Skip to main content

Advertisement

Log in

Crashworthiness characteristics of composite cylindrical energy absorbers filled with honeycomb and foam under quasi-static load: experimental and analytical study

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In this study, the crashworthiness characteristics of four cases including cylindrical hollow composite tubes, aluminum honeycomb-filled tubes, polyurethane foam-filled tubes, and polyurethane foam/aluminum honeycomb-filled cylindrical composite are experimentally investigated. The impact of honeycomb, polyurethane foam, combined polyurethane foam with honeycomb filling, and diameter and thickness of wall of cylindrical composites are also investigated. Then, the deformation mode, peak crushing force, mean crushing force (MCF), energy absorption (EA), and specific energy absorption of these composites possessing different structures are also explored. Furthermore, an analytical model for the crushing behavior of the cylindrical composite shell filled with foam and honeycomb materials under quasi-static load is provided. The analytical model which draws on the energy method is used to predict the MCF and crushing length during the collapse process. For this purpose, the diverse phenomena including shell bending, petal formation, circumferential delamination, friction, collapse of honeycomb cell walls, and deformation of foam are considered to determine the total internal energy relations during the crash process. These relations are used to make predictions on mean loads and total displacements during the collapse. The obtained results reveal a relatively good agreement between the analytical and experimental findings. The results showed that all novel cylindrical composite tubes filled with both polyurethane foam and aluminum honeycomb, in addition to increasing energy absorption compared to their counterparts, deform only in the stable mode of collapse (Mode I), which is a very important predictable deformation in terms of design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Xiao X (2009) Modeling energy absorption with a damage mechanics based composite material model. J Compos Mater 43(5):427–444. https://doi.org/10.1177/0021998308097686

    Article  Google Scholar 

  2. Tomasz W (1983) Crushing analysis of metal honeycombs. Int J Impact Eng 1(2):157–174. https://doi.org/10.1016/0734-743X(83)90004-0

    Article  Google Scholar 

  3. Weigang C, Tomasz W (2001) Relative merits of single-cell, multi-cell and foam-filled thin-walled structures in energy absorption. Thin-Walled Struct 39(4):287–306. https://doi.org/10.1016/S0263-8231(01)00006-4

    Article  Google Scholar 

  4. Li K, Gao X-L, Wang J (2007) Dynamic crushing behavior of honeycomb structures with irregular cell shapes and non-uniform cell wall thickness. Int J Solids Struct 44(14–15):5003–5026. https://doi.org/10.1016/j.ijsolstr.2006.12.017

    Article  MATH  Google Scholar 

  5. Mahmoudabadi MZ, Sadighi M (2009) A study on metal hexagonal honeycomb crushing under quasi-static loading. World Acad Sci Eng Technol 53:677–681

    Google Scholar 

  6. Nia AA, Sadeghi M (2010) The effects of foam filling on compressive response of hexagonal cell aluminum honeycombs under axial loading-experimental study. Mater Des 31(3):1216–1230. https://doi.org/10.1016/j.matdes.2009.09.030

    Article  Google Scholar 

  7. Mahmoudabadi MZ, Sadighi M (2011) A study on the static and dynamic loading of the foam filled metal hexagonal honeycomb—theoretical and experimental. Mater Sci Eng A 530:333–343. https://doi.org/10.1016/j.msea.2011.09.093

    Article  Google Scholar 

  8. Sadighi M, Salami SJ (2012) An investigation on low-velocity impact response of elastomeric & crushable foams. Central Eur J Eng 2(4):627–637. https://doi.org/10.2478/s13531-012-0026-0

    Article  Google Scholar 

  9. Liu Q, Fu J, Wang J, Ma J, Chen H, Li Q et al (2017) Axial and lateral crushing responses of aluminum honeycombs filled with EPP foam. Compos B Eng 130:236–247. https://doi.org/10.1016/j.compositesb.2017.07.041

    Article  Google Scholar 

  10. Zhang Y, Liu Q, He Z, Zong Z, Fang J (2019) Dynamic impact response of aluminum honeycombs filled with expanded polypropylene foam. Compos B Eng 156:17–27. https://doi.org/10.1016/j.compositesb.2018.08.043

    Article  Google Scholar 

  11. Zarei H, Kröger M (2008) Optimum honeycomb filled crash absorber design. J Mater Des 29(1):193–204. https://doi.org/10.1016/j.matdes.2006.10.013

    Article  Google Scholar 

  12. Santosa S, Wierzbicki T (1998) Crash behavior of box columns filled with aluminum honeycomb or foam. Comput Struct 68(4):343–367. https://doi.org/10.1016/S0045-7949(98)00067-4

    Article  MATH  Google Scholar 

  13. Kılıçaslan C (2015) Numerical crushing analysis of aluminum foam-filled corrugated single-and double-circular tubes subjected to axial impact loading. Thin-Walled Struct 96:82–94. https://doi.org/10.1016/j.tws.2015.08.009

    Article  Google Scholar 

  14. Hussein RD, Ruan D, Lu G, Guillow S, Yoon JW (2017) Crushing response of square aluminium tubes filled with polyurethane foam and aluminium honeycomb. Thin-Walled Struct 110:140–154. https://doi.org/10.1016/j.tws.2016.10.023

    Article  Google Scholar 

  15. Yang F, Fan H, Meguid S (2019) Effect of foam-filling on collapse mode transition of thin-walled circular columns under axial compression: analytical, numerical and experimental studies. Int J Mech Sci 150:665–676. https://doi.org/10.1016/j.ijmecsci.2018.10.047

    Article  Google Scholar 

  16. Zarei HR, Kröger M (2007) Crashworthiness optimization of empty and filled aluminum crash boxes. Int J Crashworthiness 12(3):255–264. https://doi.org/10.1080/13588260701441159

    Article  Google Scholar 

  17. Mahbod M, Asgari M (2018) Energy absorption analysis of a novel foam-filled corrugated composite tube under axial and oblique loadings. Thin-walled Struct 129:58–73. https://doi.org/10.1016/j.tws.2018.03.023

    Article  Google Scholar 

  18. Mamalis AG, Robinson M, Manolakos DE, Demosthenous GA, Ioannidis MB, Carruthers J (1997) Crashworthy capability of composite material structures. Compos Struct 37:109–134. https://doi.org/10.1016/S0263-8223(97)80005-0

    Article  Google Scholar 

  19. Jacob GC, Fellers JF, Simunovic S, Starbuck JM (2002) Energy absorption in polymer composite materials for automotive crashworthiness. J Compos Mater 36:813–850. https://doi.org/10.1177/0021998302036007164

    Article  Google Scholar 

  20. Mamalis A, Manolakos D, Demosthenous G, Ioannidis M (1997) Analytical modelling of the static and dynamic axial collapse of thin-walled fibreglass composite conical shells. Int J Impact Eng 19(5–6):477–492. https://doi.org/10.1016/S0734-743X(97)00007-9

    Article  Google Scholar 

  21. Mahdi E, Mokhtar A, Asari N, Elfaki F, Abdullah E (2006) Nonlinear finite element analysis of axially crushed cotton fibre composite corrugated tubes. Compos Struct 75(1–4):39–48. https://doi.org/10.1016/j.compstruct.2006.04.057

    Article  Google Scholar 

  22. Zarei H, Kröger M, Albertsen H (2008) An experimental and numerical crashworthiness investigation of thermoplastic composite crash boxes. Compos Struct 85(3):245–257. https://doi.org/10.1016/j.compstruct.2007.10.028

    Article  Google Scholar 

  23. McGregor C, Vaziri R, Xiao X (2010) Finite element modelling of the progressive crushing of braided composite tubes under axial impact. Int J Impact Eng 37(6):72–662. https://doi.org/10.1016/j.ijimpeng.2009.09.005

    Article  Google Scholar 

  24. Zhang Z, Liu S, Tang Z (2010) Crashworthiness investigation of kagome honeycomb sandwich cylindrical column under axial crushing loads. Thin-Walled Struct 48(1):9–18. https://doi.org/10.1016/j.tws.2009.08.002

    Article  Google Scholar 

  25. Niknejad A, Liaghat G, Naeini HM, Behravesh A (2011) Theoretical and experimental studies of the instantaneous folding force of the polyurethane foam-filled square honeycombs. Mater Des 32(1):69–75. https://doi.org/10.1016/j.matdes.2010.06.033

    Article  Google Scholar 

  26. Feraboli P, Wade B, Deleo F, Rassaian M, Higgins M, Byar A (2011) LS-DYNA MAT54 modeling of the axial crushing of a composite tape sinusoidal specimen. Compos A Appl Sci Manuf 42(11):1809–1825. https://doi.org/10.1016/j.compositesa.2011.08.004

    Article  Google Scholar 

  27. Kathiresan M, Manisekar K, Manikandan V (2014) Crashworthiness analysis of glass fibre/epoxy laminated thin walled composite conical frusta under axial compression. Compos Struct 108:584–599. https://doi.org/10.1016/j.compstruct.2013.09.060

    Article  Google Scholar 

  28. Boria S, Pettinari S, Giannoni F (2013) Theoretical analysis on the collapse mechanisms of thin-walled composite tubes. Compos Struct 103:43–49. https://doi.org/10.1016/j.compstruct.2013.03.020

    Article  Google Scholar 

  29. Siromani D, Awerbuch J, Tan T-M (2014) Finite element modeling of the crushing behavior of thin-walled CFRP tubes under axial compression. Compos B Eng 64:50–58. https://doi.org/10.1016/j.compositesb.2014.04.008

    Article  Google Scholar 

  30. Boria S, Belingardi G, Giannoni F (2014) A crashworthy problem on composite structures using a mathematical approach. Procedia Eng 88:125–132. https://doi.org/10.1016/j.proeng.2014.11.135

    Article  Google Scholar 

  31. Hwang S-K, Hwang H-Y (2018) Theoretical approach for the mechanical behaviors of conical composite tubes considering fiber orientation errors under static loads. Compos Struct 183:84–95. https://doi.org/10.1016/j.compstruct.2017.01.042

    Article  Google Scholar 

  32. Sun G, Li S, Li G, Li Q (2018) On crashing behaviors of aluminium/CFRP tubes subjected to axial and oblique loading: an experimental study. Compos B Eng 145:47–56. https://doi.org/10.1016/j.compositesb.2018.02.001

    Article  Google Scholar 

  33. Sun GY, Li SF, Liu Q, Li GY, Li Q (2016) Experimental study on crashworthiness of empty/aluminum foam/honeycomb-filled CFRP tubes. Compos Struct 115:969–993. https://doi.org/10.1016/j.compstruct.2016.06.019

    Article  Google Scholar 

  34. Gan N, Feng Y, Yin H, Wen G, Wang D, Huang X (2016) Quasi-static axial crushing experiment study of foam-filled CFRP and aluminum alloy thin-walled structures. Compos Struct 157:303–319. https://doi.org/10.1016/j.compstruct.2016.08.043

    Article  Google Scholar 

  35. Elahi SA, Rouzegar J, Niknejad A, Assaee H (2017) Theoretical study of absorbed energy by empty and foam-filled composite tubes under lateral compression. Thin-Walled Struct 114:1–10. https://doi.org/10.1016/j.tws.2017.01.029

    Article  Google Scholar 

  36. Zhang Y, Zong Z, Liu Q, Ma J, Wu Y, Li Q (2017) Static and dynamic crushing responses of CFRP sandwich panels filled with different reinforced materials. Mater Des 117:396–408. https://doi.org/10.1016/j.matdes.2017.01.010

    Article  Google Scholar 

  37. Zhou J, Guan Z, Cantwell W (2018) The energy-absorbing behaviour of composite tube-reinforced foams. Compos B Eng 139:227–237. https://doi.org/10.1016/j.compositesb.2017.11.066

    Article  Google Scholar 

  38. Meriç D, Gedikli H (2022) Multi-objective optimization of energy absorbing behavior of foam-filled hybrid composite tubes. Compos Struct 279:114771. https://doi.org/10.1016/j.compstruct.2021.114771

    Article  Google Scholar 

  39. Yao R, Pang T, He S, Li Q, Zhang B, Sun G (2022) A bio-inspired foam-filled multi-cell structural configuration for energy absorption. Compos B Eng 238:109801. https://doi.org/10.1016/j.compositesb.2022.109801

    Article  Google Scholar 

  40. Wang H, Wang W, Wang P, Jin F, Fan H (2021) Foam-filled lightweight braided-textile reinforced and nested tubular structures for energy absorption applications. Compos A Appl Sci Manuf 149:106569. https://doi.org/10.1016/j.compositesa.2021.106569

    Article  Google Scholar 

  41. Yao S, Chen Z, Xu P, Li Z, Zhao Z (2021) Experimental and numerical study on the energy absorption of polyurethane foam-filled metal/composite hybrid structures. Metals 11(1):118. https://doi.org/10.3390/met11010118

    Article  Google Scholar 

  42. Lykakos SS, Kostazos PK, Venetsanos OV, Manolakos DE (2021) Crashworthiness performance of aluminium, GFRP and hybrid aluminium/GFRP circular tubes under quasi-static and dynamic axial loading conditions: a comparative experimental study. Dynamics 1(1):22–48. https://doi.org/10.3390/dynamics1010004

    Article  Google Scholar 

  43. Yang C, Chen Z, Yao S, Xu P, Li S, Alqahtani MS (2022) Parametric study on the crushing performance of a polyurethane foam-filled CFRP/Al composite sandwich structure. Polym Test 108:107515. https://doi.org/10.1016/j.polymertesting.2022.107515

    Article  Google Scholar 

  44. Velmurugan R, Gupta NK, Solaimurugan S, Elayaperumal A (2004) The effect of stitching on FRP cylindrical shells under axial compression. Int J Impact Eng 30:923–938. https://doi.org/10.1016/j.ijimpeng.2004.04.007

    Article  Google Scholar 

  45. ASTM D3039. Standard test method for tensile properties of polymer matrix composite materials

  46. D1622/D1622M (2014) AI, Standard test method for apparent density of rigid cellular plastics, US

  47. D1621 (2010) AI, standard test method for compressive properties of rigid cellular plastics, US

  48. Mamalis AG, Manolakos DE, Demosthenous GA, Ioannidis MB (1998) Crashworthiness of composite thin-walled structural components. CRC Press

    Google Scholar 

  49. Farley GL (1992) Crushing characteristics of continuous fiber-reinforced composite tubes. J Compos Mater 26(1):37–50. https://doi.org/10.1177/002199839202600103

    Article  Google Scholar 

  50. Hamada H, Ramakrishna S (1995) Scaling effects in the energy absorption of carbon-fiber/peek composite tubes. Compos Sci Technol 55:211–221. https://doi.org/10.1016/0266-3538(95)00081-X

    Article  Google Scholar 

  51. Solaimurugan S, Velmurugan R (2007) Progressive crushing of stitched glass/polyester composite cylindrical shells. Compos Sci Technol 67(3–4):422–437. https://doi.org/10.1016/j.compscitech.2006.09.002

    Article  MATH  Google Scholar 

  52. Morales JL, Nocedal J (2011) Remark on “algorithm 778: L-bfgs-b: fortran subroutines for large-scale bound constrained optimization.” ACM Trans Math Softw 38(1):7:1-7:4. https://doi.org/10.1145/2049662.2049669

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Farrokhabadi.

Additional information

Technical Editor: João Marciano Laredo dos Reis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkhosh, R., Farrokhabadi, A. & Zarei, H. Crashworthiness characteristics of composite cylindrical energy absorbers filled with honeycomb and foam under quasi-static load: experimental and analytical study. J Braz. Soc. Mech. Sci. Eng. 44, 346 (2022). https://doi.org/10.1007/s40430-022-03662-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-022-03662-0

Keywords

Navigation