Skip to main content

Advertisement

Log in

Clinical Pharmacokinetic and Pharmacodynamic Considerations in the Treatment of Moderate-to-Severe Psoriasis

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Psoriasis is a common inflammatory immune disorder due to chronic activation of the adaptive and innate immune responses. Therapies for psoriasis target reducing inflammatory cytokines such as tumor necrosis factor-alpha, interleukin-17, and interleukin-22. Patients with inflammatory disorders have reduced metabolism by cytochrome P450 enzymes in the liver. The pharmacokinetic and pharmacodynamic changes due to psoriasis also have an impact on reaching therapeutic concentrations of the drug. Pharmacokinetic and pharmacodynamic data help determine the safety and clinical considerations necessary when utilizing drugs for plaque psoriasis. A literature search was performed on PubMed and Ovid MEDLINE for the pharmacokinetic and pharmacodynamic data of oral therapies and biologics utilized for moderate-to-severe plaque psoriasis. The findings from the literature search were organized into two sections: oral therapies and biologics. The pharmacokinetic and pharmacodynamic parameters in healthy patients, patients with psoriasis, and special populations are discussed in each section. The oral therapies described in this review include methotrexate, cyclosporine, apremilast, tofacitinib, and deucravacitinib. Biologics include tumor necrosis factor-alpha inhibitors, interleukin-17 inhibitors, ustekinumab, and interleukin-23 inhibitors. Clinical considerations for these therapies include drug toxicities, dosing frequency, and anti-drug antibodies. Methotrexate and cyclosporine have a risk for hepatoxicity and renal impairment, respectively. Moreover, drugs metabolized via cytochrome P450, including tofacitinib and apremilast have decreased clearance in patients with psoriasis, requiring dose adjustments. Patients treated with therapies such as adalimumab can develop anti-drug antibodies that reduce the long-term efficacy of the drug. Additionally, overweight patients benefit from more frequent dosing to achieve better psoriasis clearance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from Reis, J., Vender, R., & Torres, T. (2019). Bimekizumab: the first dual inhibitor of interleukin (IL)-17A and IL-17F for the treatment of psoriatic disease and ankylosing spondylitis. BioDrugs, 33, 391-399. Licensing number: 5595510452417

Similar content being viewed by others

References

  1. Michalek IM, Loring B, John SM. Global report on psoriasis. Geneva: World Health Organization; 2016.

    Google Scholar 

  2. Kolli SS, Amin SD, Pona A, Cline A, Feldman SR. Psychosocial impact of psoriasis: a review for dermatology residents. Cutis. 2018;102(5S):21–5.

    PubMed  Google Scholar 

  3. Stanke-Labesque F, Gautier-Veyret E, Chhun S, Guilhaumou R, French Society of Pharmacology and Therapeutics. Inflammation is a major regulator of drug metabolizing enzymes and transporters: consequences for the personalization of drug treatment. Pharmacol Ther. 2020;215:107627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Morales Castro D, Dresser L, Granton J, Fan E. Pharmacokinetic alterations associated with critical illness. Clin Pharmacokinet. 2023;62(2):209–20.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ho VC, Griffiths CE, Berth-Jones J, Papp KA, Vanaclocha F, Dauden E, et al. Intermittent short courses of cyclosporine microemulsion for the long-term management of psoriasis: a 2-year cohort study. J Am Acad Dermatol. 2001;44(4):643–51.

    Article  CAS  PubMed  Google Scholar 

  6. Dogra S, Krishna V, Kanwar AJ. Efficacy and safety of systemic methotrexate in two fixed doses of 10 mg or 25 mg orally once weekly in adult patients with severe plaque-type psoriasis: a prospective, randomized, double-blind, dose-ranging study. Clin Exp Dermatol. 2012;37(7):729–34.

    Article  CAS  PubMed  Google Scholar 

  7. Radmanesh M, Rafiei B, Moosavi Z, Sina N. Weekly vs daily administration of oral methotrexate (MTX) for generalized plaque psoriasis: a randomized controlled clinical trial. Int J Dermatol. 2011;50(10):1291–3.

    Article  CAS  PubMed  Google Scholar 

  8. Menting SP, van Lümig PP, de Vries AQ, van den Reek JM, van der Kleij D, de Jong EM, et al. Extent and consequences of antibody formation against adalimumab in patients with psoriasis: one-year follow-up. JAMA Dermatol. 2014;150(2):130–6.

    Article  CAS  PubMed  Google Scholar 

  9. Suleiman AA, Minocha M, Khatri A, Pang Y, Othman AA. Population pharmacokinetics of risankizumab in healthy volunteers and subjects with moderate to severe plaque psoriasis: integrated analyses of phase I-III clinical trials. Clin Pharmacokinet. 2019;58:1309–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Menter A, Gelfand JM, Connor C, Armstrong AW, Cordoro KM, Davis DM, et al. Joint American Academy of Dermatology-National Psoriasis Foundation guidelines of care for the management of psoriasis with systemic nonbiologic therapies. J Am Acad Dermatol. 2020;82(6):1445–86.

    Article  CAS  PubMed  Google Scholar 

  11. Chan ES, Cronstein BN. Molecular action of methotrexate in inflammatory diseases. Arthritis Res Ther. 2002;4(4):1–8.

    Google Scholar 

  12. Cream JJ, Pole DS. The effect of methotrexate and hydroxyurea on neutrophil chemotaxis. Br J Dermatol. 1980;102(5):557–63.

    Article  CAS  PubMed  Google Scholar 

  13. Ternowitz T, Herlin T. Neutrophil and monocyte chemotaxis in methotrexate-treated psoriasis patients. Acta Derm Venereol Suppl. 1985;120:23–6.

    CAS  Google Scholar 

  14. Weinstein GD, Velasco J. Selective action of methotrexate on psoriatic epidermal cells. J Invest Dermatol. 1972;59(1):121–7.

    Article  CAS  PubMed  Google Scholar 

  15. Jeffes EW III, McCullough JL, Pittelkow MR, McCormick A, Almanzor J, Liu G, et al. Methotrexate therapy of psoriasis: differential sensitivity of proliferating lymphoid and epithelial cells to the cytotoxic and growth-inhibitory effects of methotrexate. J Invest Dermatol. 1995;104(2):183–8.

    Article  PubMed  Google Scholar 

  16. Genestier L, Paillot R, Fournel S, Ferraro C, Miossec P, Revillard J. Immunosuppressive properties of methotrexate: apoptosis and clonal deletion of activated peripheral T cells. J Clin Invest. 1998;102(2):322–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Weinstein GD, Goldfaden G, Frost P. Methotrexate: mechanism of action on DNA synthesis in psoriasis. Arch Dermatol. 1971;104(3):236–43.

    Article  CAS  PubMed  Google Scholar 

  18. Grim J, Chládek J, Martínková J. Pharmacokinetics and pharmacodynamics of methotrexate in non-neoplastic diseases. Clin Pharmacokinet. 2003;42:139–51.

    Article  CAS  PubMed  Google Scholar 

  19. Oguey D, Kölliker F, Gerber NJ, Reichen J. Effect of food on the bioavailability of low-dose methotrexate in patients with rheumatoid arthritis. Arthritis Rheum. 1992;35(6):611–4.

    Article  CAS  PubMed  Google Scholar 

  20. Carneiro SC, Cassia FF, Lamy F, Chagas V, Ramos-e-Silva M. Methotrexate and liver function: a study of 13 psoriasis cases treated with different cumulative dosages. J Eur Acad Dermatol Venereol. 2008;22(1):25–9.

    Article  CAS  PubMed  Google Scholar 

  21. Saurat J, Stingl G, Dubertret L, Papp K, Langley RG, Ortonne J, CHAMPION Study Investigators, et al. Efficacy and safety results from the randomized controlled comparative study of adalimumab vs methotrexate vs placebo in patients with psoriasis (CHAMPION). Br J Dermatol. 2008;158(3):558–66.

    Article  CAS  PubMed  Google Scholar 

  22. Sbidian E, Chaimani A, Garcia-Doval I, Doney L, Dressler C, Hua C, et al. Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis. Cochrane Database Syst Rev. 2022;5(5):CD011535.

    PubMed  Google Scholar 

  23. Barker J, Hoffmann M, Wozel G, Ortonne J, Zheng H, Van-Hoogstraten H, et al. Efficacy and safety of infliximab vs. methotrexate in patients with moderate-to-severe plaque psoriasis: results of an open-label, active-controlled, randomized trial (RESTORE1). Br J Dermatol. 2011;165(5):1109–17.

    Article  CAS  PubMed  Google Scholar 

  24. Jabbar-Lopez ZK, Yiu ZZ, Ward V, Exton LS, Mustapa MFM, Samarasekera E, et al. Quantitative evaluation of biologic therapy options for psoriasis: a systematic review and network meta-analysis. J Invest Dermatol. 2017;137(8):1646–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rosmarin DM, Lebwohl M, Elewski BE, Gottlieb AB. Cyclosporine and psoriasis: 2008 national psoriasis foundation consensus conference. J Am Acad Dermatol. 2010;62(5):838–53.

    Article  PubMed  Google Scholar 

  26. Haider AS, Lowes MA, Suárez-Farinas M, Zaba LC, Cardinale I, Khatcherian A, et al. Identification of cellular pathways of “type 1”, Th17 T cells, and TNF-and inducible nitric oxide synthase-producing dendritic cells in autoimmune inflammation through pharmacogenomic study of cyclosporine A in psoriasis. J Immunol. 2008;180(3):1913–20.

    Article  CAS  PubMed  Google Scholar 

  27. Faulds D, Goa KL, Benfield P. Cyclosporin: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in immunoregulatory disorders. Drugs. 1993;45(6):953–1040.

    Article  CAS  PubMed  Google Scholar 

  28. Maza A, Montaudié H, Sbidian E, Gallini A, Aractingi S, Aubin F, et al. Oral cyclosporin in psoriasis: a systematic review on treatment modalities, risk of kidney toxicity and evidence for use in non-plaque psoriasis. J Eur Acad Dermatol Venereol. 2011;25:19–27.

    Article  CAS  PubMed  Google Scholar 

  29. Koo J, OLP302 Study Group. A randomized, double-blind study comparing the efficacy, safety and optimal dose of two formulations of cyclosporin, Neoral and Sandimmun, in patients with severe psoriasis. Br J Dermatol. 1998;139(1):88–95.

    Article  CAS  PubMed  Google Scholar 

  30. Ellis CN, Fradin MS, Messana JM, Brown MD, Siegel MT, Hartley AH, et al. Cyclosporine for plaque-type psoriasis: results of a multidose, double-blind trial. N Engl J Med. 1991;324(5):277–84.

    Article  CAS  PubMed  Google Scholar 

  31. Shupack J, Abel E, Bauer E, Brown M, Drake L, Freinkel R, et al. Cyclosporine as maintenance therapy in patients with severe psoriasis. J Am Acad Dermatol. 1997;36(3):423–32.

    Article  CAS  PubMed  Google Scholar 

  32. Markham T, Watson A, Rogers S. Adverse effects with long-term cyclosporin for severe psoriasis. Clin Exp Dermatol. 2002;27(2):111–4.

    Article  PubMed  Google Scholar 

  33. Schafer PH, Parton A, Capone L, Cedzik D, Brady H, Evans JF, et al. Apremilast is a selective PDE4 inhibitor with regulatory effects on innate immunity. Cell Signal. 2014;26(9):2016–29.

    Article  CAS  PubMed  Google Scholar 

  34. Schafer PH, Chen P, Fang L, Wang A, Chopra R. The pharmacodynamic impact of apremilast, an oral phosphodiesterase 4 inhibitor, on circulating levels of inflammatory biomarkers in patients with psoriatic arthritis: substudy results from a phase III, randomized, placebo-controlled trial (PALACE 1). J Immunol Res. 2015;2015:906349.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Deeks ED. Apremilast: a review in psoriasis and psoriatic arthritis. Drugs. 2015;75:1393–403.

    Article  CAS  PubMed  Google Scholar 

  36. Papp K, Reich K, Leonardi CL, Kircik L, Chimenti S, Langley RG, et al. Apremilast, an oral phosphodiesterase 4 (PDE4) inhibitor, in patients with moderate to severe plaque psoriasis: results of a phase III, randomized, controlled trial (Efficacy and Safety Trial Evaluating the Effects of Apremilast in Psoriasis [ESTEEM] 1). J Am Acad Dermatol. 2015;73(1):37–49.

    Article  CAS  PubMed  Google Scholar 

  37. Reich K, Gooderham M, Green L, Bewley A, Zhang Z, Khanskaya I, et al. The efficacy and safety of apremilast, etanercept and placebo in patients with moderate-to-severe plaque psoriasis: 52-week results from a phase IIIb, randomized, placebo-controlled trial (LIBERATE). J Eur Acad Dermatol Venereol. 2017;31(3):507–17.

    Article  CAS  PubMed  Google Scholar 

  38. Cutolo M, Myerson GE, Fleischmann RM, Lioté F, Díaz-González F, Van den Bosch F, et al. A phase III, randomized, controlled trial of apremilast in patients with psoriatic arthritis: results of the PALACE 2 trial. J Rheumatol. 2016;43(9):1724–34.

    Article  PubMed  Google Scholar 

  39. Armstrong AW, Gooderham M, Warren RB, Papp KA, Strober B, Thaçi D, et al. Deucravacitinib versus placebo and apremilast in moderate to severe plaque psoriasis: efficacy and safety results from the 52-week, randomized, double-blinded, placebo-controlled phase 3 POETYK PSO-1 trial. J Am Acad Dermatol. 2023;88(1):29–39.

    Article  CAS  PubMed  Google Scholar 

  40. Azevedo A, Torres T. Tofacitinib: a new oral therapy for psoriasis. Clin Drug Invest. 2018;38:101–12.

    Article  CAS  Google Scholar 

  41. Krishnaswami S, Boy M, Chow V, Chan G. Safety, tolerability, and pharmacokinetics of single oral doses of tofacitinib, a Janus kinase inhibitor, in healthy volunteers. Clin Pharmacol Drug Dev. 2015;4(2):83–8.

    Article  CAS  PubMed  Google Scholar 

  42. Dowty ME, Lin J, Ryder TF, Wang W, Walker GS, Vaz A, et al. The pharmacokinetics, metabolism, and clearance mechanisms of tofacitinib, a janus kinase inhibitor, in humans. Drug Metab Dispos. 2014;42(4):759–73.

    Article  PubMed  Google Scholar 

  43. Ma G, Xie R, Strober B, Langley R, Ito K, Krishnaswami S, et al. Pharmacokinetic characteristics of tofacitinib in adult patients with moderate to severe chronic plaque psoriasis. Clin Pharmacol Drug Dev. 2018;7(6):587–96.

    Article  CAS  PubMed  Google Scholar 

  44. Machavaram KK, Almond LM, Rostami-Hodjegan A, Gardner I, Jamei M, Tay S, et al. A physiologically based pharmacokinetic modeling approach to predict disease–drug interactions: suppression of CYP3A by IL-6. Clin Pharmacol Ther. 2013;94(2):260–8.

    Article  CAS  PubMed  Google Scholar 

  45. Papp KA, Menter MA, Abe M, Elewski B, Feldman SR, Gottlieb AB, et al. Tofacitinib, an oral Janus kinase inhibitor, for the treatment of chronic plaque psoriasis: results from two randomized, placebo-controlled, phase III trials. Br J Dermatol. 2015;173(4):949–61.

    Article  CAS  PubMed  Google Scholar 

  46. Papp KA, Krueger JG, Feldman SR, Langley RG, Thaci D, Torii H, et al. Tofacitinib, an oral Janus kinase inhibitor, for the treatment of chronic plaque psoriasis: long-term efficacy and safety results from 2 randomized phase-III studies and 1 open-label long-term extension study. J Am Acad Dermatol. 2016;74(5):841–50.

    Article  CAS  PubMed  Google Scholar 

  47. Shalom G, Zisman D, Bitterman H, Harman-Boehm I, Greenberg-Dotan S, Dreiher J, et al. Systemic therapy for psoriasis and the risk of herpes zoster: a 500 000 person-year study. JAMA Dermatol. 2015;151(5):533–8.

    Article  PubMed  Google Scholar 

  48. Gadina M, Chisolm DA, Philips RL, McInness IB, Changelian PS, O’Shea JJ. Translating JAKs to jakinibs. J Immunol. 2020;204(8):2011–20.

    Article  CAS  PubMed  Google Scholar 

  49. Chimalakonda A, Burke J, Cheng L, Catlett I, Tagen M, Zhao Q, et al. Selectivity profile of the tyrosine kinase 2 inhibitor deucravacitinib compared with Janus kinase 1/2/3 inhibitors. Dermatol Ther. 2021;11(5):1763–76.

    Article  Google Scholar 

  50. Schwartz DM, Kanno Y, Villarino A, Ward M, Gadina M, O’Shea JJ. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat Rev Drug Discov. 2017;16(12):843–62.

    Article  CAS  PubMed  Google Scholar 

  51. Catlett IM, Aras U, Hansen L, Liu Y, Bei D, Girgis IG, et al. First-in-human study of deucravacitinib: a selective, potent, allosteric small-molecule inhibitor of tyrosine kinase 2. Clin Transl Sci. 2023;16(1):151–64.

    Article  CAS  PubMed  Google Scholar 

  52. Strober B, Thaçi D, Sofen H, Kircik L, Gordon KB, Foley P, et al. Deucravacitinib versus placebo and apremilast in moderate to severe plaque psoriasis: efficacy and safety results from the 52-week, randomized, double-blinded, phase 3 Program fOr Evaluation of TYK2 inhibitor psoriasis second trial. J Am Acad Dermatol. 2023;88(1):40–51.

    Article  CAS  PubMed  Google Scholar 

  53. Winthrop KL. The emerging safety profile of JAK inhibitors in rheumatic disease. Nat Rev Rheumatol. 2017;13(4):234–43.

    Article  CAS  PubMed  Google Scholar 

  54. Ergun T, Seckin Gencosmanoglu D, Alpsoy E, Bulbul-Baskan E, Saricam MH, Salman A, et al. Efficacy, safety and drug survival of conventional agents in pediatric psoriasis: a multicenter, cohort study. J Dermatol. 2017;44(6):630–4.

    Article  CAS  PubMed  Google Scholar 

  55. Van Geel MJ, Mul K, De Jager M, Van De Kerkhof P, De Jong E, Seyger M. Systemic treatments in paediatric psoriasis: a systematic evidence-based update. J Eur Acad Dermatol Venereol. 2015;29(3):425–37.

    Article  PubMed  Google Scholar 

  56. Dogra S, Mahajan R, Narang T, Handa S. Systemic cyclosporine treatment in severe childhood psoriasis: a retrospective chart review. J Dermatol Treat. 2017;28(1):18–20.

    Article  CAS  Google Scholar 

  57. Menter A, Cordoro KM, Davis DM, Kroshinsky D, Paller AS, Armstrong AW, et al. Joint American Academy of Dermatology-National Psoriasis Foundation guidelines of care for the management and treatment of psoriasis in pediatric patients. J Am Acad Dermatol. 2020;82(1):161–201.

    Article  PubMed  Google Scholar 

  58. Bronckers IM, Paller AS, West DP, Lara-Corrales I, Tollefson MM, Tom WL, et al. A comparison of psoriasis severity in pediatric patients treated with methotrexate vs biologic agents. JAMA Dermatol. 2020;156(4):384–92.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Paller AS, Hong Y, Becker EM, de Lucas R, Paris M, Zhang W, et al. Pharmacokinetics and safety of apremilast in pediatric patients with moderate to severe plaque psoriasis: results from a phase 2 open-label study. J Am Acad Dermatol. 2020;82(2):389–97.

    Article  CAS  PubMed  Google Scholar 

  60. Ruperto N, Brunner HI, Zuber Z, Tzaribachev N, Kingsbury DJ, Foeldvari I, et al. Pharmacokinetic and safety profile of tofacitinib in children with polyarticular course juvenile idiopathic arthritis: results of a phase 1, open-label, multicenter study. Pediatr Rheumatol. 2017;15(1):1–10.

    Article  Google Scholar 

  61. AlMutairi N, Nour T. Tofacitinib in pediatric psoriasis: an open-label trial to study its safety and efficacy in children. Dermatology. 2020;236(3):191–8.

    Article  CAS  PubMed  Google Scholar 

  62. Zhou H. Clinical pharmacokinetics of etanercept: a fully humanized soluble recombinant tumor necrosis factor receptor fusion protein. J Clin Pharmacol. 2005;45(5):490–7.

    Article  CAS  PubMed  Google Scholar 

  63. Ogawa E, Sato Y, Minagawa A, Okuyama R. Pathogenesis of psoriasis and development of treatment. J Dermatol. 2018;45(3):264–72.

    Article  CAS  PubMed  Google Scholar 

  64. Ettehadi P, Greaves MW, Wallach D, Aderka D, Camp R. Elevated tumour necrosis factor-alpha (TNF-α) biological activity in psoriatic skin lesions. Clin Exp Immunol. 1994;96(1):146–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Korth-Bradley JM, Rubin AS, Hanna RK, Simcoe DK, Lebsack ME. The pharmacokinetics of etanercept in healthy volunteers. Ann Pharmacother. 2000;34(2):161–4.

    Article  CAS  PubMed  Google Scholar 

  66. European Medicines Agency. Humira summary of product characteristics. 2021. https://www.ema.europa.eu/en/documents/product-information/humira-epar-product-information_en.pdf. Accessed 17 Jan 2024.

  67. Nestorov I, Zitnik R, DeVries T, Nakanishi AM, Wang A, Banfield C. Pharmacokinetics of subcutaneously administered etanercept in subjects with psoriasis. Br J Clin Pharmacol. 2006;62(4):435–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. van der Kraaij G, Busard C, van den Reek J, Menting S, Musters A, Hutten B, et al. Adalimumab with methotrexate vs. adalimumab monotherapy in psoriasis: first-year results of a single-blind randomized controlled trial. J Invest Dermatol. 2022;142(9):2375-83.e6.

    Article  PubMed  Google Scholar 

  69. van Huizen AM, van der Kraaij GE, Busard CI, Ouwerkerk W, van den Reek JM, Menting SP, et al. Adalimumab combined with methotrexate versus adalimumab monotherapy in psoriasis: three-year follow-up data of a single-blind randomised controlled trial. J Eur Acad Dermatol Venereol. 2023;37(9):1815–24.

    Article  PubMed  Google Scholar 

  70. Blauvelt A, Chiricozzi A. The immunologic role of IL-17 in psoriasis and psoriatic arthritis pathogenesis. Clin Rev Allergy Immunol. 2018;55:379–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Martin DA, Towne JE, Kricorian G, Klekotka P, Gudjonsson JE, Krueger JG, et al. The emerging role of IL-17 in the pathogenesis of psoriasis: preclinical and clinical findings. J Invest Dermatol. 2013;133(1):17–26.

    Article  CAS  PubMed  Google Scholar 

  72. Wright JF, Bennett F, Li B, Brooks J, Luxenberg DP, Whitters MJ, et al. The human IL-17F/IL-17A heterodimeric cytokine signals through the IL-17RA/IL-17RC receptor complex. J Immunol. 2008;181(4):2799–805.

    Article  CAS  PubMed  Google Scholar 

  73. Glatt S, Baeten D, Baker T, Griffiths M, Ionescu L, Lawson AD, et al. Dual IL-17A and IL-17F neutralisation by bimekizumab in psoriatic arthritis: evidence from preclinical experiments and a randomised placebo-controlled clinical trial that IL-17F contributes to human chronic tissue inflammation. Ann Rheum Dis. 2018;77(4):523–32.

    Article  CAS  PubMed  Google Scholar 

  74. Bruin G, Hockey HP, La Stella P, Sigurgeirsson B, Fu R, Patekar M, et al. Comparison of pharmacokinetics, safety and tolerability of secukinumab administered subcutaneously using different delivery systems in healthy volunteers and in psoriasis patients. Br J Clin Pharmacol. 2020;86(2):338–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Reich K, Jackson K, Ball S, Garces S, Kerr L, Chua L, et al. Ixekizumab pharmacokinetics, anti-drug antibodies, and efficacy through 60 weeks of treatment of moderate to severe plaque psoriasis. J Invest Dermatol. 2018;138(10):2168–73.

    Article  CAS  PubMed  Google Scholar 

  76. Endres CJ, Salinger DH, Köck K, Gastonguay MR, Martin DA, Klekotka P, et al. Population pharmacokinetics of brodalumab in healthy adults and adults with psoriasis from single and multiple dose studies. J Clin Pharmacol. 2014;54(11):1230–8.

    Article  CAS  PubMed  Google Scholar 

  77. Bruin G, Loesche C, Nyirady J, Sander O. Population pharmacokinetic modeling of secukinumab in patients with moderate to severe psoriasis. J Clin Pharmacol. 2017;57(7):876–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dragatin C, Polus F, Bodenlenz M, Calonder C, Aigner B, Tiffner KI, et al. Secukinumab distributes into dermal interstitial fluid of psoriasis patients as demonstrated by open flow microperfusion. Exp Dermatol. 2016;25(2):157–9.

    Article  PubMed  Google Scholar 

  79. Glatt S, Helmer E, Haier B, Strimenopoulou F, Price G, Vajjah P, et al. First-in-human randomized study of bimekizumab, a humanized monoclonal antibody and selective dual inhibitor of IL-17A and IL-17F, in mild psoriasis. Br J Clin Pharmacol. 2017;83(5):991–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Reich K, Blauvelt A, Armstrong A, Langley RG, de Vera A, Kolbinger F, et al. Secukinumab, a fully human anti-interleukin-17A monoclonal antibody, exhibits low immunogenicity in psoriasis patients treated up to 5 years. J Eur Acad Dermatol Venereol. 2019;33(9):1733–41.

    Article  CAS  PubMed  Google Scholar 

  81. Bertelsen T, Ljungberg C, Litman T, Huppertz C, Hennze R, Rønholt K, et al. IκBζ is a key player in the antipsoriatic effects of secukinumab. J Allergy Clin Immunol. 2020;145(1):379–90.

    Article  CAS  PubMed  Google Scholar 

  82. Reich K, Puig L, Szepietowski JC, Paul C, Lacour JP, Tsianakas A, et al. Secukinumab dosing optimization in patients with moderate-to-severe plaque psoriasis: results from the randomized, open-label OPTIMISE study. Br J Dermatol. 2020;182(2):304–15.

    Article  CAS  PubMed  Google Scholar 

  83. Reich K, Körber A, Mrowietz U, Sticherling M, Sieder C, Früh J, et al. Secukinumab 2-weekly vs. 4-weekly dosing in patients with plaque-type psoriasis: results from the randomized GAIN study. Br J Dermatol. 2021;184(5):849–56.

    Article  CAS  PubMed  Google Scholar 

  84. Hsu S, Green LJ, Lebwohl MG, Wu JJ, Blauvelt A, Jacobson AA. Comparable efficacy and safety of brodalumab in obese and nonobese patients with psoriasis: analysis of two randomized controlled trials. Br J Dermatol. 2020;182(4):880–8.

    Article  CAS  PubMed  Google Scholar 

  85. McInnes IB, Behrens F, Mease PJ, Kavanaugh A, Ritchlin C, Nash P, et al. Secukinumab versus adalimumab for treatment of active psoriatic arthritis (EXCEED): a double-blind, parallel-group, randomised, active-controlled, phase 3b trial. Lancet. 2020;395(10235):1496–505.

    Article  CAS  PubMed  Google Scholar 

  86. Mease PJ, Smolen JS, Behrens F, Nash P, Leage SL, Li L, et al. A head-to-head comparison of the efficacy and safety of ixekizumab and adalimumab in biological-naïve patients with active psoriatic arthritis: 24-week results of a randomised, open-label, blinded-assessor trial. Ann Rheum Dis. 2020;79(1):123–31.

    Article  CAS  PubMed  Google Scholar 

  87. Reich K, Warren RB, Lebwohl M, Gooderham M, Strober B, Langley RG, et al. Bimekizumab versus secukinumab in plaque psoriasis. N Engl J Med. 2021;385(2):142–52.

    Article  CAS  PubMed  Google Scholar 

  88. Conti HR, Gaffen SL. IL-17–Mediated immunity to the opportunistic fungal pathogen Candida albicans. J Immunol. 2015;195(3):780–8.

    Article  CAS  PubMed  Google Scholar 

  89. Reddy M, Davis C, Wong J, Marsters P, Pendley C, Prabhakar U. Modulation of CLA, IL-12R, CD40L, and IL-2Rα expression and inhibition of IL-12-and IL-23-induced cytokine secretion by CNTO 1275. Cell Immunol. 2007;247(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  90. Sigmundsdóttir H, Gudjonsson JE, Jónsdóttir I, Ludviksson BR, Valdimarsson H. The frequency of CLA CD8 T cells in the blood of psoriasis patients correlates closely with the severity of their disease. Clin Exp Immunol. 2001;126(2):365–9.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Wu M, Li X, Yang D, Wang M, Zhang H, Li C, et al. Comparison of pharmacokinetic similarity, immunogenicity, and safety of ustekinumab and BAT2206 in healthy Chinese male subjects in a double-blind, randomized, single-dose, parallel-group phase I Trial. BioDrugs. 2023;37(1):89–98.

    Article  CAS  PubMed  Google Scholar 

  92. Gottlieb AB, Cooper KD, McCormick TS, Toichi E, Everitt DE, Frederick B, et al. A phase 1, double-blind, placebo-controlled study evaluating single subcutaneous administrations of a human interleukin-12/23 monoclonal antibody in subjects with plaque psoriasis. Curr Med Res Opin. 2007;23(5):1081–92.

    Article  CAS  PubMed  Google Scholar 

  93. European Medicines Agency. Stelara, summary of product characteristics. 2001. https://www.ema.europa.eu/en/documents/product-information/stelara-epar-product-information_en.pdf. Accessed 17 Jan 2024.

  94. Papp KA, Langley RG, Lebwohl M, Krueger GG, Szapary P, Yeilding N, et al. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 52-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 2). Lancet. 2008;371(9625):1675–84.

    Article  CAS  PubMed  Google Scholar 

  95. Reich K, Papp KA, Blauvelt A, Langley RG, Armstrong A, Warren RB, et al. Bimekizumab versus ustekinumab for the treatment of moderate to severe plaque psoriasis (BE VIVID): efficacy and safety from a 52-week, multicentre, double-blind, active comparator and placebo controlled phase 3 trial. Lancet. 2021;397(10273):487–98.

    Article  CAS  PubMed  Google Scholar 

  96. Singh S, Kroe-Barrett RR, Canada KA, Zhu X, Sepulveda E, Wu H, et al. Selective targeting of the IL23 pathway: generation and characterization of a novel high-affinity humanized anti-IL23A antibody. MAbs. 2015;7(4):778–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Khatri A, Eckert D, Oberoi R, Suleiman A, Pang Y, Cheng L, et al. Pharmacokinetics of risankizumab in Asian healthy subjects and patients with moderate to severe plaque psoriasis, generalized pustular psoriasis, and erythrodermic psoriasis. J Clin Pharmacol. 2019;59(12):1656–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yao Z, Hu C, Zhu Y, Xu Z, Randazzo B, Wasfi Y, et al. Population pharmacokinetic modeling of guselkumab, a human IgG1λ monoclonal antibody targeting IL-23, in patients with moderate to severe plaque psoriasis. J Clin Pharmacol. 2018;58(5):613–27.

    Article  CAS  PubMed  Google Scholar 

  99. Yiu ZZ, Becher G, Kirby B, Laws P, Reynolds NJ, Smith CH, et al. Drug survival associated with effectiveness and safety of treatment with guselkumab, ixekizumab, secukinumab, ustekinumab, and adalimumab in patients with psoriasis. JAMA Dermatol. 2022;158(10):1131–41.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Langley RG, Tsai T, Flavin S, Song M, Randazzo B, Wasfi Y, et al. Efficacy and safety of guselkumab in patients with psoriasis who have an inadequate response to ustekinumab: results of the randomized, double-blind, phase III NAVIGATE trial. Br J Dermatol. 2018;178(1):114–23.

    Article  CAS  PubMed  Google Scholar 

  101. Papp KA, Blauvelt A, Bukhalo M, Gooderham M, Krueger JG, Lacour J, et al. Risankizumab versus ustekinumab for moderate-to-severe plaque psoriasis. N Engl J Med. 2017;376(16):1551–60.

    Article  CAS  PubMed  Google Scholar 

  102. Reich K, Gooderham M, Thaçi D, Crowley JJ, Ryan C, Krueger JG, et al. Risankizumab compared with adalimumab in patients with moderate-to-severe plaque psoriasis (IMMvent): a randomised, double-blind, active-comparator-controlled phase 3 trial. Lancet. 2019;394(10198):576–86.

    Article  CAS  PubMed  Google Scholar 

  103. Warren RB, Blauvelt A, Poulin Y, Beeck S, Kelly M, Wu T, et al. Efficacy and safety of risankizumab vs. secukinumab in patients with moderate-to-severe plaque psoriasis (IMMerge): results from a phase III, randomized, open-label, efficacy-assessor-blinded clinical trial. Br J Dermatol. 2021;184(1):50–9.

    Article  CAS  PubMed  Google Scholar 

  104. Augustin M, Glaeske G, Radtke MA, Christophers E, Reich K, Schäfer I. Epidemiology and comorbidity of psoriasis in children. Br J Dermatol. 2010;162(3):633–6.

    Article  CAS  PubMed  Google Scholar 

  105. Langley RG, Kasichayanula S, Trivedi M, Aras GA, Kaliyaperumal A, Yuraszeck T, et al. Pharmacokinetics, immunogenicity, and efficacy of etanercept in pediatric patients with moderate to severe plaque psoriasis. J Clin Pharmacol. 2018;58(3):340–6.

    Article  CAS  PubMed  Google Scholar 

  106. Bodemer C, Kaszuba A, Kingo K, Tsianakas A, Morita A, Rivas E, et al. Secukinumab demonstrates high efficacy and a favourable safety profile in paediatric patients with severe chronic plaque psoriasis: 52-week results from a phase 3 double-blind randomized, controlled trial. J Eur Acad Dermatol Venereol. 2021;35(4):938–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Philipp S, Menter A, Nikkels AF, Barber K, Landells I, Eichenfield LF, et al. Ustekinumab for the treatment of moderate-to-severe plaque psoriasis in paediatric patients (≥ 6 to < 12 years of age): efficacy, safety, pharmacokinetic and biomarker results from the open-label CADMUS Jr study. Br J Dermatol. 2020;183(4):664–72.

    Article  CAS  PubMed  Google Scholar 

  108. Jackson K, Chua L, Velez-de-Mendizabal N, Pitou C, Rodriguez Capriles C, Paller AS, et al. Population pharmacokinetic and exposure–efficacy analysis of ixekizumab in paediatric patients with moderate-to-severe plaque psoriasis (IXORA-PEDS). Br J Clin Pharmacol. 2022;88(3):1074–86.

    Article  CAS  PubMed  Google Scholar 

  109. Huang I, Yu C, Tai C, Tu Y, Chi C. Biologics for pediatric moderate-to-severe plaque psoriasis: a systematic review and network meta-analysis. JDDG. 2022;20(9):1201–9.

    PubMed  Google Scholar 

  110. Bröms G, Kieler H, Ekbom A, Gissler M, Hellgren K, Lahesmaa-Korpinen A, et al. Anti-TNF treatment during pregnancy and birth outcomes: a population-based study from Denmark, Finland, and Sweden. Pharmacoepidemiol Drug Saf. 2020;29(3):316–27.

    Article  PubMed  Google Scholar 

  111. Chambers CD, Johnson DL, Xu R, Luo Y, Lopez-Jimenez J, Adam MP, et al. Birth outcomes in women who have taken adalimumab in pregnancy: a prospective cohort study. PLoS ONE. 2019;14(10):e0223603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Mariette X, Förger F, Abraham B, Flynn AD, Moltó A, Flipo R, et al. Lack of placental transfer of certolizumab pegol during pregnancy: results from CRIB, a prospective, postmarketing, pharmacokinetic study. Ann Rheum Dis. 2018;77(2):228–33.

    Article  CAS  PubMed  Google Scholar 

  113. Clowse ME, Scheuerle AE, Chambers C, Afzali A, Kimball AB, Cush JJ, et al. Pregnancy outcomes after exposure to certolizumab pegol: updated results from a pharmacovigilance safety database. Arthritis Rheumatol. 2018;70(9):1399–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Clowse ME, Förger F, Hwang C, Thorp J, Dolhain RJ, Van Tubergen A, et al. Minimal to no transfer of certolizumab pegol into breast milk: results from CRADLE, a prospective, postmarketing, multicentre, pharmacokinetic study. Ann Rheum Dis. 2017;76(11):1890–6.

    Article  CAS  PubMed  Google Scholar 

  115. Hazes JM, Coulie PG, Geenen V, Vermeire S, Carbonnel F, Louis E, et al. Rheumatoid arthritis and pregnancy: evolution of disease activity and pathophysiological considerations for drug use. Rheumatology. 2011;50(11):1955–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Baker T, Kevorkian L, Nesbitt A. FRI0162 Investigation into the binding affinity of certolizumab pegol to FcRn and functional consequences for FcRn-mediated transcytosis: comparison to infliximab, adalimumab and etanercept. Ann Rheum Dis. 2013;72(Suppl. 3):A426.

    Google Scholar 

  117. Warren RB, Reich K, Langley RG, Strober B, Gladman D, Deodhar A, et al. Secukinumab in pregnancy: outcomes in psoriasis, psoriatic arthritis and ankylosing spondylitis from the global safety database. Br J Dermatol. 2018;179(5):1205–7.

    Article  CAS  PubMed  Google Scholar 

  118. Egeberg A, Iversen L, Kimball AB, Kelly S, Grace E, Patel H, et al. Pregnancy outcomes in patients with psoriasis, psoriatic arthritis, or axial spondyloarthritis receiving ixekizumab. J Dermatol Treat. 2022;33(5):2503–9.

    Article  CAS  Google Scholar 

  119. Borren NZ, Ananthakrishnan AN. Safety of biologic therapy in older patients with immune-mediated diseases: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2019;17(9):1736-43.e4.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Megna M, Napolitano M, Balato N, Monfrecola G, Villani A, Ayala F, Balato A. Efficacy and safety of ustekinumab in a group of 22 elderly patients with psoriasis over a 2-year period. Clin Exp Dermatol. 2016;41(5):564–6.

    Article  CAS  PubMed  Google Scholar 

  121. Hayashi M, Umezawa Y, Fukuchi O, Ito T, Saeki H, Nakagawa H. Efficacy and safety of ustekinumab treatment in elderly patients with psoriasis. J Dermatol. 2014;41(11):974–80.

    Article  CAS  PubMed  Google Scholar 

  122. Phan C, Beneton N, Delaunay J, Reguiai Z, Boulard C, Fougerousse A, et al. Effectiveness and safety of anti-interleukin-17 therapies in elderly patients with psoriasis. Acta Derm Venereol. 2020;100(18):1–4.

    Article  Google Scholar 

  123. Körber A, Papavassilis C, Bhosekar V, Reinhardt M. Efficacy and safety of secukinumab in elderly subjects with moderate to severe plaque psoriasis: a pooled analysis of phase III studies. Drugs Aging. 2018;35:135–44.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Ruggiero A, Fabbrocini G, Cinelli E, Ocampo Garza SS, Camela E, Megna M. Anti-interleukin-23 for psoriasis in elderly patients: guselkumab, risankizumab and tildrakizumab in real-world practice. Clin Exp Dermatol. 2022;47(3):561–7.

    Article  CAS  PubMed  Google Scholar 

  125. Lee J, Pelkey R, Gubitosa J, Henrick MF, Ganz ML. Comparing healthcare costs associated with oral and subcutaneous methotrexate or biologic therapy for rheumatoid arthritis in the United States. Am Health Drug Benefits. 2017;10(1):42.

    PubMed  PubMed Central  Google Scholar 

  126. Augustin M, Reich K, Yamauchi P, Pinter A, Bagel J, Dahale S, et al. Secukinumab dosing every 2 weeks demonstrated superior efficacy compared with dosing every 4 weeks in patients with psoriasis weighing 90 kg or more: results of a randomized controlled trial. Br J Dermatol. 2022;186(6):942–54.

    Article  CAS  PubMed  Google Scholar 

  127. Gisondi P, Del Giglio M, Di Francesco V, Zamboni M, Girolomoni G. Weight loss improves the response of obese patients with moderate-to-severe chronic plaque psoriasis to low-dose cyclosporine therapy: a randomized, controlled, investigator-blinded clinical trial. Am J Clin Nutr. 2008;88(5):1242–7.

    CAS  PubMed  Google Scholar 

  128. Lucas AT, Robinson R, Schorzman AN, Piscitelli JA, Razo JF, Zamboni WC. Pharmacologic considerations in the disposition of antibodies and antibody-drug conjugates in preclinical models and in patients. Antibodies. 2019;8(1):3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Dirks NL, Meibohm B. Population pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet. 2010;49:633–59.

    Article  CAS  PubMed  Google Scholar 

  130. Syversen SW, Jørgensen KK, Goll GL, Brun MK, Sandanger Ø, Bjørlykke KH, et al. Effect of therapeutic drug monitoring vs standard therapy during maintenance infliximab therapy on disease control in patients with immune-mediated inflammatory diseases: a randomized clinical trial. JAMA. 2021;326(23):2375–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Greenzaid.

Ethics declarations

Funding

No funding was received for the preparation of this article.

Conflicts of Interest/Competing Interests

Steven Feldman has received research, speaking and/or consulting support from Eli Lilly and Company, GlaxoSmithKline/Stiefel, AbbVie, Janssen, Alovtech, vTv Therapeutics, Bristol-Myers Squibb, Samsung, Pfizer, Boehringer Ingelheim, Amgen, Dermavant, Arcutis, Novartis, Novan, UCB, Helsinn, Sun Pharma, Almirall, Galderma, Leo Pharma, Mylan, Celgene, Ortho Dermatology, Menlo, Merck & Co, Qurient, Forte, Arena, Biocon, Accordant, Argenx, Sanofi, Regeneron, the National Biological Corporation, Caremark, Teladoc, BMS, Ono, Micreos, Eurofins, Informa, UpToDate, and the National Psoriasis Foundation. He is a founder and part owner of Causa Research and holds stock in Sensal Health. Jonathan Greenzaid has no conflicts of interest that are directly relevant to the content of this article.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

Authors’ Contributions

SF and JG contributed to the conception and design of the manuscript. JG collected, analyzed, and interpreted the data and drafted the manuscript. SF critically revised the manuscript and approved the final version to be published.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greenzaid, J., Feldman, S. Clinical Pharmacokinetic and Pharmacodynamic Considerations in the Treatment of Moderate-to-Severe Psoriasis. Clin Pharmacokinet 63, 137–153 (2024). https://doi.org/10.1007/s40262-023-01341-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-023-01341-4

Navigation