Skip to main content

Advertisement

Log in

Molecular Breast Imaging: Role as a Screening Modality

  • Screening and Imaging (HTC Le-Petross, Section Editor)
  • Published:
Current Breast Cancer Reports Aims and scope Submit manuscript

Abstract

This review provides a summary of the current state of molecular breast imaging (MBI), its applications in breast imaging, and potential use in breast cancer screening. MBI is a novel nuclear medicine technique that uses a dual-head dedicated breast gamma camera and technetium-99m sestamibi as a radiotracer. In this review, the basic concepts of molecular breast imaging will be described and clinical studies on MBI and breast-specific gamma imaging (BSGI) will be summarized. Based on the present literature, MBI is one of the best supplemental imaging modalities to mammography and has the potential to become a screening modality if the radiotracer dosage can be reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. American Cancer Society facts http://www.cancer.org/research/cancerfactsstatistics/cancerfactsfigures2016/. Data accessed on 06/02/2016.

  2. Herman C. What makes a screening exam “good”? Virtual Mentor. 2006;8(1):34–7.

    Article  PubMed  Google Scholar 

  3. Tabár L, Vitak B, Chen TH, Yen AM, Cohen A, Tot T, et al. Swedish two-county trial: impact of mammographic screening on breast cancer mortality during 3 decades. Radiology. 2011;260(3):658–63.

    Article  PubMed  Google Scholar 

  4. Independent UK Panel on Breast Cancer Screening. The benefits and harms of breast cancer screening: an independent review. Lancet. 2012;380(9855):1778–86.

    Article  Google Scholar 

  5. Nelson HD, Tyne K, Naik A, Bougatsos C, Chan BK, Humphrey L. U.S. Preventive Services Task Force. Screening for breast cancer: an update for the U.S. Preventive Services Task Force. Ann Intern Med. 2009;151(10):727–37. W237-42. Review.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hubbard RA, Kerlikowske K, Flowers CI, Yankaskas BC, Zhu W, Miglioretti DL. Cumulative probability of false-positive recall or biopsy recommendation after 10 years of screening mammography: a cohort study. Ann Intern Med. 2011;155(8):481–92.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kerlikowske K, Zhu W, Hubbard RA, Geller B, Dittus K, Braithwaite D, et al. Outcomes of screening mammography by frequency, breast density, and postmenopausal hormone therapy. JAMA Intern Med. 2013;173(9):807–16.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rosenberg RD, Hunt WC, Williamson MR, Gilliland FD, Wiest PW, Kelsey CA, et al. Effects of age, breast density, ethnicity, and estrogen replacement therapy on screening mammographic sensitivity and cancer stage at diagnosis: review of 183,134 screening mammograms in Albuquerque, New Mexico. Radiology. 1998;209(2):511–8.

    Article  CAS  PubMed  Google Scholar 

  9. Michalopoulos D, Duffy SW. Estimation of overdiagnosis using short-term trends and lead time estimates uncontaminated by overdiagnosed cases: results from the Norwegian Breast Screening Programme. J Med Screen. 2016 [Epub ahead of print].

  10. Bleyer A, Welch HG. Effect of three decades of screening mammography on breast-cancer incidence. N Engl J Med. 2012;367(21):1998–2005.

    Article  CAS  PubMed  Google Scholar 

  11. Aktolun C, Bayhan H, Kir M. Clinical experience with Tc-99m MIBI imaging in patients with malignant tumors. Preliminary results and comparison with Tl-201. Clin Nucl Med. 1992;17(3):171–6.

    Article  CAS  PubMed  Google Scholar 

  12. Taillefer R. Clinical applications of 99mTc-sestamibi scintimammography. Semin Nucl Med. 2005;35(2):100–15. Review.

    Article  PubMed  Google Scholar 

  13. Weigert J, Kieper D. Current and future roles of molecular breast imaging in the community-based breast center. Imaging Med. 2012;4:383–7.

    Article  CAS  Google Scholar 

  14. Piwnica-Worms D, Chiu ML, Budding M, Kronauge JF, Kramer RA, Croop JM. Functional imaging of multidrug-resistant P-glycoprotein with an organotechnetium complex. Cancer Res. 1993;53(5):977–84.

    CAS  PubMed  Google Scholar 

  15. Khalkhali I, Villanueva-Meyer J, Edell SL, Connolly JL, Schnitt SJ, Baum JK, et al. Diagnostic accuracy of 99mTc-sestamibi breast imaging: multicenter trial results. J Nucl Med. 2000;41(12):1973–9.

    CAS  PubMed  Google Scholar 

  16. O’Connor MK, Phillips SW, Hruska CB, Rhodes DJ, Collins DA. Molecular breastimaging: advantages and limitations of a scintimammographic technique in patients with small breast tumors. Breast J. 2007;13(1):3–11.

    Article  PubMed  Google Scholar 

  17. O’Connor MK, Li H, Rhodes DJ, Hruska CB, Clancy CB, Vetter RJ. Comparison of radiation exposure and associated radiation-induced cancer risks from mammography and molecular imaging of the breast. Med Phys. 2010;37(12):6187–98.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Brem RF, Schoonjans JM, Kieper DA, Majewski S, Goodman S, Civelek C. High-resolution scintimammography: a pilot study. J Nucl Med. 2002;43(7):909–15.

    PubMed  Google Scholar 

  19. Rhodes DJ, O’Connor MK, Phillips SW, Smith RL, Collins DA. Molecular breast imaging: a new technique using technetium Tc 99m scintimammography to detect small tumors of the breast. Mayo Clin Proc. 2005;80(1):24–30.

    Article  PubMed  Google Scholar 

  20. Brem RF, Floerke AC, Rapelyea JA, Teal C, Kelly T, Mathur V. Breast-specificgamma imaging as an adjunct imaging modality for the diagnosis of breast cancer. Radiology. 2008;247(3):651–7.

    Article  PubMed  Google Scholar 

  21. Kim BS, Moon BI, Cha ES. A comparative study of breast-specific gamma imaging with the conventional imaging modality in breast cancer patients with dense breasts. Ann Nucl Med. 2012;26(10):823–9.

    Article  PubMed  Google Scholar 

  22. Rechtman LR, Lenihan MJ, Lieberman JH, Teal CB, Torrente J, Rapelyea JA, et al. Breast-specific gamma imaging for the detection of breast cancer in dense versus nondense breasts. AJR Am J Roentgenol. 2014;202(2):293–8.

    Article  PubMed  Google Scholar 

  23. Brem RF, Ioffe M, Rapelyea JA, Yost KG, Weigert JM, Bertrand ML, et al. Invasive lobular carcinoma: detection with mammography, sonography, MRI, and breast-specific gamma imaging. AJR Am J Roentgenol. 2009;192(2):379–83.

    Article  PubMed  Google Scholar 

  24. Conners AL, Jones KN, Hruska CB, Geske JR, Boughey JC, Rhodes DJ. Direct-conversion molecular breast imaging of invasive breast cancer: imaging features, extent of invasive disease, and comparison between invasive ductal and lobular histology. AJR Am J Roentgenol. 2015;205(3):W374–81.

    Article  PubMed  Google Scholar 

  25. McCormack VA, dos Santos Silva I. Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev. 2006;15(6):1159–69.

    Article  PubMed  Google Scholar 

  26. Stomper PC, D’Souza DJ, DiNitto PA, Arredondo MA. Analysis of parenchymal density on mammograms in 1353 women 25-79 years old. AJR Am J Roentgenol. 1996;167(5):1261–5.

    Article  CAS  PubMed  Google Scholar 

  27. Pinto Pereira SM, McCormack VA, Hipwell JH, Record C, Wilkinson LS, Moss SM, et al. Localized fibroglandular tissue as a predictor of future tumor location within the breast. Cancer Epidemiol Biomarkers Prev. 2011;20(8):1718–25.

    Article  PubMed  Google Scholar 

  28. Boyd NF, Rommens JM, Vogt K, Lee V, Hopper JL, Yaffe MJ, et al. Mammographic breast density as an intermediate phenotype for breast cancer. Lancet Oncol. 2005;6(10):798–808. Review.

    Article  PubMed  Google Scholar 

  29. Rhodes DJ, Hruska CB, Phillips SW, Whaley DH, O’Connor MK. Dedicated dual-head gamma imaging for breast cancer screening in women with mammographically dense breasts. Radiology. 2011;258(1):106–18.

    Article  PubMed  Google Scholar 

  30. Rhodes DJ, Hruska CB, Conners AL, Tortorelli CL, Maxwell RW, Jones KN, et al. Journal club: molecular breast imaging at reduced radiation dose for supplemental screening in mammographically dense breasts. AJR Am J Roentgenol. 2015;204(2):241–51.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Shermis RB, Wilson KD, Doyle MT, Martin TS, Merryman D, Kudrolli H, et al. Supplemental breast cancer screening with molecular breast imaging for women with dense breast tissue. AJR Am J Roentgenol. 2016;17:1–8.

    Google Scholar 

  32. Sickles EA, D’Orsi CJ, Bassett LW, et al. ACR BI-RADS® mammography. In: ACR BI-RADS® Atlas, breast imaging reporting and data system. Reston: American College of Radiology; 2013.

    Google Scholar 

  33. Feig SA. Auditing and benchmarks in screening and diagnostic mammography. Radiol Clin North Am. 2007;45(5):791–800. vi. Review.

    Article  PubMed  Google Scholar 

  34. Skaane P. Breast cancer screening with digital breast tomosynthesis. Breast Cancer. 2016 [Epub ahead of print].

  35. Friedewald SM, Rafferty EA, Conant EF. Breast cancer screening with tomosynthesis and digital mammography-reply. JAMA. 2014;312(16):1695–6.

    Article  PubMed  Google Scholar 

  36. Houssami N. Digital breast tomosynthesis (3D-mammography) screening: data and implications for population screening. Expert Rev Med Devices. 2015;12(4):377–9.

    Article  CAS  PubMed  Google Scholar 

  37. Caumo F, Bernardi D, Ciatto S, Macaskill P, Pellegrini M, Brunelli S, et al. Incremental effect from integrating 3D-mammography (tomosynthesis) with 2D-mammography: increased breast cancer detection evident for screening centres in a population-based trial. Breast. 2014;23(1):76–80.

    Article  PubMed  Google Scholar 

  38. Skaane P, Bandos AI, Gullien R, Eben EB, Ekseth U, Haakenaasen U, et al. Comparison of digital mammography alone and digital mammography plus tomosynthesis in a population-based screening program. Radiology. 2013;267(1):47–56.

    Article  PubMed  Google Scholar 

  39. Carbonaro LA, Di Leo G, Clauser P, Trimboli RM, Verardi N, Fedeli MP, et al. Impact on the recall rate of digital breast tomosynthesis as an adjunct to digital mammography in the screening setting. A double reading experience and review of the literature. Eur J Radiol. 2016;85(4):808–14.

    Article  PubMed  Google Scholar 

  40. Berg WA, Blume JD, Cormack JB, Mendelson EB, Lehrer D, Böhm-Vélez M, et al. Combined screening with ultrasound and mammography vs mammography alone in women at elevated risk of breast cancer. JAMA. 2008;299(18):2151–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Weigert J, Steenbergen S. The Connecticut experiments second year: ultrasound in the screening of women with dense breasts. Breast J. 2015;21(2):175–80.

    Article  PubMed  Google Scholar 

  42. Kessler R, Sutcliffe JB, Bell L, Bradley YC, Anderson S, Banks KP. Negative predictive value of breast-specific gamma imaging in low suspicion breastlesions: a potential means for reducing benign biopsies. Breast J. 2011;17(3):319–21.

    Article  PubMed  Google Scholar 

  43. Cho MJ, Yang JH, Yu YB, Park KS, Chung HW, So Y, et al. Validity of breast-specific gamma imaging for breast imaging reporting and data system 4 lesions on mammography and/or ultrasound. Ann Surg Treat Res. 2016;90(4):194–200.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Raikhlin A, Curpen B, Warner E, Betel C, Wright B, Jong R. Breast MRI as an adjunct to mammography for breast cancer screening in high-risk patients: retrospective review. AJR Am J Roentgenol. 2015;204(4):889–97.

    Article  PubMed  Google Scholar 

  45. Warner E. The role of magnetic resonance imaging in screening women at high risk of breast cancer. Top Magn Reson Imaging. 2008;19(3):163–9.

    Article  PubMed  Google Scholar 

  46. Brem RF, Petrovitch I, Rapelyea JA, Young H, Teal C, Kelly T. Breast-specific gamma imaging with 99mTc-sestamibi and magnetic resonance imaging in the diagnosis of breast cancer—a comparative study. Breast J. 2007;13(5):465–9. 47.

    Article  PubMed  Google Scholar 

  47. Kim BS. Usefulness of breast-specific gamma imaging as an adjunct modality in breast cancer patients with dense breast: a comparative study with MRI. Ann Nucl Med. 2012;26(2):131–7.

    Article  PubMed  Google Scholar 

  48. Zhou M, Johnson N, Gruner S, Ecklund GW, Meunier P, Bryn S, et al. Clinical utility of breast-specific gamma imaging for evaluatingdisease extent in the newly diagnosed breast cancer patient. Am J Surg. 2009;197(2):159–63.

    Article  PubMed  Google Scholar 

  49. Johnson N, Sorenson L, Bennetts L, Winter K, Bryn S, Johnson W, et al. Breast-specific gamma imaging is a cost effective and efficacious imaging modality when compared with MRI. Am J Surg. 2014;207(5):698–701. discussion 701.

    Article  PubMed  Google Scholar 

  50. Hruska CB, Scott CG, Conners AL, Whaley DH, Rhodes DJ, Carter RE, et al. Background parenchymal uptake on molecular breast imaging as a breast cancer risk factor: a case-control study. Breast Cancer Res. 2016;18(1):42.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz E. Adrada.

Ethics declarations

Conflict of Interest

Beatriz E. Adrada, Tanya Moseley, and Gaiane M. Rauch declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Screening and Imaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adrada, B.E., Moseley, T. & Rauch, G.M. Molecular Breast Imaging: Role as a Screening Modality. Curr Breast Cancer Rep 8, 230–235 (2016). https://doi.org/10.1007/s12609-016-0225-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12609-016-0225-4

Keywords

Navigation