Skip to main content
Log in

A cell-centered Lagrangian discontinuous Galerkin method using WENO and HWENO limiter for compressible Euler equations in two dimensions

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

This article introduces a new variant of the cell-centered Lagrangian discontinuous Galerkin method for two-dimensional compressible flow which was proposed by Jia et al. (J Comput Phys 230(7):2496–2522, 2011). Unlike the original scheme of Jia, in this article, the Euler equations in the Lagrangian formalism are discretized in the reference frame using a bilinear map and a corresponding Jacobian matrix. The working variables are the conservative ones. The Taylor basis functions defined in the reference coordinates provide the piece-wise polynomial expansion of the variables. A limited linear polynomial DG scheme and an HWENO DG scheme are presented which use WENO and HWENO reconstruction algorithms as limiters, respectively. For both schemes, the vertex velocities and the numerical fluxes through the cell interfaces are computed consistently by virtue of a nodal solver. The time marching is implemented by a class of TVD Runge–Kutta type methods. The schemes are conservative for the mass, momentum, and total energy. They are implemented on quadrilateral linear meshes and can achieve second-order accuracy both in space and time. Results of some numerical tests are presented to demonstrate the accuracy and the robustness of the scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Barlow A, Maire PH, Rider W, Rieben R, Shashkov M (2016) Arbitrary Lagrangian–Eulerian methods for modeling high-speed compressible multimaterial flows. J Comput Phys 322(C):603–665

    Article  MathSciNet  Google Scholar 

  • Benson D (1989) An efficient, accurate, simple ALE method for nonlinear finite element programs. Comput Methods Appl Mech Eng 72(3):305–350

    Article  Google Scholar 

  • Benson D (1992) Computational methods in Lagrangian and Eulerian hydrocodes. Comput Methods Appl Mech Eng 99:235–394

    Article  MathSciNet  Google Scholar 

  • Caramana E, Burton D, Shashkov M, Whalen P (1998) The construction of compatible hydrodynamics algorithms utilizing conservation of total energy. J Comput Phys 146(1):227–262

    Article  MathSciNet  Google Scholar 

  • Cheng J, Shu CW (2007) A high order ENO conservative Lagrangian type scheme for the compressible Euler equations. J Comput Phys 227(2):1567–1596

    Article  MathSciNet  Google Scholar 

  • Cockburn B, Shu CW (1998) The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J Comput Phys 141(2):199–224

    Article  MathSciNet  Google Scholar 

  • Després B, Mazeran C (2005) Lagrangian gas dynamics in two dimensions and Lagrangian systems. Arch Ration Mech Anal 178:327–372

    Article  MathSciNet  Google Scholar 

  • Dukowicz J, Meltz B (1992) Vorticity errors in multidimensional Lagrangian codes. J Comput Phys 99(1):115–134

    Article  Google Scholar 

  • Friedrich O (1998) Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids. J Comput Phys 144(1):194–212

    Article  MathSciNet  Google Scholar 

  • Galera S, Maire PH, Breil J (2010) A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction. J Comput Phys 229:5755–5787

    Article  MathSciNet  Google Scholar 

  • Godunov S (1999) Reminiscences about difference schemes. J Comput Phys 153:6–25

    Article  MathSciNet  Google Scholar 

  • Godunov S, Zabrodine A, Ivanov M, Kraiko A, Prokopov G (1979) Resolution numreque des problemes multidimensionnels de la dynamique des gaz. Mir

  • Hirt C, Amsden A, Cook J (1974) An arbitrary Lagrangian–Eulerian computing method for all flow speeds. J Comput Phys 14(3):227–253

    Article  Google Scholar 

  • Jia Z, Liu J, Zhang S (2013) An effective integration of methods for second-order three-dimensional multi-material ALE method on unstructured hexahedral meshes using MOF interface reconstruction. J Comput Phys 236(1):513–562

    Article  MathSciNet  Google Scholar 

  • Jia Z, Zhang S (2011) A new high-order discontinuous Galerkin spectral finite element method for Lagrangian gas dynamics in two-dimensions. J Comput Phys 230(7):2496–2522

    Article  MathSciNet  Google Scholar 

  • Jiang GS, Shu CW (1996) Efficient implementation of weighted ENO schemes. J Comput Phys 126(1):202–228

    Article  MathSciNet  Google Scholar 

  • Kidder R (1976) Laser-driven compression of hollow shells: power requirements and stability limitations. Nucl Fusion 16(1):3–14

    Article  Google Scholar 

  • Levy D, Puppo G, Russo G (2002) A fourth-order central WENO scheme for multidimensional hyperbolic systems of conservation laws. SIAM J Sci Comput 24(2):480–506

    Article  MathSciNet  Google Scholar 

  • Li Z, Yu X, Jia Z (2014) The cell-centered discontinuous Galerkin method for Lagrangian compressible Euler equations in two-dimensions. Comput Fluids 96(11):152–164

    Article  MathSciNet  Google Scholar 

  • Liu X, Morgan N (2020) Symmetry-preserving WENO-type reconstruction schemes in Lagrangian hydrodynamics. Comput Fluids 205:104528

  • Liu X, Morgan N, Burton D (2018) A Lagrangian discontinuous Galerkin hydrodynamic method. Comput Fluids 163:68–85

    Article  MathSciNet  Google Scholar 

  • Liu X, Morgan N, Burton D (2018) Lagrangian discontinuous Galerkin hydrodynamic methods in axisymmetric coordinates. J Comput Phys 373:253–283

    Article  MathSciNet  Google Scholar 

  • Liu X, Morgan N, Burton D (2019) A high-order Lagrangian discontinuous Galerkin hydrodynamic method for quadratic cells using a subcell mesh stabilization scheme. J Comput Phys 386:110–157

    Article  MathSciNet  Google Scholar 

  • Loubère R, Maire PH, Shashkov M, Breil J, Galera S (2010) ReALE: a reconnection-based arbitrary-Lagrangian–Eulerian method. J Comput Phys 229(12):4724–4761

    Article  MathSciNet  Google Scholar 

  • Loubère R, Ovadia J, Abgrall R (2004) A Lagrangian discontinuous Galerkin-type method on unstructured meshes to solve hydrodynamics problems. Int J Numer Meth Fluids 44:645–663

    Article  MathSciNet  Google Scholar 

  • Maire PH (2009) A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes. J Comput Phys 228(7):2391–2425

    Article  MathSciNet  Google Scholar 

  • Maire PH, Abgrall R, Breil J, Ovadia J (2007) A cell-centered Lagrangian scheme for two-dimensional compressible flow problems. SIAM J Sci Comput 29(4):1781–1824

    Article  MathSciNet  Google Scholar 

  • Maire PH, Breil J, Galera S (2008) A cell-centered arbitrary Lagrangian–Eulerian (ALE) method. Int J Numer Meth Fluids 56:1161–1166

    Article  Google Scholar 

  • Maire PH, Loubère R, Váchal P (2011) Staggered Lagrangian discretization based on cell-centered Riemann solver and associated hydrodynamics scheme. Commun Comput Phys 10:940–978

    Article  MathSciNet  Google Scholar 

  • Margolin L (1997) Introduction to an arbitrary Lagrangian–Eulerian computing method for all flow speeds. J Comput Phys 135:198–202

    Article  MathSciNet  Google Scholar 

  • Morgan N, Lipnikov K, Burton D, Kenamond M (2014) A Lagrangian staggered grid Godunov-like approach for hydrodynamics. J Comput Phys 259:568–597

    Article  MathSciNet  Google Scholar 

  • Morgan N, Waltz J, Burton D, Charest M, Canfield T, Wohlbier J (2015) A Godunov-like point-centered essentially Lagrangian hydrodynamic approach. J Comput Phys 281:614–652

    Article  MathSciNet  Google Scholar 

  • Noh W (1987) Errors for calculations of strong shocks using an artificial viscosity and an artificial heat flux. J Comput Phys 72(1):78–120

    Article  Google Scholar 

  • Qi J, Tian B, Li J (2018) A high-resolution cell-centered Lagrangian method with a vorticity-based adaptive nodal solver for two-dimensional compressible Euler equations. Commun Comput Phys 24(3):774–790

    Article  MathSciNet  Google Scholar 

  • Sedov L (1959) Similarity and dimensional methods in mechanics. Academic Press, New York

    MATH  Google Scholar 

  • Strouboulis T, Devloo P, Oden J (1986) A moving-grid finite element algorithm for supersonic flow interaction between moving bodies. Comput Methods Appl Mech Eng 59(2):235–255

    Article  Google Scholar 

  • Vilar F (2012) Cell-centered discontinuous Galerkin discretization for two-dimensional Lagrangian hydrodynamics. Comput Fluids 64:64–73

    Article  MathSciNet  Google Scholar 

  • Vilar F, Maire PH, Abgrall R (2014) A discontinuous Galerkin discretization for solving the two-dimensional gas dynamics equations written under total Lagrangian formulation on general unstructured grids. J Comput Phys 276:188–234

    Article  MathSciNet  Google Scholar 

  • Vilar F, Shu CW, Maire PH (2016) Positivity-preserving cell-centered Lagrangian schemes for multi-material compressible flows: from first-order to high-orders. Part I:The one-dimensional case. J Comput Phys 312:385–415

    Article  MathSciNet  Google Scholar 

  • Vilar F, Shu CW, Maire PH (2016) Positivity-preserving cell-centered Lagrangian schemes for multi-material compressible flows: from first-order to high-orders. Part II: The two-dimensional case. J Comput Phys 312:416–442

    Article  MathSciNet  Google Scholar 

  • Wang C, Luo H, Shashkov M (2020) A reconstructed discontinuous Galerkin method for compressible flows in Lagrangian formulation. Comput Fluids 202:104522

  • Wilkins M (1980) Use of artificial viscosity in multidimensional shock wave problems. J Comput Phys 36:281–303

    Article  MathSciNet  Google Scholar 

  • Wu T, Shashkov M, Morgan N, Kuzmin D, Luo H (2019) An updated Lagrangian discontinuous Galerkin hydrodynamic method for gas dynamics. Comput Math Appl 78(2):258–273

    Article  MathSciNet  Google Scholar 

  • Youngs D (2008) Multi-mode implosion in cylindrical 3D geometry. In: 11th International Workshop on the Physics of Compressible Turbulent Mixing. (IWPCTM11), Santa Fe

Download references

Acknowledgements

This research was sponsored by the National Natural Science Foundation of China (Grant Nos. 11672047, 11701527, 11772067, 12071046) and CAEP Foundation of China (Grant No. CX2019032). The valuable comments of the anonymous referees are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zupeng Jia.

Additional information

Communicated by Cassio Oishi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qing, F., Yu, X., Jia, Z. et al. A cell-centered Lagrangian discontinuous Galerkin method using WENO and HWENO limiter for compressible Euler equations in two dimensions. Comp. Appl. Math. 40, 212 (2021). https://doi.org/10.1007/s40314-021-01575-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-021-01575-7

Keywords

Mathematics Subject Classification

Navigation