15(8):1485–6. https://doi.org/10.1080/15548627.2019.1618100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Song S, Guo Q, Zhu Y, Yuan P, Yan Z, Yan L, et al. Exploring the role of autophagy during early human embryonic development through single-cell transcriptome and methylome analyses. Sci China Life Sci. 2022;65(5):940–52. https://doi.org/10.1007/s11427-021-1948-1.

    Article  PubMed  CAS  Google Scholar 

  102. Mizushima N, Levine B. Autophagy in mammalian development and differentiation. Nat Cell Biol. 2010;12(9):823–30. https://doi.org/10.1038/ncb0910-823.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Haq S, Grondin J, Banskota S, Khan WI. Autophagy: roles in intestinal mucosal homeostasis and inflammation. J Biomed Sci. 2019;26(1):19. https://doi.org/10.1186/s12929-019-0512-2.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Ueno T, Komatsu M. Autophagy in the liver: functions in health and disease. Nat Rev Gastroenterol Hepatol. 2017;14(3):170–84. https://doi.org/10.1038/nrgastro.2016.185.

    Article  PubMed  CAS  Google Scholar 

  105. Pellegrini C, Antonioli L, Lopez-Castejon G, Blandizzi C, Fornai M. Canonical and non-canonical activation of NLRP3 inflammasome at the crossroad between immune tolerance and intestinal inflammation. Front Immunol. 2017;8:36. https://doi.org/10.3389/fimmu.2017.00036.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Hurtado-Navarro L, Angosto-Bazarra D, Pelegrín P, Baroja-Mazo A, Cuevas S. NLRP3 inflammasome and pyroptosis in liver pathophysiology: the emerging relevance of Nrf2 inducers. Antioxidants (Basel). 2022;11(5). https://doi.org/10.3390/antiox11050870.

  107. Moretti J, Blander JM. Increasing complexity of NLRP3 inflammasome regulation. J Leukoc Biol. 2021;109(3):561–71. https://doi.org/10.1002/jlb.3mr0520-104rr.

    Article  PubMed  CAS  Google Scholar 

  108. Wang C, Yang T, Xiao J, Xu C, Alippe Y, Sun K, et al. NLRP3 inflammasome activation triggers gasdermin D-independent inflammation. Sci Immunol. 2021;6(64):eabj859. https://doi.org/10.1126/sciimmunol.abj3859.

    Article  CAS  Google Scholar 

  109. Man SM, Karki R, Kanneganti TD. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev. 2017;277(1):61–75. https://doi.org/10.1111/imr.12534.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Zhang J, Yu Q, Jiang D, Yu K, Yu W, Chi Z, et al. Epithelial Gasdermin D shapes the host-microbial interface by driving mucus layer formation. Sci Immunol. 2022;7(68):eabk2092. https://doi.org/10.1126/sciimmunol.abk2092.

    Article  PubMed  CAS  Google Scholar 

  111. Rathinam VAK, Chan FK. Inflammasome, inflammation, and tissue homeostasis. Trends Mol Med. 2018;24(3):304–18. https://doi.org/10.1016/j.molmed.2018.01.004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Lei-Leston AC, Murphy AG, Maloy KJ. Epithelial cell inflammasomes in intestinal immunity and inflammation. Front Immunol. 2017;8:1168. https://doi.org/10.3389/fimmu.2017.01168.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Tan Y, Chen Q, Li X, Zeng Z, Xiong W, Li G, et al. Pyroptosis: a new paradigm of cell death for fighting against cancer. J Exp Clin Cancer Res. 2021;40(1):153. https://doi.org/10.1186/s13046-021-01959-x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Gao W, Wang X, Zhou Y, Wang X, Yu Y. Autophagy, ferroptosis, pyroptosis, and necroptosis in tumor immunotherapy. Signal Transduct Target Ther. 2022;7(1):196. https://doi.org/10.1038/s41392-022-01046-3.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Fritsch M, Günther SD, Schwarzer R, Albert MC, Schorn F, Werthenbach JP, et al. Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis. Nature. 2019;575(7784):683–7. https://doi.org/10.1038/s41586-019-1770-6.

    Article  PubMed  CAS  Google Scholar 

  116. Yu Z, Jiang N, Su W, Zhuo Y. Necroptosis: a novel pathway in neuroinflammation. Front Pharmacol. 2021;12:701564. https://doi.org/10.3389/fphar.2021.701564.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Roberts JZ, Crawford N, Longley DB. The role of ubiquitination in apoptosis and necroptosis. Cell Death Differ. 2022;29(2):272–84. https://doi.org/10.1038/s41418-021-00922-9.

    Article  PubMed  CAS  Google Scholar 

  118. Chen J, Kos R, Garssen J, Redegeld F. Molecular insights into the mechanism of necroptosis: the necrosome as a potential therapeutic target. Cells. 2019;8(12). https://doi.org/10.3390/cells8121486.

  119. Liu Y, Liu T, Lei T, Zhang D, Du S, Girani L, et al. RIP1/RIP3-regulated necroptosis as a target for multifaceted disease therapy (Review). Int J Mol Med. 2019;44(3):771–86. https://doi.org/10.3892/ijmm.2019.4244.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Samson AL, Zhang Y, Geoghegan ND, Gavin XJ, Davies KA, Mlodzianoski MJ, et al. MLKL trafficking and accumulation at the plasma membrane control the kinetics and threshold for necroptosis. Nat Commun. 2020;11(1):3151. https://doi.org/10.1038/s41467-020-16887-1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Yan J, Wan P, Choksi S, Liu ZG. Necroptosis and tumor progression. Trends Cancer. 2022;8(1):21–7. https://doi.org/10.1016/j.trecan.2021.09.003.

    Article  PubMed  CAS  Google Scholar 

  122. Della Torre L, Nebbioso A, Stunnenberg HG, Martens JHA, Carafa V, Altucci L. The role of necroptosis: biological relevance and its involvement in cancer. Cancers (Basel). 2021;13(4). https://doi.org/10.3390/cancers13040684.

  123. Shan B, Pan H, Najafov A, Yuan J. Necroptosis in development and diseases. Genes Dev. 2018;32(5–6):327–40. https://doi.org/10.1101/gad.312561.118.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Najafov A, Chen H, Yuan J. Necroptosis and cancer. Trends Cancer. 2017;3(4):294–301. https://doi.org/10.1016/j.trecan.2017.03.002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021;22(4):266–82. https://doi.org/10.1038/s41580-020-00324-8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Stockwell BR. Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications. Cell. 2022;185(14):2401–21. https://doi.org/10.1016/j.cell.2022.06.003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Ajoolabady A, Aslkhodapasandhokmabad H, Libby P, Tuomilehto J, Lip GYH, Penninger JM, et al. Ferritinophagy and ferroptosis in the management of metabolic diseases. Trends Endocrinol Metab. 2021;32(7):444–62. https://doi.org/10.1016/j.tem.2021.04.010.

    Article  PubMed  CAS  Google Scholar 

  128. Patel SJ, Frey AG, Palenchar DJ, Achar S, Bullough KZ, Vashisht A, et al. A PCBP1-BolA2 chaperone complex delivers iron for cytosolic [2Fe-2S] cluster assembly. Nat Chem Biol. 2019;15(9):872–81. https://doi.org/10.1038/s41589-019-0330-6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Zhang C, Liu X, Jin S, Chen Y, Guo R. Ferroptosis in cancer therapy: a novel approach to reversing drug resistance. Mol Cancer. 2022;21(1):47. https://doi.org/10.1186/s12943-022-01530-y.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Koppula P, Zhuang L, Gan B. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 2021;12(8):599–620. https://doi.org/10.1007/s13238-020-00789-5.

    Article  PubMed  CAS  Google Scholar 

  131. Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H, et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 2015;520(7545):57–62. https://doi.org/10.1038/nature14344.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Xiong Y, Chen L, Lin Z, Hu Y, Panayi AC, Zhou W, et al. The regulatory role of ferroptosis in bone homeostasis. Stem Cells Int. 2022;2022:3568597. https://doi.org/10.1155/2022/3568597.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Fedorov SN, Ermakova SP, Zvyagintseva TN, Stonik VA. Anticancer and cancer preventive properties of marine polysaccharides: some results and prospects. Mar Drugs. 2013;11(12):4876–901. https://doi.org/10.3390/md11124876.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Wu PH, Onodera Y, Recuenco FC, Giaccia AJ, Le QT, Shimizu S, et al. Lambda-carrageenan enhances the effects of radiation therapy in cancer treatment by suppressing cancer cell invasion and metastasis through Racgap1 inhibition. Cancers (Basel). 2019;11(8). https://doi.org/10.3390/cancers11081192.

  135. Murad H, Ghannam A, Al-Ktaifani M, Abbas A, Hawat M. Algal sulfated carrageenan inhibits proliferation of MDA-MB-231 cells via apoptosis regulatory genes. Mol Med Rep. 2015;11(3):2153–8. https://doi.org/10.3892/mmr.2014.2915.

    Article  PubMed  CAS  Google Scholar 

  136. Jazzara M, Ghannam A, Soukkarieh C, Murad H. Anti-proliferative activity of λ-carrageenan through the induction of apoptosis in human breast cancer cells. Iran J Cancer Prev. 2016;9(4):3836. https://doi.org/10.17795/ijcp-3836.

    Article  Google Scholar 

  137. Luo M, Shao B, Nie W, Wei XW, Li YL, Wang BL, et al. Antitumor and adjuvant activity of λ-carrageenan by stimulating immune response in cancer immunotherapy. Sci Rep. 2015;5:11062. https://doi.org/10.1038/srep11062.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Yuan H, Song J, Li X, Li N, Dai J. Immunomodulation and antitumor activity of kappa-carrageenan oligosaccharides. Cancer Lett. 2006;243(2):228–34. https://doi.org/10.1016/j.canlet.2005.11.032.

    Article  PubMed  CAS  Google Scholar 

  139. Prasedya ES, Miyake M, Kobayashi D, Hazama A. Carrageenan delays cell cycle progression in human cancer cells in vitro demonstrated by FUCCI imaging. BMC Complement Altern Med. 2016;16:270. https://doi.org/10.1186/s12906-016-1199-5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Tiasto VA, Goncharov NV, Romanishin AO, Zhidkov ME, Khotimchenko YS. κ- and λ-carrageenans from marine alga chondrus armatus exhibit anticancer in vitro activity in human gastrointestinal cancers models. Mar Drugs. 2022;20(12). https://doi.org/10.3390/md20120741.

  141. Jin Z, Han YX, Han XR. Degraded iota-carrageenan can induce apoptosis in human osteosarcoma cells via the Wnt/β-catenin signaling pathway. Nutr Cancer. 2013;65(1):126–31. https://doi.org/10.1080/01635581.2013.741753.

    Article  PubMed  CAS  Google Scholar 

  142. Zhang Y, Wang X. Targeting the Wnt/β-catenin signaling pathway in cancer. J Hematol Oncol. 2020;13(1):165. https://doi.org/10.1186/s13045-020-00990-3.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Yao Z, Wu H, Zhang S, Du Y. Enzymatic preparation of κ-carrageenan oligosaccharides and their anti-angiogenic activity. Carbohydr Polym. 2014;101:359–67. https://doi.org/10.1016/j.carbpol.2013.09.055.

    Article  PubMed  CAS  Google Scholar 

  144. Calvo GH, Cosenza VA, Sáenz DA, Navarro DA, Stortz CA, Céspedes MA, et al. Disaccharides obtained from carrageenans as potential antitumor agents. Sci Rep. 2019;9(1):6654. https://doi.org/10.1038/s41598-019-43238-y.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Khotimchenko M, Tiasto V, Kalitnik A, Begun M, Khotimchenko R, Leonteva E, et al. Antitumor potential of carrageenans from marine red algae. Carbohydrate Polymers. 2020;246:116568. https://doi.org/10.1016/j.carbpol.2020.116568.

    Article  PubMed  CAS  Google Scholar 

  146. Gibellini L, Moro L. Programmed cell death in health and disease. Cells. 2021;10(7). https://doi.org/10.3390/cells10071765.

  147. D’Arcy MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int. 2019;43(6):582–92. https://doi.org/10.1002/cbin.11137.

    Article  PubMed  Google Scholar 

  148. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495–516. https://doi.org/10.1080/01926230701320337.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Kourtzelis I, Hajishengallis G, Chavakis T. Phagocytosis of apoptotic cells in resolution of inflammation. Front Immunol. 2020;11:553. https://doi.org/10.3389/fimmu.2020.00553.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Choi ME, Price DR, Ryter SW, Choi AMK. Necroptosis: a crucial pathogenic mediator of human disease. JCI Insight. 2019;4(15). https://doi.org/10.1172/jci.insight.128834.

  151. Yu P, Zhang X, Liu N, Tang L, Peng C, Chen X. Pyroptosis: mechanisms and diseases. Signal Transduct Target Ther. 2021;6(1):128. https://doi.org/10.1038/s41392-021-00507-5.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Riegman M, Sagie L, Galed C, Levin T, Steinberg N, Dixon SJ, et al. Ferroptosis occurs through an osmotic mechanism and propagates independently of cell rupture. Nat Cell Biol. 2020;22(9):1042–8. https://doi.org/10.1038/s41556-020-0565-1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Murao A, Aziz M, Wang H, Brenner M, Wang P. Release mechanisms of major DAMPs. Apoptosis. 2021;26(3–4):152–62. https://doi.org/10.1007/s10495-021-01663-3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Zhang J, Jin T, Aksentijevich I, Zhou Q. RIPK1-associated inborn errors of innate immunity. Front Immunol. 2021;12:676946. https://doi.org/10.3389/fimmu.2021.676946.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci. 2019;20(13). https://doi.org/10.3390/ijms20133328.

  156. Li JY, Yao YM, Tian YP. Ferroptosis: a trigger of proinflammatory state progression to immunogenicity in necroinflammatory disease. Front Immunol. 2021;12:701163. https://doi.org/10.3389/fimmu.2021.701163.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Qian M, Fang X, Wang X. Autophagy and inflammation. Clin Transl Med. 2017;6(1):24. https://doi.org/10.1186/s40169-017-0154-5.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Deretic V. Autophagy in inflammation, infection, and immunometabolism. Immunity. 2021;54(3):437–53. https://doi.org/10.1016/j.immuni.2021.01.018.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Lei Y, Klionsky DJ. The emerging roles of autophagy in human diseases. Biomedicines. 2021;9(11). https://doi.org/10.3390/biomedicines9111651.

  160. Yang Y, Klionsky DJ. Autophagy and disease: unanswered questions. Cell Death Differ. 2020;27(3):858–71. https://doi.org/10.1038/s41418-019-0480-9.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Rakesh R, PriyaDharshini LC, Sakthivel KM, Rasmi RR. Role and regulation of autophagy in cancer. Biochim Biophys Acta Mol Basis Dis. 2022;1868(7):166400. https://doi.org/10.1016/j.bbadis.2022.166400.

    Article  PubMed  CAS  Google Scholar 

  162. Ganzleben I, Neurath MF, Becker C. Autophagy in cancer therapy-molecular mechanisms and current clinical advances. Cancers (Basel). 2021;13(21). https://doi.org/10.3390/cancers13215575.

  163. Poillet-Perez L, Xie X, Zhan L, Yang Y, Sharp DW, Hu ZS, et al. Autophagy maintains tumour growth through circulating arginine. Nature. 2018;563(7732):569–73. https://doi.org/10.1038/s41586-018-0697-7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Mulcahy Levy JM, Thorburn A. Autophagy in cancer: moving from understanding mechanism to improving therapy responses in patients. Cell Death Differ. 2020;27(3):843–57. https://doi.org/10.1038/s41418-019-0474-7.

    Article  PubMed  Google Scholar 

  165. Bai Z, Peng Y, Ye X, Liu Z, Li Y, Ma L. Autophagy and cancer treatment: four functional forms of autophagy and their therapeutic applications. J Zhejiang Univ Sci B. 2022;23(2):89–101. https://doi.org/10.1631/jzus.B2100804.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Negi S, Chaudhuri A, Kumar DN, Dehari D, Singh S, Agrawal AK. Nanotherapeutics in autophagy: a paradigm shift in cancer treatment. Drug Deliv Transl Res. 2022;12(11):2589–612. https://doi.org/10.1007/s13346-022-01125-6.

    Article  PubMed  Google Scholar 

  167. Russell RC, Guan KL. The multifaceted role of autophagy in cancer. Embo. 2022;41(13):110031. https://doi.org/10.15252/embj.2021110031.

    Article  CAS  Google Scholar 

  168. Zhao L, Zhou X, Xie F, Zhang L, Yan H, Huang J, et al. Ferroptosis in cancer and cancer immunotherapy. Cancer Commun (Lond). 2022;42(2):88–116. https://doi.org/10.1002/cac2.12250.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Wu D, Wei C, Li Y, Yang X, Zhou S. Pyroptosis, a new breakthrough in cancer treatment. Front Oncol. 2021;11:698811. https://doi.org/10.3389/fonc.2021.698811.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Gong Y, Fan Z, Luo G, Yang C, Huang Q, Fan K, et al. The role of necroptosis in cancer biology and therapy. Mol Cancer. 2019;18(1):100. https://doi.org/10.1186/s12943-019-1029-8.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Pan S, Meng H, Fan T, Hao B, Song C, Li D, et al. Comprehensive analysis of programmed cell death signature in the prognosis, tumor microenvironment and drug sensitivity in lung adenocarcinoma. Front Genet. 2022;13:900159. https://doi.org/10.3389/fgene.2022.900159.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Zhou J, Wang G, Chen Y, Wang H, Hua Y, Cai Z. Immunogenic cell death in cancer therapy: present and emerging inducers. J Cell Mol Med. 2019;23(8):4854–65. https://doi.org/10.1111/jcmm.14356.

    Article  PubMed  PubMed Central  Google Scholar 

  173. •• Yao ZA, Xu L, Jin LM, Wang TS, Wang BX, Li JZ, et al. κ-carrageenan oligosaccharides induce microglia autophagy through AMPK/ULK1 pathway to regulate their immune response. Int J Biol Macromol. 2022;194:198–203. https://doi.org/10.1016/j.ijbiomac.2021.11.191. The study reveals the role of AMPK/ULK1 pathway in carrageenans-mediated autophagy.

    Article  PubMed  CAS  Google Scholar 

  174. •• Duerrschmidt N, Zabirnyk O, Nowicki M, Ricken A, Hmeidan FA, Blumenauer V, et al. Lectin-like oxidized low-density lipoprotein receptor-1-mediated autophagy in human granulosa cells as an alternative of programmed cell death. Endocrinology. 2006;147(8):3851–60. https://doi.org/10.1210/en.2006-0088. The study firstly demonstrates the impact of carrageenans on autophagy.

    Article  PubMed  CAS  Google Scholar 

  175. Yang K, Li Q, Zhang G, Ma C, Dai X. The protective effects of carrageenan oligosaccharides on intestinal oxidative stress damage of female Drosophila melanogaster. Antioxidants (Basel). 2021;10(12). https://doi.org/10.3390/antiox10121996.

  176. Mani SD, Pandey S, Govindan M, Muthamilarasan M, Nagarathnam R. Transcriptome dynamics underlying elicitor-induced defense responses against Septoria leaf spot disease of tomato (Solanum lycopersicum L.). Physiol Mol Biol Plants. 2021;27(4):873–88. https://doi.org/10.1007/s12298-021-00970-y.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Patil KR, Mahajan UB, Unger BS, Goyal SN, Belemkar S, Surana SJ, et al. Animal models of inflammation for screening of anti-inflammatory drugs: implications for the discovery and development of phytopharmaceuticals. Int J Mol Sci. 2019;20(18). https://doi.org/10.3390/ijms20184367.

  178. • Rossol M, Pierer M, Raulien N, Quandt D, Meusch U, Rothe K, et al. Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors. Nat Commun. 2012;3:1329. https://doi.org/10.1038/ncomms2339. The study provides experimental evidence of carrageenan-induced pyroptosis and uncovers the mechanisms.

    Article  PubMed  CAS  Google Scholar 

  179. • Yoon GS, Keswani RK, Sud S, Rzeczycki PM, Murashov MD, Koehn TA, et al. Clofazimine biocrystal accumulation in macrophages upregulates interleukin 1 receptor antagonist production to induce a systemic anti-inflammatory state. Antimicrob Agents Chemother. 2016;60(6):3470–9. https://doi.org/10.1128/aac.00265-16. The study provides experimental evidence of carrageenan-induced pyroptosis and uncovers the mechanisms.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. • Boro M, Balaji KN. CXCL1 and CXCL2 regulate NLRP3 inflammasome activation via G-protein-coupled receptor CXCR2. J Immunol. 2017;199(5):1660–71. https://doi.org/10.4049/jimmunol.1700129. The study provides experimental evidence of carrageenan-induced pyroptosis and uncovers the mechanisms.

    Article  PubMed  CAS  Google Scholar 

  181. • Wu J, Lan Y, Shi X, Huang W, Li S, Zhang J, et al. Sennoside A is a novel inhibitor targeting caspase-1. Food Funct. 2022;13(19):9782–95. https://doi.org/10.1039/d2fo01730j. The study provides experimental evidence of carrageenan-induced pyroptosis and uncovers the mechanisms.

    Article  PubMed  CAS  Google Scholar 

  182. • Fusco R, Gugliandolo E, Biundo F, Campolo M, Di Paola R, Cuzzocrea S. Inhibition of inflammasome activation improves lung acute injury induced by carrageenan in a mouse model of pleurisy. Faseb j. 2017;31(8):3497–511. https://doi.org/10.1096/fj.201601349R. The study provides experimental evidence of carrageenan-induced pyroptosis and uncovers the mechanisms.

    Article  PubMed  CAS  Google Scholar 

  183. • Yang H, Huang J, Gao Y, Wen Z, Peng L, Ci X. Oridonin attenuates carrageenan-induced pleurisy via activation of the KEAP-1/Nrf2 pathway and inhibition of the TXNIP/NLRP3 and NF-κB pathway in mice. Inflammopharmacology. 2020;28(2):513–23. https://doi.org/10.1007/s10787-019-00644-y. The study provides experimental evidence of carrageenan-induced pyroptosis and uncovers the mechanisms.

    Article  PubMed  CAS  Google Scholar 

  184. • Ho DR, Chang PJ, Lin WY, Huang YC, Lin JH, Huang KT, et al. Beneficial effects of inflammatory cytokine-targeting aptamers in an animal model of chronic prostatitis. Int J Mol Sci. 2020;21(11). https://doi.org/10.3390/ijms21113953The study provides significant insights into the machanisms of carrageenan-induced pyroptosis.

  185. • Zang L, Tian F, Yao Y, Chen Y, Shen Y, Han M, et al. Qianliexin capsule exerts anti-inflammatory activity in chronic non-bacterial prostatitis and benign prostatic hyperplasia via NF-κB and inflammasome. J Cell Mol Med. 2021;25(12):5753–68. https://doi.org/10.1111/jcmm.16599. The study provides experimental evidence of carrageenan-induced pyroptosis and uncovers the mechanisms.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. • Liu Y, Ge K, Yu Z, Li X, Wu X, Wang Y, et al. Activation of NLRP3 inflammasome in RAW 264.7 cells by polysaccharides extracted from Grateloupia livida (Harv.) Yamada. Int Immunopharmacol. 2020;85:106630. https://doi.org/10.1016/j.intimp.2020.106630. The study provides experimental evidence of carrageenan-induced pyroptosis and uncovers the mechanisms.

    Article  PubMed  CAS  Google Scholar 

  187. •• Lopes AH, Silva RL, Fonseca MD, Gomes FI, Maganin AG, Ribeiro LS, et al. Molecular basis of carrageenan-induced cytokines production in macrophages. Cell Commun Signal. 2020;18(1):141. https://doi.org/10.1186/s12964-020-00621-x. The study provides significant insights into the machanisms of carrageenan-induced pyroptosis.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Chen CS, Chang PJ, Lin WY, Huang YC, Ho DR. Evidences of the inflammasome pathway in chronic prostatitis and chronic pelvic pain syndrome in an animal model. Prostate. 2013;73(4):391–7. https://doi.org/10.1002/pros.22580.

    Article  PubMed  CAS  Google Scholar 

  189. Lopes AH, Talbot J, Silva RL, Lima JB, França RO, Verri WA Jr, et al. Peripheral NLCR4 inflammasome participates in the genesis of acute inflammatory pain. Pain. 2015;156(3):451–9. https://doi.org/10.1097/01.j.pain.0000460322.72396.53.

    Article  PubMed  CAS  Google Scholar 

  190. • Wang R, Dong Z, Zhang X, Mao J, Meng F, Lan X, et al. Evaluation of the liver toxicity of Pterocephalus hookeri extract via triggering necrosis. Toxins (Basel). 2019;11(3). https://doi.org/10.3390/toxins11030142. This is the only study in which the impact of carrageenans on necoptosis is evaluated.

  191. Webster JD, Vucic D. The balance of TNF mediated pathways regulates inflammatory cell death signaling in healthy and diseased tissues. Front Cell Dev Biol. 2020;8:365. https://doi.org/10.3389/fcell.2020.00365.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Sintsova O, Gladkikh I, Klimovich A, Palikova Y, Palikov V, Styshova O, et al. TRPV1 Blocker HCRG21 suppresses TNF-α production and prevents the development of edema and hypersensitivity in carrageenan-induced acute local inflammation. Biomedicines. 2021;9(7). https://doi.org/10.3390/biomedicines9070716.

  193. Calimag KPD, Arbis CCH, Collantes TMA, Bariuan JV, Ang MJC, Cervancia CA, et al. Attenuation of carrageenan-induced hind paw edema and plasma TNF-α level by Philippine stingless bee (Tetragonula biroi Friese) propolis. Exp Anim. 2021;70(2):185–93. https://doi.org/10.1538/expanim.20-0118.

    Article  PubMed  CAS  Google Scholar 

  194. Bhattacharyya S, Dudeja PK, Tobacman JK. Tumor necrosis factor alpha-induced inflammation is increased but apoptosis is inhibited by common food additive carrageenan. J Biol Chem. 2010;285(50):39511–22. https://doi.org/10.1074/jbc.M110.159681.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Loram LC, Fuller A, Fick LG, Cartmell T, Poole S, Mitchell D. Cytokine profiles during carrageenan-induced inflammatory hyperalgesia in rat muscle and hind paw. J Pain. 2007;8(2):127–36. https://doi.org/10.1016/j.jpain.2006.06.010.

    Article  PubMed  CAS  Google Scholar 

  196. Ogata M, Matsui T, Kita T, Shigematsu A. Carrageenan primes leukocytes to enhance lipopolysaccharide-induced tumor necrosis factor alpha production. Infect Immun. 1999;67(7):3284–9. https://doi.org/10.1128/iai.67.7.3284-3289.1999.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Han JH, Park J, Kang TB, Lee KH. Regulation of caspase-8 activity at the crossroads of pro-inflammation and anti-inflammation. Int J Mol Sci. 2021;22(7). https://doi.org/10.3390/ijms22073318.

  198. Mi TY, Yan XJ, Chen HM, Lin J, Wang F, Xu WF. Proliferation inhibition of lambda-carrageenan oligosaccharides on HUVEC and expression of apoptotic relevant genes. Yao Xue Xue Bao. 2008;43(5):474–9.

    PubMed  CAS  Google Scholar 

  199. Barth CR, Funchal GA, Luft C, de Oliveira JR, Porto BN, Donadio MV. Carrageenan-induced inflammation promotes ROS generation and neutrophil extracellular trap formation in a mouse model of peritonitis. Eur J Immunol. 2016;46(4):964–70. https://doi.org/10.1002/eji.201545520.

    Article  PubMed  CAS  Google Scholar 

  200. Yermak IM, Barabanova AO, Aminin DL, Davydova VN, Sokolova EV, Solov’eva TF, et al. Effects of structural peculiarities of carrageenans on their immunomodulatory and anticoagulant activities. Carbohydr Polym. 2012;87(1):713–20. https://doi.org/10.1016/j.carbpol.2011.08.053.

    Article  PubMed  CAS  Google Scholar 

  201. Bhattacharyya S, Dudeja PK, Tobacman JK. Carrageenan-induced NFkappaB activation depends on distinct pathways mediated by reactive oxygen species and Hsp27 or by Bcl10. Biochim Biophys Acta. 2008;1780(7–8):973–82. https://doi.org/10.1016/j.bbagen.2008.03.019.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Adefegha SA, Oyeleye SI, Okeke BM, Oboh G. Influence of eugenol on oxidative stress biomarkers in the liver of carrageenan-induced arthritis rats. J Basic Clin Physiol Pharmacol. 2018;30(2):185–93. https://doi.org/10.1515/jbcpp-2018-0060.

    Article  PubMed  CAS  Google Scholar 

  203. El-Shitany NA, Shaala LA, Abbas AT, Abdel-Dayem UA, Azhar EI, Ali SS, et al. Evaluation of the anti-inflammatory, antioxidant and immunomodulatory effects of the organic extract of the red sea marine sponge Xestospongia testudinaria against carrageenan induced rat paw inflammation. PLoS One. 2015;10(9):e0138917. https://doi.org/10.1371/journal.pone.0138917.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Carbonell T, Saiz MP, Mitjavila MT, Puig-Parellada P, Cambon-Gros C, Fernandez Y, et al. Carrageenan-induced granuloma and iron status in rats with dietary polyunsaturated fatty acid deficiency. Br J Nutr. 1991;65(3):497–503. https://doi.org/10.1079/bjn19910108.

    Article  PubMed  CAS  Google Scholar 

  205. Xu S, He Y, Lin L, Chen P, Chen M, Zhang S. The emerging role of ferroptosis in intestinal disease. Cell Death Dis. 2021;12(4):289. https://doi.org/10.1038/s41419-021-03559-1.

    Article  PubMed  PubMed Central  Google Scholar 

  206. • Tkachenko A, Kot Y, Prokopyuk V, Onishchenko A, Bondareva A, Kapustnik V, et al. Food additive E407a stimulates eryptosis in a dose-dependent manner. Wien Med Wochenschr. 2021. https://doi.org/10.1007/s10354-021-00874-2. The study firstly shows the ability of carrageenans to induce eryptosis.

    Article  PubMed  Google Scholar 

  207. Tkachenko A, Prokopiuk V, Onishchenko A. Semi-refined carrageenan induces eryptosis in a Ca2+-dependent manner. J Clin Med Kaz. 2022;19:42–5. https://doi.org/10.23950/jcmk/11576.

    Article  Google Scholar 

  208. Peng F, Liao M, Qin R, Zhu S, Peng C, Fu L, et al. Regulated cell death (RCD) in cancer: key pathways and targeted therapies. Signal Transduct Target Ther. 2022;7(1):286. https://doi.org/10.1038/s41392-022-01110-y.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Mlynarczuk-Bialy I, Dziuba I, Sarnecka A, Platos E, Kowalczyk M, Pels KK, et al. Entosis: from cell biology to clinical cancer pathology. Cancers (Basel). 2020;12(9). https://doi.org/10.3390/cancers12092481.

  210. Florey O, Kim SE, Sandoval CP, Haynes CM, Overholtzer M. Autophagy machinery mediates macroendocytic processing and entotic cell death by targeting single membranes. Nat Cell Biol. 2011;13(11):1335–43. https://doi.org/10.1038/ncb2363.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  211. Florey O, Kim SE, Overholtzer M. Entosis: cell-in-cell formation that kills through entotic cell death. Curr Mol Med. 2015;15(9):861–6. https://doi.org/10.2174/1566524015666151026100042.

    Article  PubMed  CAS  Google Scholar 

  212. Serrano-Puebla A, Boya P. Lysosomal membrane permeabilization as a cell death mechanism in cancer cells. Biochem Soc Trans. 2018;46(2):207–15. https://doi.org/10.1042/bst20170130.

    Article  PubMed  CAS  Google Scholar 

  213. Abraham R, Golberg L, Coulston F. Uptake and storage of degraded carrageenan in lysosomes of reticuloendothelial cells of the rhesus monkey. Macaca mulatta Exp Mol Pathol. 1972;17(1):77–93. https://doi.org/10.1016/0014-4800(72)90059-7.

    Article  PubMed  CAS  Google Scholar 

  214. Tobacman JK, Walters KS. Carrageenan-induced inclusions in mammary myoepithelial cells. Cancer Detect Prev. 2001;25(6):520–6.

    PubMed  CAS  Google Scholar 

  215. Xiao Q, Zhong B, Hou Y, Wang M, Guo B, Lin L, et al. Fighting cancer by triggering non-canonical mitochondrial permeability transition-driven necrosis through reactive oxygen species induction. Free Radical Biol Med. 2023;202:35–45. https://doi.org/10.1016/j.freeradbiomed.2023.03.020.

    Article  CAS  Google Scholar 

  216. Chen HM, Yan XJ, Mai TY, Wang F, Xu WF. Lambda-carrageenan oligosaccharides elicit reactive oxygen species production resulting in mitochondrial-dependent apoptosis in human umbilical vein endothelial cells. Int J Mol Med. 2009;24(6):801–6. https://doi.org/10.3892/ijmm_00000295.

    Article  PubMed  CAS  Google Scholar 

  217. Adefegha SA, Leal DBR, de Oliveira JS, Manzoni AG, Bremm JM. Modulation of reactive oxygen species production, apoptosis and cell cycle in pleural exudate cells of carrageenan-induced acute inflammation in rats by rutin. Food Funct. 2017;8(12):4459–68. https://doi.org/10.1039/c7fo01008g.

    Article  PubMed  CAS  Google Scholar 

  218. Rocha TM, Machado NJ, de Sousa JAC, Araujo EVO, Guimaraes MA, Lima DF, et al. Imidazole alkaloids inhibit the pro-inflammatory mechanisms of human neutrophil and exhibit anti-inflammatory properties in vivo. J Pharm Pharmacol. 2019;71(5):849–59. https://doi.org/10.1111/jphp.13068.

    Article  PubMed  CAS  Google Scholar 

  219. Demkow U. Neutrophil extracellular traps (nets) in cancer invasion, evasion and metastasis. Cancers (Basel). 2021;13(17). https://doi.org/10.3390/cancers13174495.

  220. Almyroudis NG, Grimm MJ, Davidson BA, Röhm M, Urban CF, Segal BH. NETosis and NADPH oxidase: at the intersection of host defense, inflammation, and injury. Front Immunol. 2013;4:45. https://doi.org/10.3389/fimmu.2013.00045.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  221. Vorobjeva NV, Chernyak BV. NETosis: molecular mechanisms, role in physiology and pathology. Biochemistry (Mosc). 2020;85(10):1178–90. https://doi.org/10.1134/s0006297920100065.

    Article  PubMed  CAS  Google Scholar 

  222. Impellizzeri D, Esposito E, Mazzon E, Paterniti I, Di Paola R, Bramanti P, et al. Effect of apocynin, a NADPH oxidase inhibitor, on acute lung inflammation. Biochem Pharmacol. 2011;81(5):636–48. https://doi.org/10.1016/j.bcp.2010.12.006.

    Article  PubMed  CAS  Google Scholar 

  223. Roussin A, Le Cabec V, Lonchampt M, De Nadaï J, Canet E, Maridonneau-Parini I. Neutrophil-associated inflammatory responses in rats are inhibited by phenylarsine oxide. Eur J Pharmacol. 1997;322(1):91–6. https://doi.org/10.1016/s0014-2999(96)00988-0.

    Article  PubMed  CAS  Google Scholar 

  224. Cong XD, Wu Y, Dai DZ, Ding MJ, Zhang Y, Dai Y. Activation of AQP4, p66Shc and endoplasmic reticulum stress is involved in inflammation by carrageenan and is suppressed by argirein, a derivative of rhein. J Pharm Pharmacol. 2012;64(8):1138–45. https://doi.org/10.1111/j.2042-7158.2012.01507.x.

    Article  PubMed  CAS  Google Scholar 

  225. Zhou Y, Liu L, Tao S, Yao Y, Wang Y, Wei Q, et al. Parthanatos and its associated components: promising therapeutic targets for cancer. Pharmacological Research. 2021;163:105299. https://doi.org/10.1016/j.phrs.2020.105299.

    Article  PubMed  CAS  Google Scholar 

  226. Huang P, Chen G, Jin W, Mao K, Wan H, He Y. Molecular mechanisms of parthanatos and its role in diverse diseases. Int J Mol Sci. 2022;23(13). https://doi.org/10.3390/ijms23137292.

  227. Ahmad SF, Zoheir KM, Ansari MA, Korashy HM, Bakheet SA, Ashour AE, et al. The role of poly(ADP-ribose) polymerase-1 inhibitor in carrageenan-induced lung inflammation in mice. Mol Immunol. 2015;63(2):394–405. https://doi.org/10.1016/j.molimm.2014.09.009.

    Article  PubMed  CAS  Google Scholar 

  228. Al-Abed Y, Metz CN, Cheng KF, Aljabari B, VanPatten S, Blau S, et al. Thyroxine is a potential endogenous antagonist of macrophage migration inhibitory factor (MIF) activity. Proc Natl Acad Sci U S A. 2011;108(20):8224–7. https://doi.org/10.1073/pnas.1017624108.

    Article  PubMed  PubMed Central  Google Scholar 

  229. Gregory JL, Leech MT, David JR, Yang YH, Dacumos A, Hickey MJ. Reduced leukocyte-endothelial cell interactions in the inflamed microcirculation of macrophage migration inhibitory factor-deficient mice. Arthritis Rheum. 2004;50(9):3023–34. https://doi.org/10.1002/art.20470.

    Article  PubMed  CAS  Google Scholar 

  230. Koren E, Fuchs Y. Modes of regulated cell death in cancer. Cancer Discov. 2021;11(2):245–65. https://doi.org/10.1158/2159-8290.Cd-20-0789.

    Article  PubMed  CAS  Google Scholar 

  231. Ribatti D. The concept of immune surveillance against tumors. The first theories. Oncotarget. 2017;8(4):7175–80. https://doi.org/10.18632/oncotarget.12739.

    Article  PubMed  Google Scholar 

  232. Sharma A, Boise LH, Shanmugam M. Cancer metabolism and the evasion of apoptotic cell death. Cancers (Basel). 2019;11(8). https://doi.org/10.3390/cancers11081144.

  233. Safa AR. Resistance to cell death and its modulation in cancer stem cells. Crit Rev Oncog. 2016;21(3–4):203–19. https://doi.org/10.1615/CritRevOncog.2016016976.

    Article  PubMed  PubMed Central  Google Scholar 

  234. Rosenbaum SR, Wilski NA, Aplin AE. Fueling the fire: inflammatory forms of cell death and implications for cancer immunotherapy. Cancer Discov. 2021;11(2):266–81. https://doi.org/10.1158/2159-8290.Cd-20-0805.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  235. Gadiyar V, Lahey KC, Calianese D, Devoe C, Mehta D, Bono K, et al. Cell death in the tumor microenvironment: implications for cancer immunotherapy. Cells. 2020;9(10). https://doi.org/10.3390/cells9102207.

  236. Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 2022;375(6586):1254–61. https://doi.org/10.1126/science.abf0529.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  237. Galluzzi L, Garg AD. Immunology of cell death in cancer immunotherapy. Cells. 2021;10(5). https://doi.org/10.3390/cells10051208.

  238. Scovino AM, Totino PRR, Morrot A. Eryptosis as a new insight in malaria pathogenesis. Front Immunol. 2022;13:855795. https://doi.org/10.3389/fimmu.2022.855795.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  239. Boulet C, Gaynor TL, Carvalho TG. Eryptosis and malaria: new experimental guidelines and re-evaluation of the antimalarial potential of eryptosis inducers. Front Cell Infect Microbiol. 2021;11:630812. https://doi.org/10.3389/fcimb.2021.630812.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  240. Hwang J, Yadav D, Lee PC, Jin JO. Immunomodulatory effects of polysaccharides from marine algae for treating cancer, infectious disease, and inflammation. Phytother Res. 2022;36(2):761–77. https://doi.org/10.1002/ptr.7348.

    Article  PubMed  CAS  Google Scholar 

  241. Cicinskas E, Kalitnik AA, Karetin YA, Mohan Ram MSG, Achary A, Kravchenko AO. Immunomodulating properties of carrageenan from Tichocarpus crinitus. Inflammation. 2020;43(4):1387–96. https://doi.org/10.1007/s10753-020-01216-x.

    Article  PubMed  CAS  Google Scholar 

  242. Verburg SG, Lelievre RM, Westerveld MJ, Inkol JM, Sun YL, Workenhe ST. Viral-mediated activation and inhibition of programmed cell death. PLoS Pathog. 2022;18(8):1010718. https://doi.org/10.1371/journal.ppat.1010718.

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Ministry of Health of Ukraine in the framework of the research project entitled “Research on the Safety and Effectiveness of Food Additives Carrageenans (E407/E407a) and Their Oligosaccharide Fragments as Therapeutic Agents Capable of Modulating Programmed Cell Death, Namely Eryptosis, Necroptosis, Ferroptosis and Autophagy-Related Cell Death” (state registration number 0123U100179).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization—A.T.; data collection—A.T., A.O., and V.P.; data analysis—A.T., A.O., and V.P.; original draft writing—A.T.; illustrations—A.O.; proofreading—A.O., A.T., and V.P. The authors read and approved the final manuscript.

Corresponding author

Correspondence to Anton Tkachenko.

Ethics declarations

Conflict of Interest

Authors have no conflict of interest to disclose.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Ethics approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tkachenko, A., Onishchenko, A. & Prokopiuk, V. Do Marine Polysaccharides Carrageenans Modulate Non-apoptotic Regulated Cell Deaths ? (a Review). Curr. Pharmacol. Rep. 9, 580–601 (2023). https://doi.org/10.1007/s40495-023-00339-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40495-023-00339-7

Keywords

Navigation