Skip to main content

Advertisement

Log in

Molecular imaging to guide breast cancer surgery

  • Mini-Review
  • Published:
Clinical and Translational Imaging Aims and scope Submit manuscript

Abstract

Purpose

This mini-review aims to provide an overview of the current role of molecular imaging to guide surgery in patients with breast cancer, in non-palpable primary tumours as well as in the management of the axilla in early-stage cancers and when patients receive neoadjuvant systemic therapy.

Methods

Literature research in the PubMed/MEDLINE database was carried out to identify relevant studies evaluating molecular imaging to guide surgery in breast cancers including molecular breast imaging; breast-specific PET systems; radioguided occult lesion localisation; sentinel node and occult lesion localisation; radioactive seed localisation; sentinel lymph node biopsy and marking axillary lymph nodes with radioactive iodine seeds procedure.

Results

We summarised the most relevant results on molecular imaging to guide surgery in breast cancers focusing on indications, technical aspects, accuracy and future perspectives.

Conclusions

Several interventional nuclear medicine techniques are currently available for the management of patients affected by breast cancer in different clinical settings. They provide diagnostic advantages in sub-centimetric lesions or low-grade tumours and help to guide biopsy, also identifying the area with the highest degree of perfusion or metabolism. Nevertheless, some of them are too expensive and not widely spread in hospitals or clinicians still lack confidence in their usage. Further studies are needed to optimise their role in everyday clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  2. Hruska CB, Corion C, de Geus-Oei LF, Adrada BE, Fowler AM, Hunt KN, CheenuKappadath S, Pilkington P, Pereira Arias-Bouda LM, Rauch GM (2022) SNMMI procedure standard/EANM practice guideline for molecular breast imaging with dedicated γ-cameras. J Nucl Med Technol 50(2):103–110. https://doi.org/10.2967/jnmt.121.264204

    Article  Google Scholar 

  3. Long Z, Hruska C, O’Connor M (2015) Low dose breast imaging-comparative performance of MBI and BSGI systems. J Nucl Med 56(3):1863

    Google Scholar 

  4. Long Z, Conners AL, Hunt KN, Hruska CB, O’Connor MK (2016) Performance characteristics of dedicated molecular breast imaging systems at low doses. MedPhys 43(6):3062–3070. https://doi.org/10.1118/1.4950873

    Article  Google Scholar 

  5. Mankoff DA, Dunnwald LK, Gralow JR, Ellis GK, Schubert EK, Charlop AW, Tseng J, Rinn KJ, Livingston RB (2002) 99mTc-sestamibi uptake and washout in locally advanced breast cancer are correlated with tumor blood flow. Nucl Med Biol 29(7):719–727. https://doi.org/10.1016/s0969-8051(02)00333-5

    Article  PubMed  CAS  Google Scholar 

  6. Delmon-Moingeon LI, Piwnica-Worms D, Van den Abbeele AD, Holman BL, Davison A, Jones AG (1990) Uptake of the cation hexakis(2-methoxyisobutylisonitrile)-technetium-99m by human carcinoma cell lines in vitro. Cancer Res 50(7):2198–2202

    PubMed  CAS  Google Scholar 

  7. Moretti JL, Hauet N, Caglar M, Rebillard O, Burak Z (2005) To use MIBI or not to use MIBI? That is the question when assessing tumour cells. Eur J Nucl Med Mol Imaging 32(7):836–842. https://doi.org/10.1007/s00259-005-1840-x

    Article  PubMed  Google Scholar 

  8. Kolb TM, Lichy J, Newhouse JH (2002) Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations. Radiology 225(1):165–175. https://doi.org/10.1148/radiol.2251011667

    Article  PubMed  Google Scholar 

  9. Conners AL, Maxwell RW, Tortorelli CL, Hruska CB, Rhodes DJ, Boughey JC, Berg WA (2012) Gamma camera breast imaging lexicon. AJR Am J Roentgenol 199(6):W767–W774. https://doi.org/10.2214/AJR.11.8298

    Article  PubMed  Google Scholar 

  10. Sun Y, Wei W, Yang HW, Liu JL (2013) Clinical usefulness of breast-specific gamma imaging as an adjunct modality to mammography for diagnosis of breast cancer: a systemic review and meta-analysis. Eur J Nucl Med Mol Imaging 40(3):450–463. https://doi.org/10.1007/s00259-012-2279-5

    Article  PubMed  Google Scholar 

  11. Sumkin JH, Berg WA, Carter GJ, Bandos AI, Chough DM, Ganott MA, Hakim CM, Kelly AE, Zuley ML, Houshmand G, Anello MI, Gur D (2019) Diagnostic performance of MRI, molecular breast imaging, and contrast-enhanced mammography in women with newly diagnosed breast cancer. Radiology 293(3):531–540. https://doi.org/10.1148/radiol.2019190887

    Article  PubMed  Google Scholar 

  12. Swanson T, Tran TD, Ellingson L, O’Connor MK, Rhodes DJ, Hunt KN, Conners AL, Hruska CB (2018) Best practices in molecular breast imaging: a guide for technologists. J Nucl Med Technol. https://doi.org/10.2967/jnmt.117.204263

    Article  PubMed  Google Scholar 

  13. Collarino A, Valdés Olmos RA, van der Hoeven AF, Pereira Arias-Bouda LM (2016) Methodological aspects of 99mTc-sestamibi guided biopsy in breast cancer. Clin Transl Imaging 4(5):367–376. https://doi.org/10.1007/s40336-016-0201-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Muzahir S (2020) Molecular breast cancer imaging in the era of precision medicine. AJR Am J Roentgenol 215(6):1512–1519. https://doi.org/10.2214/AJR.20.22883

    Article  PubMed  Google Scholar 

  15. Collarino A, Valdés Olmos RA, Neijenhuis PA, den Hartog WC, Smit F, de Geus-Oei LF, Pereira Arias-Bouda LM (2017) First clinical experience using stereotactic breast biopsy guided by 99mTc-sestamibi. AJR Am J Roentgenol 209(6):1367–1373. https://doi.org/10.2214/AJR.17.18083

    Article  PubMed  Google Scholar 

  16. Koolen BB, Vogel WV, VranckenPeeters MJ, Loo CE, Rutgers EJ, Valdés Olmos RA (2012) Molecular imaging in breast cancer: from whole-body PET/CT to dedicated breast PET. J Oncol 2012:438647. https://doi.org/10.1155/2012/438647

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Soret M, Bacharach SL, Buvat I (2007) Partial-volume effect in PET tumor imaging. J Nucl Med 48(6):932–945. https://doi.org/10.2967/jnumed.106.035774

    Article  PubMed  Google Scholar 

  18. Sasada S, Kimura Y, Masumoto N, Emi A, Kadoya T, Arihiro K, Okada M (2021) Breast cancer detection by dedicated breast positron emission tomography according to the World Health Organization classification of breast tumors. Eur J Surg Oncol 47(7):1588–1592. https://doi.org/10.1016/j.ejso.2021.02.026

    Article  PubMed  Google Scholar 

  19. Macdonald L, Edwards J, Lewellen T, Rogers J, Kinahan P (2008) Clinical imaging characteristics of the positron emission mammography PEM flex solo II. IEEE Nucl Sci Symp Conf Rec (1997) 11(2008):4494–4501. https://doi.org/10.1109/NSSMIC.2008.4774291

    Article  PubMed  Google Scholar 

  20. Narayanan D, Berg WA (2018) Dedicated breast gamma camera imaging and breast PET: current status and future directions. PET Clin 13(3):363–381. https://doi.org/10.1016/j.cpet.2018.02.008

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fowler AM (2014) A molecular approach to breast imaging. J Nucl Med 55(2):177–180. https://doi.org/10.2967/jnumed.113.126102

    Article  PubMed  Google Scholar 

  22. Narayanan D, Madsen KS, Kalinyak JE, Berg WA (2011) Interpretation of positron emission mammography: feature analysis and rates of malignancy. AJR Am J Roentgenol 196(4):956–970. https://doi.org/10.2214/AJR.10.4748

    Article  PubMed  Google Scholar 

  23. Kalles V, Zografos GC, Provatopoulou X, Koulocheri D, Gounaris A (2013) The current status of positron emission mammography in breast cancer diagnosis. Breast Cancer 20(2):123–130. https://doi.org/10.1007/s12282-012-0433-3

    Article  PubMed  Google Scholar 

  24. Caldarella C, Treglia G, Giordano A (2014) Diagnostic performance of dedicated positron emission mammography using fluorine-18-fluorodeoxyglucose in women with suspicious breast lesions: a meta-analysis. Clin Breast Cancer 14(4):241–248. https://doi.org/10.1016/j.clbc.2013.12.004

    Article  PubMed  Google Scholar 

  25. Schilling K, Narayanan D, Kalinyak JE, The J, Velasquez MV, Kahn S, Saady M, Mahal R, Chrystal L (2011) Positron emission mammography in breast cancer presurgical planning: comparisons with magnetic resonance imaging. Eur J Nucl Med Mol Imaging 38(1):23–36. https://doi.org/10.1007/s00259-010-1588-9

    Article  PubMed  Google Scholar 

  26. Noritake M, Narui K, Kaneta T, Sugae S, Sakamaki K, Inoue T, Ishikawa T (2017) Evaluation of the response to breast cancer neoadjuvant chemotherapy using 18F-FDG positron emission mammography compared with whole-body 18F-FDG PET: a prospective observational study. Clin Nucl Med 42(3):169–175. https://doi.org/10.1097/RLU.0000000000001497

    Article  PubMed  Google Scholar 

  27. Soldevilla-Gallardo I, Medina-Ornelas SS, Villarreal-Garza C, Bargalló-Rocha E, Caro-Sánchez CH, Hernández-Ramírez R, Estrada-Lobato E (2018) Usefulness of positron emission mammography in the evaluation of response to neoadjuvant chemotherapy in patients with breast cancer. Am J Nucl Med Mol Imaging 8(5):341–350

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Yamamoto Y, Tasaki Y, Kuwada Y, Ozawa Y, Inoue T (2016) A preliminary report of breast cancer screening by positron emission mammography. Ann Nucl Med 30(2):130–137. https://doi.org/10.1007/s12149-015-1040-0

    Article  PubMed  Google Scholar 

  29. Raylman RR, Majewski S, Weisenberger AG, Popov V, Wojcik R, Kross B, Schreiman JS, Bishop HA (2001) Positron emission mammography-guided breast biopsy. J Nucl Med 42(6):960–966

    PubMed  CAS  Google Scholar 

  30. Kalinyak JE, Schilling K, Berg WA, Narayanan D, Mayberry JP, Rai R, Dupree EB, Shusterman DK, Gittleman MA, Luo W, Matthews CG (2011) PET-guided breast biopsy. Breast J 17(2):143–151. https://doi.org/10.1111/j.1524-4741.2010.01044.x

    Article  PubMed  Google Scholar 

  31. Argus A, Mahoney MC (2014) Positron emission mammography: diagnostic imaging and biopsy on the same day. AJR Am J Roentgenol 202(1):216–222. https://doi.org/10.2214/AJR.12.9426

    Article  PubMed  Google Scholar 

  32. Moliner L, Gonzalez AJ, Soriano A, Sanchez F, Correcher C, Orero A, Carles M, Vidal LF, Barbera J, Caballero L, Seimetz M, Vazquez C, Benlloch JM (2012) Design and evaluation of the MAMMI dedicated breast PET. Med Phys 39(9):5393–5404. https://doi.org/10.1118/1.4742850

    Article  PubMed  CAS  Google Scholar 

  33. García Hernández T, Vicedo González A, Ferrer Rebolleda J, Sánchez Jurado R, RosellóFerrando J, Brualla González L, Granero Cabañero D, Santiago DPCM (2016) Performance evaluation of a high resolution dedicated breast PET scanner. Med Phys 43(5):2261. https://doi.org/10.1118/1.4945271

    Article  PubMed  Google Scholar 

  34. Koolen BB, Vidal-Sicart S, BenllochBaviera JM, Valdés Olmos RA (2014) Evaluating heterogeneity of primary tumor 18F-FDG uptake in breast cancer with a dedicated breast PET (MAMMI): a feasibility study based on correlation with PET/CT. Nucl Med Commun 35(5):446–452. https://doi.org/10.1097/MNM.0000000000000072

    Article  PubMed  CAS  Google Scholar 

  35. Teixeira SC, Rebolleda JF, Koolen BB, Wesseling J, Jurado RS, Stokkel MP, Del Puig Cózar Santiago M, Van der Noort V, Rutgers EJ, Valdés Olmos RA (2016) Evaluation of a hanging-breast PET system for primary tumor visualization in patients with stage I-III breast cancer: comparison with standard PET/CT. AJR Am J Roentgenol 206(6):1307–14. https://doi.org/10.2214/AJR.15.15371

    Article  PubMed  Google Scholar 

  36. Hellingman D, Teixeira SC, Donswijk ML, Rijkhorst EJ, Moliner L, Alamo J, Loo CE, Valdés Olmos RA, Stokkel MPM (2017) A novel semi-robotized device for high-precision 18F-FDG-guided breast cancer biopsy. Rev Esp Med Nucl Imagen Mol 36(3):158–165. https://doi.org/10.1016/j.remn.2016.11.003

    Article  PubMed  CAS  Google Scholar 

  37. Nishimatsu K, Nakamoto Y, Miyake KK, Ishimori T, Kanao S, Toi M, Togashi K (2017) Higher breast cancer conspicuity on dbPET compared to WB-PET/CT. Eur J Radiol 90:138–145. https://doi.org/10.1016/j.ejrad.2017.02.046

    Article  PubMed  Google Scholar 

  38. Nakamoto R, Nakamoto Y, Ishimori T, Nishimatsu K, Miyake KK, Kanao S, Iima M, Toi M, Togashi K (2017) Diagnostic performance of a novel dedicated breast PET scanner with C-shaped ring detectors. Nucl Med Commun 38(5):388–395. https://doi.org/10.1097/MNM.0000000000000661

    Article  PubMed  Google Scholar 

  39. Hashimoto R, Akashi-Tanaka S, Watanabe C, Masuda H, Taruno K, Takamaru T, Ide Y, Kuwayama T, Kobayashi Y, Takimoto M, Nakamura S (2022) Diagnostic performance of dedicated breast positron emission tomography. Breast Cancer 29(6):1013–1021. https://doi.org/10.1007/s12282-022-01381-x

    Article  PubMed  Google Scholar 

  40. Manca G, Mazzarri S, Rubello D, Tardelli E, Delgado-Bolton RC, Giammarile F, Roncella M, Volterrani D, Colletti PM (2017) Radioguided occult lesion localization: technical procedures and clinical applications. Clin Nucl Med 42(12):e498–e503. https://doi.org/10.1097/RLU.0000000000001858

    Article  PubMed  Google Scholar 

  41. De Cicco C, Pizzamiglio M, Trifirò G, Luini A, Ferrari M, Prisco G, Galimberti V, Cassano E, Viale G, Intra M, Veronesi P, Paganelli G (2002) Radioguided occult lesion localisation (ROLL) and surgical biopsy in breast cancer. Technical aspects. Q J Nucl Med 46(2):145–151

    PubMed  Google Scholar 

  42. Postma EL, Verkooijen HM, van Esser S, Hobbelink MG, van der Schelling GP, Koelemij R, Witkamp AJ, Contant C, van Diest PJ, Willems SM, BorelRinkes IH, van den Bosch MA, Mali WP, van Hillegersberg R, ROLL study group (2012) Efficacy of ‘radioguided occult lesion localisation’ (ROLL) versus ‘wire-guided localisation’ (WGL) in breast conserving surgery for non-palpable breast cancer: a randomised controlled multicentre trial. Breast Cancer Res Treat 136(2):469–478. https://doi.org/10.1007/s10549-012-2225-z

    Article  PubMed  CAS  Google Scholar 

  43. Mariscal Martínez A, Solà M, de Tudela AP, Julián JF, Fraile M, Vizcaya S, Fernández J (2009) Radioguided localization of nonpalpable breast cancer lesions: randomized comparison with wire localization in patients undergoing conservative surgery and sentinel node biopsy. AJR Am J Roentgenol 193(4):1001–1009. https://doi.org/10.2214/AJR.08.2005

    Article  PubMed  Google Scholar 

  44. De Cicco C, Trifirò G, Intra M, Marotta G, Ciprian A, Frasson A, Prisco G, Luini A, Viale G, Paganelli G (2004) Optimised nuclear medicine method for tumour marking and sentinel node detection in occult primary breast lesions. Eur J Nucl Med Mol Imaging 31(3):349–354. https://doi.org/10.1007/s00259-003-1390-z

    Article  PubMed  Google Scholar 

  45. Giammarile F, Vidal-Sicart S, Paez D, Pellet O, Enrique EL, Mikhail-Lette M, Morozova O, Maria Camila NM, Diana Ivonne RS, Delgado Bolton RC, Valdés Olmos RA, Mariani G (2022) Sentinel lymph node methods in breast cancer. Semin Nucl Med 52(5):551–560. https://doi.org/10.1053/j.semnuclmed.2022.01.006

    Article  PubMed  Google Scholar 

  46. Niinikoski L, Hukkinen K, Leidenius MHK, Vaara P, Voynov A, Heikkilä P, Mattson J, Meretoja TJ (2019) Resection margins and local recurrences of impalpable breast cancer: comparison between radioguided occult lesion localization (ROLL) and radioactive seed localization (RSL). Breast 47:93–101. https://doi.org/10.1016/j.breast.2019.07.004

    Article  PubMed  Google Scholar 

  47. Donker M, Drukker CA, Valdés Olmos RA, Rutgers EJ, Loo CE, Sonke GS, Wesseling J, Alderliesten T, VranckenPeeters MJ (2013) Guiding breast-conserving surgery in patients after neoadjuvant systemic therapy for breast cancer: a comparison of radioactive seed localization with the ROLL technique. Ann Surg Oncol 20(8):2569–2575. https://doi.org/10.1245/s10434-013-2921-x

    Article  PubMed  Google Scholar 

  48. Hellingman D, Donswijk ML, Winter-Warnars GAO, de Koekkoek-Doll P, Pinas M, Budde-van Namen Y, Westerga J, VranckenPeeters MTFD, Kimmings N, Stokkel MPM (2019) Feasibility of radioguided occult lesion localization of clip-marked lymph nodes for tailored axillary treatment in breast cancer patients treated with neoadjuvant systemic therapy. EJNMMI Res 9(1):94. https://doi.org/10.1186/s13550-019-0560-3

    Article  PubMed  PubMed Central  Google Scholar 

  49. Veronesi U, Paganelli G, Galimberti V, Viale G, Zurrida S, Bedoni M, Costa A, de Cicco C, Geraghty JG, Luini A, Sacchini V, Veronesi P (1997) Sentinel-node biopsy to avoid axillary dissection in breast cancer with clinically negative lymph-nodes. Lancet 349(9069):1864–1867. https://doi.org/10.1016/S0140-6736(97)01004-0

    Article  PubMed  CAS  Google Scholar 

  50. Brackstone M, Baldassarre FG, Perera FE, Cil T, Chavez Mac Gregor M, Dayes IS, Engel J, Horton JK, King TA, Kornecki A, George R, SenGupta SK, Spears PA, Eisen AF (2021) Management of the axilla in early-stage breast cancer: ontario health (cancer care Ontario) and ASCO guideline. J Clin Oncol 39(27):3056–3082. https://doi.org/10.1200/JCO.21.00934

    Article  PubMed  Google Scholar 

  51. Lyman GH, Somerfield MR, Bosserman LD, Perkins CL, Weaver DL, Giuliano AE (2017) Sentinel lymph node biopsy for patients with early-stage breast cancer: American society of clinical oncology clinical practice guideline update. J Clin Oncol 35(5):561–564. https://doi.org/10.1200/JCO.2016.71.0947

    Article  PubMed  Google Scholar 

  52. Giammarile F, Alazraki N, Aarsvold JN, Audisio RA, Glass E, Grant SF, Kunikowska J, Leidenius M, Moncayo VM, Uren RF, Oyen WJ, Valdés Olmos RA, Vidal-Sicart S (2013) The EANM and SNMMI practice guideline for lymphoscintigraphy and sentinel node localization in breast cancer. Eur J Nucl Med Mol Imaging 40(12):1932–1947. https://doi.org/10.1007/s00259-013-2544-2

    Article  PubMed  CAS  Google Scholar 

  53. van Loevezijn AA, Bartels SAL, van Duijnhoven FH, Heemsbergen WD, Bosma SCJ, Elkhuizen PHM, Donswijk ML, Rutgers EJT, Oldenburg HSA, VranckenPeeters MTFD, van der Ploeg IMC (2019) Internal mammary chain sentinel nodes in early-stage breast cancer patients: toward selective removal. Ann Surg Oncol 26(4):945–953. https://doi.org/10.1245/s10434-018-7058-5

    Article  PubMed  Google Scholar 

  54. Nieweg OE, Estourgie SH, van Rijk MC, Kroon BB (2004) Rationale for superficial injection techniques in lymphatic mapping in breast cancer patients. J Surg Oncol 87(4):153–156. https://doi.org/10.1002/jso.20108

    Article  PubMed  Google Scholar 

  55. Noushi F, Spillane AJ, Uren RF, Cooper R, Allwright S, Snook KL, Gillet D, Pearce AM, Gebski V (2013) High discordance rates between sub-areolar and peri-tumoural breast lymphoscintigraphy. Eur J Surg Oncol 39(10):1053–1060. https://doi.org/10.1016/j.ejso.2013.06.006

    Article  PubMed  CAS  Google Scholar 

  56. Estourgie SH, Nieweg OE, Valdés Olmos RA, Rutgers EJ, Kroon BB (2004) Lymphatic drainage patterns from the breast. Ann Surg 239(2):232–237. https://doi.org/10.1097/01.sla.0000109156.26378.90

    Article  PubMed  PubMed Central  Google Scholar 

  57. Tanis PJ, Nieweg OE, Valdés Olmos RA, Kroon BB (2001) Anatomy and physiology of lymphatic drainage of the breast from the perspective of sentinel node biopsy. J Am Coll Surg 192(3):399–409. https://doi.org/10.1016/s1072-7515(00)00776-6

    Article  PubMed  CAS  Google Scholar 

  58. Chahid Y, Qiu X, van de Garde EMW, Verberne HJ, Booij J (2021) Risk factors for nonvisualization of the sentinel lymph node on lymphoscintigraphy in breast cancer patients. EJNMMI Res 11(1):54. https://doi.org/10.1186/s13550-021-00793-8

    Article  PubMed  PubMed Central  Google Scholar 

  59. van der Ploeg IM, Nieweg OE, Kroon BB, Rutgers EJ, Baas-VranckenPeeters MJ, Vogel WV, Hoefnagel CA, Valdés Olmos RA (2009) The yield of SPECT/CT for anatomical lymphatic mapping in patients with breast cancer. Eur J Nucl Med Mol Imaging 36(6):903–909. https://doi.org/10.1007/s00259-008-1050-4

    Article  PubMed  Google Scholar 

  60. Jimenez-Heffernan A, Ellmann A, Sado H, Huić D, Bal C, Parameswaran R, Giammarile F, Pruzzo R, Kostadinova I, Vorster M, Almeida P, Santiago J, Gambhir S, Sergieva S, Calderon A, Young GO, Valdés Olmos RA, Zaknun J, Magboo VP, Pascual TN (2015) Results of a prospective multicenter international atomic energy agency sentinel node trial on the value of SPECT/CT over planar imaging in various malignancies. J Nucl Med 56(9):1338–1344. https://doi.org/10.2967/jnumed.114.153643

    Article  PubMed  CAS  Google Scholar 

  61. Borrelli P, Donswijk ML, Stokkel MP, Teixeira SC, van Tinteren H, Rutgers EJ, Valdés Olmos RA (2017) Contribution of SPECT/CT for sentinel node localization in patients with ipsilateral breast cancer relapse. Eur J Nucl Med Mol Imaging 44(4):630–637. https://doi.org/10.1007/s00259-016-3545-8

    Article  PubMed  Google Scholar 

  62. Vermeeren L, van der Ploeg IM, Valdés Olmos RA, Meinhardt W, Klop WM, Kroon BB, Nieweg OE (2010) SPECT/CT for preoperative sentinel node localization. J Surg Oncol 101(2):184–190. https://doi.org/10.1002/jso.21439

    Article  PubMed  Google Scholar 

  63. Rieger A, Saeckl J, Belloni B, Hein R, Okur A, Scheidhauer K, Wendler T, Traub J, Friess H, Martignoni ME (2011) First experiences with navigated radio-guided surgery using freehand SPECT. Case Rep Oncol 4(2):420–425. https://doi.org/10.1159/000330273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Vidal-Sicart S, van Leeuwen FWB, van den Berg NS, Valdés Olmos RA (2015) Fluorescent radiocolloids: are hybrid tracers the future for lymphatic mapping? Eur J Nucl Med Mol Imaging 42(11):1627–1630. https://doi.org/10.1007/s00259-015-3132-4

    Article  PubMed  Google Scholar 

  65. Valdés Olmos RA, Rietbergen DDD, Rubello D, Pereira Arias-Bouda LM, Collarino A, Colletti PM, Vidal-Sicart S, van Leeuwen FWB (2020) Sentinel node imaging and radioguided surgery in the era of SPECT/CT and PET/CT: toward new interventional nuclear medicine strategies. Clin Nucl Med 45(10):771–777. https://doi.org/10.1097/RLU.0000000000003206

    Article  PubMed  Google Scholar 

  66. Jeremiasse B, van den Bosch CH, Wijnen MWHA, Terwisscha van Scheltinga CEJ, Fiocco MF, van der Steeg AFW (2020) Systematic review and meta-analysis concerning near-infrared imaging with fluorescent agents to identify the sentinel lymph node in oncology patients. Eur J Surg Oncol 46(11):2011–2022. https://doi.org/10.1016/j.ejso.2020.07.012

    Article  PubMed  CAS  Google Scholar 

  67. KleinJan GH, van Werkhoven E, van den Berg NS, Karakullukcu MB, Zijlmans HJMAA, van der Hage JA, van de Wiel BA, Buckle T, Klop WMC, Horenblas S, Valdés Olmos RA, van der Poel HG, van Leeuwen FWB (2018) The best of both worlds: a hybrid approach for optimal pre- and intraoperative identification of sentinel lymph nodes. Eur J Nucl Med Mol Imaging 45(11):1915–1925. https://doi.org/10.1007/s00259-018-4028-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Brouwer OR, Buckle T, Vermeeren L, Klop WM, Balm AJ, van der Poel HG, van Rhijn BW, Horenblas S, Nieweg OE, van Leeuwen FW, Valdés Olmos RA (2012) Comparing the hybrid fluorescent-radioactive tracer indocyanine green-99mTc-nanocolloid with 99mTc-nanocolloid for sentinel node identification: a validation study using lymphoscintigraphy and SPECT/CT. J Nucl Med 53(7):1034–1040. https://doi.org/10.2967/jnumed.112.103127

    Article  PubMed  CAS  Google Scholar 

  69. Donker M, Straver ME, Wesseling J, Loo CE, Schot M, Drukker CA, van Tinteren H, Sonke GS, Rutgers EJ, VranckenPeeters MJ (2015) Marking axillary lymph nodes with radioactive iodine seeds for axillary staging after neoadjuvant systemic treatment in breast cancer patients: the MARI procedure. Ann Surg 261(2):378–382. https://doi.org/10.1097/SLA.0000000000000558

    Article  PubMed  Google Scholar 

  70. van Loevezijn AA, van der Noordaa MEM, Stokkel MPM, van Werkhoven ED, Groen EJ, Loo CE, Elkhuizen PHM, Sonke GS, Russell NS, van Duijnhoven FH, VranckenPeeters MTFD (2022) Three-year follow-up of de-escalated axillary treatment after neoadjuvant systemic therapy in clinically node-positive breast cancer: the MARI-protocol. Breast Cancer Res Treat 193(1):37–48. https://doi.org/10.1007/s10549-022-06545-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Boughey JC, Suman VJ, Mittendorf EA, Ahrendt GM, Wilke LG, Taback B, Leitch AM, Kuerer HM, Bowling M, Flippo-Morton TS, Byrd DR, Ollila DW, Julian TB, McLaughlin SA, McCall L, Symmans WF, Le-Petross HT, Haffty BG, Buchholz TA, Nelson H, Hunt KK, Alliance for Clinical Trials in Oncology (2013) Sentinel lymph node surgery after neoadjuvant chemotherapy in patients with node-positive breast cancer: the ACOSOG Z1071 (Alliance) clinical trial. JAMA 310(14):1455–1461. https://doi.org/10.1001/jama.2013.278932

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Kuehn T, Bauerfeind I, Fehm T, Fleige B, Hausschild M, Helms G, Lebeau A, Liedtke C, von Minckwitz G, Nekljudova V, Schmatloch S, Schrenk P, Staebler A, Untch M (2013) Sentinel-lymph-node biopsy in patients with breast cancer before and after neoadjuvant chemotherapy (SENTINA): a prospective, multicentre cohort study. Lancet Oncol 14(7):609–618. https://doi.org/10.1016/S1470-2045(13)70166-9

    Article  PubMed  Google Scholar 

  73. Simons JM, van Nijnatten TJA, van der Pol CC, Luiten EJT, Koppert LB, Smidt ML (2019) Diagnostic accuracy of different surgical procedures for axillary staging after neoadjuvant systemic therapy in node-positive breast cancer: a systematic review and meta-analysis. Ann Surg 269(3):432–442. https://doi.org/10.1097/SLA.0000000000003075

    Article  PubMed  Google Scholar 

  74. Hellingman D, Donswijk ML, Winter-Warnars GAO, de Koekkoek-Doll P, Pinas M, Budde-van Namen Y, Westerga J, VranckenPeeters MTFD, Kimmings N, Stokkel MPM (2019) Feasibility of radioguided occult lesion localization of clip-marked lymph nodes for tailored axillary treatment in breast cancer patients treated with neoadjuvant systemic therapy. EJNMMI Res 9(1):94. https://doi.org/10.1186/s13550-019-0560-3

    Article  PubMed  PubMed Central  Google Scholar 

  75. Fuertes Manuel J, Kohan S, JordàSolé M, Mateu Hidalgo I, MirallesCurto M, AguilóSagristà O, Aguilar Alomá E, Peña González K, Lafuerza Torres A, MeléOlivé M, Repkova J, Montero Jaime MJ, GumàPadró J (2022) Patients with initial nodal involvement due to breast cancer who have received neoadjuvant chemotherapy: combined sentinel node-radioguided surgery of the pathological node. Rev Esp Med Nucl Imagen Mol 41(5):284–291. https://doi.org/10.1016/j.remnie.2022.05.002

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Di Giuda.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perrone, E., Collarino, A., Pereira Arias-Bouda, L.M. et al. Molecular imaging to guide breast cancer surgery. Clin Transl Imaging 11, 521–531 (2023). https://doi.org/10.1007/s40336-023-00587-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40336-023-00587-z

Keywords

Navigation