Skip to main content
Log in

Lorcaserin for Dravet Syndrome: A Potential Advance Over Fenfluramine?

  • Leading Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Lorcaserin, a selective serotonin 5-HT2C receptor agonist, was developed as an appetite suppressant with the rationale of minimizing the risk of cardiovascular toxicity associated with non-selective serotoninergic agents such as fenfluramine. Eight years after FDA approval, however, it was withdrawn from the market, when a large safety study suggested a potential cancer risk. Following in the fenfluramine footsteps and utilizing the repurposing approach coupled with the regulatory orphan drug designation, lorcaserin is currently in clinical development for the treatment of epilepsy. This potential novel indication builds on the evidence that 5-HT2C receptor stimulation can protect against seizures, and accounts at least in part for fenfluramine’s antiseizure effects in Dravet syndrome models. In animal models, lorcaserin shows a narrower range of antiseizure activity than fenfluramine. In particular, lorcaserin is inactive in classical acute seizure tests such as maximal electroshock and subcutaneous pentylenetetrazole in mice and rats, and the 6-Hz stimulation model in mice. However, it is active in the GAERS absence seizure model, and in mutant zebrafish models of Dravet syndrome. Preliminary uncontrolled studies in patients with Dravet syndrome have yielded promising results, and a phase III, double-blind, placebo-controlled, parallel group trial is currently ongoing to assess its efficacy and safety in children and adults with Dravet syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Fishman AP. Aminorex to fen-phen: an epidemic foretold. Circulation. 1999;99:156–61.

    Article  CAS  PubMed  Google Scholar 

  2. Cignarella A, Busetto L, Vettor R. Pharmacotherapy of obesity: an update. Pharmacol Res. 2021;169:105649.

    Article  CAS  PubMed  Google Scholar 

  3. Rowland NE, Robertson K, Lo J, Rema E. Cross tolerance between anorectic action and induction of Fos-ir with dexfenfluramine and 5HT1B/2C agonists in rats. Psychopharmacology (Berlin). 2001;156:108–14.

    Article  CAS  Google Scholar 

  4. Vickers SP, Dourish CT, Kennett GA. Evidence that hypophagia induced by d-fenfluramine and d-norfenfluramine in the rat is mediated by 5-HT2C receptors. Neuropharmacology. 2001;41:200–9.

    Article  CAS  PubMed  Google Scholar 

  5. Hutcheson JD, Setola V, Roth BL, Merryman WD. Serotonin receptors and heart valve disease—it was meant 2B. Pharmacol Ther. 2011;132:146–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Odi R, Invernizzi RW, Gallily T, Bialer M, Perucca E. Fenfluramine repurposing from weight loss to epilepsy: what we do and do not know. Pharmacol Ther. 2021;226:107866.

    Article  CAS  PubMed  Google Scholar 

  7. Geyer MA, Vollenweider FX. Serotonin research: contributions to understanding psychoses. Trend Pharmacol Sci. 2008;29:445–53.

    Article  CAS  Google Scholar 

  8. Nichols DE. Psychedelics. Pharmacol Rev. 2016;68:264–355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ayme-Dietrich E, Lawson R, Cote F, de Tapia C, Da Silva S, Ebel C, et al. The role of 5-HT2B receptors in mitral valvulopathy: bone marrow mobilization of endothelial progenitors. Br J Pharmacol. 2017;174:4123–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Smith BM, Smith JM, Tsai JH, Schultz JA, Gilson CA, Estrada SA, et al. Discovery and structure-activity relationship of (1R)-8-Chloro-2,3,4,5-tetrahydro-1-methyl-1H-3-benzazepine (Lorcaserin), a selective serotonin 5-HT2C receptor agonist for the treatment of obesity. J Med Chem. 2008;51:305–13.

    Article  CAS  PubMed  Google Scholar 

  11. Belviq. Prescribing information, Eisai Inc., Woodcliff Lake, NJ 07677, 2012. https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/022529lbl.pdf. Accessed 14 Oct 2021.

  12. Food and Drug Administration. FDA requests the withdrawal of the weight-loss drug Belviq, Belviq XR (lorcaserin) from the market. FDA Drug Safety Communication, February 13, 2020. https://www.fda.gov/media/135189/download. Accessed 14 Oct 2021.

  13. Bohula EA, Wiviott SD, McGuire DK, Inzucchi SE, Kuder J, Im K, Fanola CL, Qamar A, Brown C, Budaj A, Garcia-Castillo A, Gupta M, et al. Cardiovascular safety of lorcaserin in overweight or obese patients. New Engl J Med. 2018;379:1107–17.

    Article  CAS  PubMed  Google Scholar 

  14. Fintepla Prescribing Information (U.S.). Zogenix Inc., Emeryville CA, 94608, USA. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/212102s000lbl.pdf. Accessed 15 Oct 2021.

  15. Sourbron J, Schneider H, Kecskes A, Liu Y, Buening EM, Lagae L, et al. Serotonergic modulation as effective treatment for Dravet syndrome in a zebrafish mutant model. ACS Chem Neurosci. 2016;7:588–98.

    Article  CAS  PubMed  Google Scholar 

  16. Eisai Inc. (sponsor). A multicenter, double-blind, randomized, placebo-controlled, parallel-group study with open-label extension phase of lorcaserin as adjunctive treatment in subjects with Dravet syndrome (ClinicalTrials.gov Identifier: NCT04572243) (last update posted on September 23, 2021).

  17. Food and Drug Administration, Search Orphan Drug Designations and Approvals. Generic name: lorcaserin. Date designated: April 17, 2017. Orphan designation: Treatment of Dravet syndrome. https://www.accessdata.fda.gov/scripts/opdlisting/oopd/detailedIndex.cfm?cfgridkey=565816. Accessed 24 Oct 2021.

  18. European Commission. Community Register of Orphan Medicinal Products. Designation Number EU/3/21/2422. Active substance: Lorcaserin hydrochloride, Indication: treatment of Dravet syndrome. Decision Date: March 26, 2021. https://ec.europa.eu/health/documents/community-register/html/o2422.htm. Accessed 24 Oct 2021.

  19. Higgins GA, Fletcher PJ, Shanahan WR. Lorcaserin: a review of its preclinical and clinical pharmacology and therapeutic potential. Pharmacol Ther. 2020;205:107417.

    Article  CAS  PubMed  Google Scholar 

  20. Christopher R, Morgan M, Ferry J, Rege B, Tang Y, Kristensen A, et al. Single- and multiple-dose pharmacokinetics of a lorcaserin extended-release tablet. Clin Ther. 2016;38:2227–38.

    Article  CAS  PubMed  Google Scholar 

  21. Thomsen WJ, Grottick AJ, Menzaghi F, Reyes-Saldana H, Epita S, Yuskin D, et al. Lorcaserin, novel selective human 5-hydroxytryptamine2C agonist: in vitro and in vivo pharmacological characterization. J Pharmacol Exp Ther. 2008;325:577–87.

    Article  CAS  PubMed  Google Scholar 

  22. De Deurwaerdere P, Ramos M, Bharatiya R, Puginier E, Chagraoui A, Manen J, et al. Lorcaserin bidirectionally regulates dopaminergic function site-dependently and disrupts dopamine brain area correlations in rats. Neuropharmacology. 2020;166:107915.

    Article  PubMed  Google Scholar 

  23. Di Giovanni G, Bharatiya R, Puginier E, Ramos M, De Deurwaerdere S, Chagraoui A, et al. Lorcaserin alters serotonin and noradrenaline tissue content and their interaction with dopamine in the rat brain. Front Pharmacol. 2020;11:962.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Di Giovanni G, De Deurwaerdere P. New therapeutic opportunities for 5-HT2c receptor ligands in neuropsychiatric disorders. Pharmacol Ther. 2016;157:125–62.

    Article  PubMed  Google Scholar 

  25. Barnes NM, Ahern GP, Becamel C, Bockaert J, Camilleri M, Chaumont-Dubel S, et al. International Union of Basic and Clinical Pharmacology. CX. Classification of receptors for 5-hydroxytryptamine; pharmacology and function. Pharmacol Rev. 2021;73:310–520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Arena Pharmaceuticals. FDA briefing document. NDA 22529. Lorqess (Lorcaserin hydrochloride) 10 mg tablets. Advisory Committee – September 16, 2010. http://www.sefap.it/farmacovigilanza_news_201011/UCM225631.PDF. Accessed 15 Oct 2021.

  27. Usmani KA, Chen WG, Sadeque AJ. Identification of human cytochrome P450 and flavin-containing monooxygenase enzymes involved in the metabolism of lorcaserin, a novel selective human 5-hydroxytryptamine 2C agonist. Drug Metab Dispos. 2012;40:761–71.

    Article  CAS  PubMed  Google Scholar 

  28. Sadeque AJ, Usmani KA, Palamar S, Cerny MA, Chen WG. Identification of human UDP-glucuronosyltransferases involved in N-carbamoyl glucuronidation of lorcaserin. Drug Metab Dispos. 2012;40:772–8.

    Article  CAS  PubMed  Google Scholar 

  29. Sadeque AJ, Palamar S, Usmani KA, Chen C, Cerny MA, Chen WG. Identification of human sulfotransferases involved in lorcaserin N-sulfamate formation. Drug Metab Dispos. 2016;44:570–5.

    Article  CAS  PubMed  Google Scholar 

  30. Nickels KC, Wirrell EC. Stiripentol in the management of epilepsy. CNS Drugs. 2017;31:405–16.

    Article  CAS  PubMed  Google Scholar 

  31. Smith SR, Weissman NJ, Anderson CM. Behavioral Modification and Lorcaserin for Overweight and Obesity Management (BLOOM) Study Group. Multicenter placebo-controlled trial of lorcaserin for weight management. N Engl J Med. 2010;363:245–56.

    Article  CAS  PubMed  Google Scholar 

  32. Fidelder MC, Sanchez M, Raether B, Weissman NJ, Smith SR, Shanahan WR, et al. A 1-year randomized trial of lorcaserin for weight loss in obese and overweight adults: The BLOSSOM trial. J Clin Endocrinol Metab. 2011;96:3067–77.

    Article  Google Scholar 

  33. O’Neil PM, Smith SR, Weissman NJ, Fidler MC, Sanchez M, Zhang J, et al. Randomized placebo-controlled clinical trial of lorcaserin for weight loss in type 2 diabetes mellitus: the BLOOM-DM study. Obesity. 2012;20:1426–33.

    Article  PubMed  Google Scholar 

  34. Anonymous. Lorcaserin. In obesity: unacceptable risks. Prescrire Int. 2014;23:117–20.

  35. Food and Drug Administration, Center for Drug Evaluation and research. Application No. 02259Orig1s000. Pharmacology Reviews, June 15, 2012. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2012/022529Orig1s000PharmR.pdf. Accessed 20 Oct 2021.

  36. Bagdy G, Keeskemeti V, Riba P, Jakus R. Serotonin and epilepsy. J Neurochem. 2007;100:857–73.

    Article  CAS  PubMed  Google Scholar 

  37. Jobe PC, Browning RA. The serotonergic and noradrenergic effects of antidepressant drugs are anticonvulsant, not proconvulsant. Epilepsy Behav. 2005;7:602–19.

    Article  PubMed  Google Scholar 

  38. Buterbaugh CG. Effect of drugs modifying central serotonergic function on the response of extensor and nonextensor rats to maximal electroschock. Life Sci. 1978;23:2393–404.

    Article  CAS  PubMed  Google Scholar 

  39. Daily JW, Yan QS, Mishra PK, Burger RL, Jobe PC. Effects of fluoxetine on convulsions and on brain serotonin as detected by microdialysis in genetically epilepsy-prone rats. J Pharmacol Exp Ther. 1992;260:533–40.

    Google Scholar 

  40. Hamid H, Kanner A. Should antidepressant drugs of the selective serotonin reuptake inhibitor family be tested as antiepileptic drugs? Epilepsy Behav. 2013;26:261–5.

    Article  PubMed  Google Scholar 

  41. Venzi M, David F, Bellet J, Cavaccini A, Bombardi C, Crunelli V, et al. Role for serotonin 2A (5-HT2A) and 2C (5-HT2C) receptors in experimental absence seizures. Neuropharmacology. 2016;108:292–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schoonjans AS, Lagae L, Ceulemans B. Low-dose fenfluramine in the treatment of neurologic disorders: experience in Dravet syndrome. Ther Adv Neurol Disord. 2015;8:328–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jakus R, Graf M, Juhasz J, Gerber K, Levay G, Halasz P, et al. 5-HT2C receptors inhibit and 5-HT1A receptors activate the generation of spike-wave discharge in a generic rat model of absence. Exp Neurol. 2003;84:964–72.

    Article  Google Scholar 

  44. Isaac M. Serotonergic 5-HT2c receptors as a potential therapeutic target for the design of antiepileptic drugs. Curr Topic Med Chem. 2005;5:59–67.

    Article  CAS  Google Scholar 

  45. Tecott LH, Sun LM, Akana SF, Strack AM, Lowenstein DH, Dallman DF, et al. Eating disorder and epilepsy in mice lacking 5HT2C serotonin receptors. Nature. 1995;374:542–6.

    Article  CAS  PubMed  Google Scholar 

  46. Applegate CD, Tecott LH. Global increases in seizure susceptibility in mice lacking 5-HT2C receptors, a behavioral analysis. Exp Neurol. 1998;154:522–30.

    Article  CAS  PubMed  Google Scholar 

  47. Upton N, Stean T, Middlemiss D, Blackburn T, Kennett G. Studies on the role of 5-HT2C and 5-HT2B receptors in regulating generalised seizure threshold in rodents. Eur J Pharmacol. 1998;359:33–40.

    Article  CAS  PubMed  Google Scholar 

  48. Silenieks LB, Carroll NK, Van Niekerk A, Van Niekerk E, Taylor C, Upton N, et al. Evaluation of selective 5HT2C agonists in acute seizure models. ACS Chem Neurosci. 2019;10:3284–95.

    Article  CAS  PubMed  Google Scholar 

  49. Martin P, White HS, Barker-Haliski M. Evaluation of the acute anticonvulsant efficacy of fenfluramine in mouse models of acute and chronic seizures. 73rd Annual Meeting of the American Epilepsy Society, Baltimore, MD, December 6-10, 2019. Abstract (Abst. 2.203): https://www.aesnet.org/meetings_events/annual_meeting_abstracts/view/2421648. Accessed 15 Oct 2021.

  50. Orban G, Bombardi C, Gammazza AM, Colangeli R, Pierucci M, Pomara C, et al. Role(s) of the 5-HT2C receptor in the development of maximal dentate activation in the hippocampus of anesthetized rats. CNS Neurosci Ther. 2014;20:651–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang Y, Kecskés A, Copmans D, Langlois M, Crawford AD, Ceulemans B, et al. Pharmacological characterization of an antisense knockdown zebrafish model of Dravet syndrome: inhibition of epileptic seizures by the serotonin agonist fenfluramine. PLoS One. 2015;10(5):e0125898.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Dinday MT, Baraban SC. Large-scale phenotype-based antiepileptic drug screening in a zebrafish model of Dravet syndrome. eNeuro. 2015;2:ENEURO.0068-15.2015

  53. Winter MJ, Redfern WS, Hayfield AJ, Owen SF, Valentin JP, Hutchinson TH. Validation of a larval zebrafish locomotor assay for assessing the seizure liability of early-stage development drugs. J Pharmacol Toxicol Methods. 2008;57:176–87.

    Article  CAS  PubMed  Google Scholar 

  54. Baraban SC, Dinday MT, Hortopan GA. Drug screening in Scn1a zebrafish mutant identifies clemizole as a potential Dravet syndrome treatment. Nat Commun. 2013;4:2410.

    Article  PubMed  Google Scholar 

  55. Baraban SC, Taylor MR, Castro PA, Baier H. Pentylenetetrazole induced changes in zebrafish behavior, neural activity and c-fos expression. Neuroscience. 2005;131:759–68.

    Article  CAS  PubMed  Google Scholar 

  56. Hong S, Lee P, Baraban SC, Lee LP. A novel long-term, multi-channel and non-invasive electrophysiology platform for Zebrafish. Sci Rep. 2016;6:28248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Meyer M, Dhamne SC, LaCoursiere CM, Tambunan D, Poduri A, Rotenberg A. Microarray noninvasive neuronal seizure recordings from intact larval zebrafish. PLoS One. 2016;11(6):e015649.

    Google Scholar 

  58. Sourbron J, Smolders I, de Witte P, Lagae L. Pharmacological analysis of the anti-epileptic mechanisms of fenfluramine in scn1a mutant zebrafish. Front Pharmacol. 2017;8:191.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Griffin A, Hamling KR, Knupp K, Hong SG, Lee LP, Baraban SC. Clemizole and modulators of serotonin signaling suppress seizures in Dravet syndrome. Brain. 2017;140:669–83.

    PubMed  PubMed Central  Google Scholar 

  60. Tolete P, Knupp K, Karlovich M, DeCarlo E, Bluvstein J, Conway E, et al. Lorcaserin therapy for severe epilepsy of childhood onset: a case series. Neurology. 2018;91:837–9.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Eisai Inc. (sponsor). Extended access program with lorcaserin for the treatment of Dravet syndrome and other refractory epilepsies (ClinicalTrials.gov Identifier: NCT04457687) (last update posted on June 30, 2021). https://clinicaltrials.gov/ct2/show/NCT04457687?term=lorcaserin&cond=epilepsy&draw=2&rank=1. Accessed 15 Oct 2021.

  62. Liu S, Bubar MJ, Lanfranco MF, Hillman GR, Cunningham KA. Serotonin 2C receptor localization in GABA neurons of the rat medial prefrontal cortex: implications for understanding the neurobiology of addiction. Neuroscience. 2007;146:1677–88.

    Article  CAS  PubMed  Google Scholar 

  63. Boothman L, Raley J, Denk F, Hirani E, Sharp T. In vivo evidence that 5-HT(2C) receptors inhibit 5-HT neuronal activity via a GABAergic mechanism. Br J Pharmacol. 2006;149:861–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Catterall WA. Dravet syndrome: a sodium channel interneuronopathy. Curr Opin Physiol. 2018;2:42–50.

    Article  PubMed  Google Scholar 

  65. Longboard Pharma. Pipeline. LP532. A 5-HT2c superagonist. https://www.longboardpharma.com/pipeline/. Accessed 19 Oct 2021.

  66. Rodríguez-Muñoz M, Sánchez-Blázquez P, Garzón J. Fenfluramine diminishes NMDA receptor-mediated seizures via its mixed activity at serotonin 5HT2A and type 1 sigma receptors. Oncotarget. 2018;9:23373–89.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Perucca E, Wiebe S. Not all that glitters is gold: a guide to the critical interpretation of drug trials in epilepsy. Epilepsia Open. 2016;1:9–21.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Cooper MS, Mcintosh A, Crompton DE, McMahon JM, Schneider A, Farrell K, et al. Mortality in Dravet syndrome. Epilepsy Res. 2016;128:43–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meir Bialer.

Ethics declarations

Funding

This work was not supported by any funding source.

Conflict of interest

MB received speaker's or consultancy fees from Alkaloid, Boehringer Ingelheim, Medison, Pharma Two B, Rekah-Vitamed, USWorldMeds, and Xenon Pharma. EP received speaker and/or consultancy fees from Angelini, Arvelle, Biogen, Biopas, Eisai, GW Pharma, Sanofi group of companies, SKL Life Science, Takeda, UCB Pharma, Xenon Pharma, and Zogenix, and royalties from Wiley, Elsevier, and Wolters Kluwers.

Author contributions

MB and EP contributed equally to this work. Both authors have read and approved the final version of the manuscript, and agree to be accountable for the work.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bialer, M., Perucca, E. Lorcaserin for Dravet Syndrome: A Potential Advance Over Fenfluramine?. CNS Drugs 36, 113–122 (2022). https://doi.org/10.1007/s40263-022-00896-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-022-00896-3

Navigation