Skip to main content
Log in

Optimal model predictive control solution approximation using Takagi Sugeno for linear and a class of nonlinear systems

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

The universal approximation property of Takagi-Sugeno fuzzy systems is exploited here to build a fuzzy approximation of the optimal solution of linear and nonlinear model predictive control (MPC). The nonlinear systems considered are affine in the control law. The fuzzy approximator introduced presents some properties not generally shown by the previous approximators. In particular it is constituted by a set of state feedback control laws which are merged to obtain the final nonlinear control law. The constructed control law is very similar to the explicit solution of the linear MPC. The a posteriori stability is analysed based on a novel theoretical test previously published for both the linear and nonlinear MPC. Examples treated in the simulation part have shown the prompt and the good results which prove the effectiveness of the developed control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article, for further information contact the first author (hamzaboumaza.umc@gmail.com).

Abbreviations

\(x\left(t\right)\) :

State

\(u\left(t\right)\) :

Input

A :

State matrix

B :

Input matrix

\(F\left(x\left(t\right)\right)\) :

State dependent state matrix

\(G\left(x\left(t\right)\right), \) :

State dependent input matrix

\({J,J}_{N}\) :

Cost function

\(\mathcal{L}\left(.\right)\) :

Step cost function

\(\mathcal{F}\left(.\right)\) :

Final cost

\({\mathbb{U}}\) :

Input constraint set

\({\mathbb{X}}\) :

State constraint set

\(\mathcal{U},\) :

Control sequence

N :

Prediction horizon

Q :

State weight matrix

R :

Input weight matrix

P :

Riccatti solution weight matrix

G :

Grid

L :

Grid size

\({R}_{j}\) :

Fuzzy rule

\({F}_{ij}\) :

Fuzzy set

\({A}_{l}\) :

State matrix in fuzzy model

\({B}_{l}\) :

Control matrix in fuzzy model

\({\mu }_{{F}_{lj}}\left(.\right), \) :

Membership grade associated to\({F}_{ij}\)

\({h}_{j}\left(x(t)\right)\) :

Rule weight

\(\mathbf{A}\) :

The set of extreme matrices

\({\lambda }_{i}\) :

Extreme matrix weight

\({\mathbf{P}}_{q},{\mathbf{P}}_{q}^{^{\prime}}\) :

The set of all products of length q

\(\mathcal{S}\) :

Region

\(\Omega \) :

Approximation region

\({\overline{x} }^{{l}^{*}}, \) :

lth optimal trajectory sequence

\({\overline{u} }^{{l}^{*}}, \) :

Optimal control sequence

\({K}_{l},{K}_{l}^{*}, \) :

lth controller gain and lth optimal controller gain

\(\mathcal{K},{\mathcal{K}}^{*}\) :

Gain and optimal gain matrices

\({u}_{f}^{l}\left(t\right), \) :

Instantaneous controller output

\({\overline{u} }_{f}^{l}\) :

Sequence of controller output

\({\Phi }^{l*}\left(t\right)\) :

Instantaneous data matrix

\(\overline{\Phi }\) :

Overall data base

T :

Discrete time index

t c :

Continuous time index

k :

Prediction index

q :

Stability test

References

  1. Mayne DQ (2014) Model predictive control: recent developments and future promise. Automatica 50(12):2967–2986. https://doi.org/10.1016/j.automatica.2014.10.128

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen H, Allgöwer F (1998) A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability. Automatica 34(10):1205–1217. https://doi.org/10.1016/S0005-1098(98)00073-9

    Article  MathSciNet  MATH  Google Scholar 

  3. Bemporad A, Morari M, Dua V, Pistikopoulos EN (2002) The explicit linear quadratic regulator for constrained systems. Automatica 38(1):3–20. https://doi.org/10.1016/S0005-1098(01)00174-1

    Article  MathSciNet  MATH  Google Scholar 

  4. Alessio A, Bemporad A (2009) A survey on explicit model predictive control. Nonlinear model predictive control. Springer, Berlin, Heidelberg, pp 345–369

    Chapter  Google Scholar 

  5. Parisini T, Zoppoli R (1995) A receding-horizon regulator for nonlinear systems and a neural approximation. Automatica 31(10):1443–1451. https://doi.org/10.1016/0005-1098(95)00044-W

    Article  MathSciNet  MATH  Google Scholar 

  6. Johansen TA, Grancharova A (2003) Approximate explicit constrained linear model predictive control via orthogonal search tree. IEEE Trans Autom Control 48(5):810–815. https://doi.org/10.1109/TAC.2003.811259

    Article  MathSciNet  MATH  Google Scholar 

  7. Johansen TA (2004) Approximate explicit receding horizon control of constrained nonlinear systems. Automatica 40(2):293–300. https://doi.org/10.1016/j.automatica.2003.09.021

    Article  MathSciNet  MATH  Google Scholar 

  8. Canale M, Fagiano L, Milanese M (2009) Set membership approximation theory for fast implementation of model predictive control. Automatica 45:45–54

    Article  MathSciNet  Google Scholar 

  9. Hovd M, Scibilia F, Maciejowski J, Olaru S (2009) Verifying stability of approximate explicit MPC. In: Proceedings of the 48h IEEE conference on decision and control (CDC) held jointly with 2009 28th Chinese control conference (pp. 6345–6350). IEEE. https://doi.org/10.1109/CDC.2009.5400788

  10. Canale M, Fagiano L, Milanese M (2010) Efficient model predictive control for nonlinear systems via function approximation techniques. IEEE Trans Autom Control 55(8):1911–1916. https://doi.org/10.1109/TAC.2010.2049776

    Article  MathSciNet  MATH  Google Scholar 

  11. Kvasnica M, Löfberg J, Fikar M (2011) Stabilizing polynomial approximation of explicit MPC. Automatica 47(10):2292–2297. https://doi.org/10.1016/j.automatica.2011.08.023

    Article  MathSciNet  MATH  Google Scholar 

  12. Bemporad A, Oliveri A, Poggi T, Storace M (2011) Ultra-fast stabilizing model predictive control via canonical piecewise affine approximations. IEEE Trans Autom Control 56(12):2883–2897. https://doi.org/10.1109/TAC.2011.2141410

    Article  MathSciNet  MATH  Google Scholar 

  13. Rubagotti M, Barcelli D, Bemporad A (2014) Robust explicit model predictive control via regular piecewise-affine approximation. Int J Control 87(12):2583–2593. https://doi.org/10.1080/00207179.2014.935958

    Article  MathSciNet  MATH  Google Scholar 

  14. Bakaráč P, Holaza J, Kalúz M, Klaučo M, Löfberg J, Kvasnica M (2018) Explicit MPC based on approximate dynamic programming. In: 2018 European control conference (ECC) (pp. 1172–1177). IEEE. https://doi.org/10.23919/ECC.2018.8550567

  15. Pin G, Filippo M, Pellegrino FA, Fenu G, Parisini T (2013) Approximate model predictive control laws for constrained nonlinear discrete-time systems: analysis and offline design. Int J Control 86(5):804–820. https://doi.org/10.1080/00207179.2012.762121

    Article  MathSciNet  MATH  Google Scholar 

  16. Maddalena ET, Moraes CDS, Waltrich G, Jones CN (2019) A neural network architecture to learn explicit MPC controllers from data

  17. Karg B, Lucia S (2020) Efficient representation and approximation of model predictive control laws via deep learning. IEEE Trans Cybern 50(9):3866–3878. https://doi.org/10.1109/TCYB.2020.2999556

    Article  Google Scholar 

  18. Paulson JA, Mesbah A (2020) Approximate closed-loop robust model predictive control with guaranteed stability and constraint satisfaction. IEEE Control Syst Lett 4(3):719–724. https://doi.org/10.1109/LCSYS.2020.2980479

    Article  MathSciNet  Google Scholar 

  19. Wang Y, Boyd S (2009) Fast model predictive control using online optimization. IEEE Trans Control Syst Technol 18(2):267–278. https://doi.org/10.1109/TCST.2009.2017934

    Article  Google Scholar 

  20. Kögel M, Findeisen R (2011) Fast predictive control of linear systems combining Nesterov's gradient method and the method of multipliers. In: 2011 50th IEEE conference on decision and control and european control conference (pp. 501–506). IEEE. https://doi.org/10.1109/CDC.2011.6160688

  21. Jerez JL, Goulart PJ, Richter S, Constantinides GA, Kerrigan EC, Morari M (2013) Embedded predictive control on an FPGA using the fast gradient method. In: 2013 European Control Conference (ECC) (pp. 3614–3620). IEEE. https://doi.org/10.23919/ECC.2013.6669598

  22. Rubagotti M, Patrinos P, Guiggiani A, Bemporad A (2016) Real-time model predictive control based on dual gradient projection: theory and fixed-point FPGA implementation. Int J Robust Nonlinear Control 26(15):3292–3310. https://doi.org/10.1002/rnc.3507

    Article  MathSciNet  MATH  Google Scholar 

  23. Ying H (1998) Sufficient conditions on uniform approximation of multivariate functions by general Takagi-Sugeno fuzzy systems with linear rule consequent. IEEE Trans Syst Man Cybern Part A Syst Humans 28(4):515–520. https://doi.org/10.1109/3468.686713

    Article  Google Scholar 

  24. Tikk D, Kóczy LT, Gedeon TD (2003) A survey on universal approximation and its limits in soft computing techniques. Int J Approx Reason 33(2):185–202. https://doi.org/10.1016/S0888-613X(03)00021-5

    Article  MathSciNet  MATH  Google Scholar 

  25. Mendel JM (2017) Explaining the performance potential of rule-based fuzzy systems as a greater sculpting of the state space. IEEE Trans Fuzzy Syst 26(4):2362–2373. https://doi.org/10.1109/TFUZZ.2017.2774190

    Article  Google Scholar 

  26. Spjøtvold J, Tøndel P, Johansen TA (2007) Continuous selection and unique polyhedral representation of solutions to convex parametric quadratic programs. J Optim Theory Appl 134(2):177–189. https://doi.org/10.1007/s10957-007-9215-z

    Article  MathSciNet  MATH  Google Scholar 

  27. Baes M, Diehl M, Necoara I (2008) Every continuous nonlinear control system can be obtained by parametric convex programming. IEEE Trans Autom Control 53(8):1963–1967

    Article  MathSciNet  Google Scholar 

  28. Tanaka K, Ikeda T, Wang HO (1998) Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs. IEEE Trans Fuzzy Syst 6(2):250–265. https://doi.org/10.1109/91.669023

    Article  Google Scholar 

  29. Lendek Z, Guerra TM, Lauber J (2014) Controller design for TS models using delayed nonquadratic Lyapunov functions. IEEE Trans Cybern 45(3):439–450. https://doi.org/10.1109/TCYB.2014.2327657

    Article  Google Scholar 

  30. Xie X, Yue D, Zhang H, Peng C (2016) Control synthesis of discrete-time T-S fuzzy systems: reducing the conservatism whilst alleviating the computational burden. IEEE Trans Cybern 47(9):2480–2491. https://doi.org/10.1109/TCYB.2016.2582747

    Article  Google Scholar 

  31. Bauer PH, Premaratne K, Duran J (1993) A necessary and sufficient condition for robust asymptotic stability of time-variant discrete systems. IEEE Trans Autom Control 38(9):1427–1430. https://doi.org/10.1109/9.237661

    Article  MathSciNet  MATH  Google Scholar 

  32. Belarbi K (2019) On matrix norms, stability and stabilization of a class of discrete Takagi-Sugeno fuzzy systems. IEEE Trans Fuzzy Syst 27(10):1999–2008. https://doi.org/10.1109/TFUZZ.2019.2893218

    Article  Google Scholar 

  33. Herceg M, Kvasnica M, Jones CN, Morari M (2013) Multi-parametric toolbox 3.0. In: 2013 European control conference (ECC) (pp. 502–510). IEEE. https://doi.org/10.23919/ECC.2013.6669862

  34. Taniguchi T, Tanaka K, Ohtake H, Wang HO (2001) Model construction, rule reduction, and robust compensation for generalized form of Takagi-Sugeno fuzzy systems. IEEE Trans Fuzzy Syst 9(4):525–538. https://doi.org/10.1109/91.940966

    Article  Google Scholar 

  35. Kim D (2000) An implementation of fuzzy logic controller on the reconfigurable FPGA system. IEEE Trans Industr Electron 47(3):703–715. https://doi.org/10.1109/41.847911

    Article  Google Scholar 

  36. Sun Y, Tang S, Meng Z, Zhao Y, Yang Y (2015) A scalable accuracy fuzzy logic controller on FPGA. Expert Syst Appl 42(19):6658–6673. https://doi.org/10.1016/j.eswa.2015.04.050

    Article  Google Scholar 

  37. Holaza J, Takács B, Kvasnica M (2013) Synthesis of simple explicit MPC optimizers by function approximation. In: 2013 International Conference on Process Control (PC) (pp. 377–382). IEEE. https://doi.org/10.1109/PC.2013.6581440

  38. Tanaka K, Wang HO (2004) Fuzzy control systems design and analysis: a linear matrix inequality approach.Wiley

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their very useful comments on the original manuscript.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

1st author: H.Boumaza Phd student; 2nd author: Professor K.Belarbi thesis director.

Corresponding author

Correspondence to Hamza Boumaza.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest in preparing this article.

Ethical approval

For this type of study no human or animals were involved, formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boumaza, H., Belarbi, K. Optimal model predictive control solution approximation using Takagi Sugeno for linear and a class of nonlinear systems. Int. J. Dynam. Control 10, 1265–1278 (2022). https://doi.org/10.1007/s40435-021-00875-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-021-00875-4

Keywords

Navigation