Skip to main content

Advertisement

Log in

A Nitrogen, Sulfur co-Doped Porphyrin-based Covalent Organic Framework as an Efficient Catalyst for Oxygen Reduction

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Oxygen reduction reaction(ORR) is a significant reaction for energy conversion systems(such as fuel cells, metal-air batteries, etc.). It is an urgent need to develop cheap, durable and highly-active catalysts for efficient ORR. Hence, we report a metal-free nitrogen and sulfur co-doped porphyrin-based covalent organic framework(COF) as a high-efficiency ORR catalyst[the onset potential(Eo) is 0.79 V and the half-wave potential(E1/2) is 0.70 V]. The double doping of N and S atoms causes uneven charge distribution around carbon atoms, which can act as catalytic active centers, improving ORR activity. Compared with single-atom doping, double atoms doping exhibits a higher activity due to the synergistic effect between different elements. These results demonstrate that reasonable design of stable metal-free COFs with a high electrochemical activity can promote their wide applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chu S., Cui Y., Nat. Mater., 2017, 16, 16

    Article  Google Scholar 

  2. Wang H. F., Xu Q., Matter., 2019, 1, 565

    Article  CAS  Google Scholar 

  3. Wang S. Y., Jiang S. P., Natl. Sci. Rev., 2017, 4, 163

    Article  CAS  Google Scholar 

  4. Dushina A., Schmies H., Schonvogel D., Int. J. Hydrog. Energy, 2020, 45, 35073

    Article  CAS  Google Scholar 

  5. Inoue H., Ishii T., Kannari N., Ozaki J. I., Chemistry Select, 2016, 1, 3189

    CAS  Google Scholar 

  6. Fichtner J., Garlyyev B., Watzele S., El-Sayed H. A., Schwammlein J. N., Li W. J., Maillard F. M., Dubau L., Michaličkaet J., Macak J. M., Holleitner A., Bandarenka A. S., ACS Appl. Mater. Intefaces, 2019, 11, 5129

    Article  CAS  Google Scholar 

  7. Garapati M. S., Sundara R., Int. J. Hydrog. Energy, 2019, 44, 10951

    Article  CAS  Google Scholar 

  8. Wu D., Shen X., Pan Y., Yao L., Peng Z., CheNano-Mat., 2020, 6, 32

    CAS  Google Scholar 

  9. Zhao Q., Wang C., Wang H., Wang J., Tang Y., Mao Z., Sasaki K., New J. Chem., 2020, 44, 3728

    Article  CAS  Google Scholar 

  10. Lu S., Huynh H. L., Lou F., Guo K., Yu Z., Nanoscale, 2021, 10, 1039

    Google Scholar 

  11. Wang Z., Zhao J., Cai Q., Li F., J. Mater. Chem. A, 2017, 5, 9842

    Article  CAS  Google Scholar 

  12. Liang H. W., Wei W., Wu Z. S., Feng X., Müllen K., J. Am. Chem. Soc., 2013, 135, 16002

    Article  CAS  PubMed  Google Scholar 

  13. Wang X. X., Cullen D. A., Pan Y. T., Hwang S., Wang M., Feng Z., Wang J., Engelhard M. H., Zhang H., He Y., Shao Y., Su D., More K. L., Spendelow J. S., Wu G., Adv. Mater., 2018, 30, 1706758

    Article  Google Scholar 

  14. Dai L., Xue Y., Qu L., Choi H. J. Baek J. B., Chem. Rev., 2015, 115, 4823

    Article  CAS  PubMed  Google Scholar 

  15. Liu X., Dai L., Nat. Rev. Mater., 2016, 1, 16064

    Article  CAS  Google Scholar 

  16. Frank B., Zhang J., Blume R., Schlögl R., Su D. D., Angew. Chem. Int. Ed., 2009, 48, 6913

    Article  CAS  Google Scholar 

  17. Zhao X., Wang A., Yan J., Sun G., Sun L., Zhang T., Chem. Mater., 2010, 22, 5463

    Article  CAS  Google Scholar 

  18. Chen S., Bi J., Zhao Y., Yang L., Zhang C., Ma Y., Wu Q., Wang X., Hu Z., Adv. Mater., 2012, 24, 5593

    Article  CAS  PubMed  Google Scholar 

  19. Yu H., Shang L., Bian T., Shi R., Waterhouse G. I. N., Zhao Y., Zhou C., Wu L., Tung C. H., Zhang T., Adv. Mater., 2016, 28, 5080

    Article  CAS  PubMed  Google Scholar 

  20. Jiang T., Jiang W., Li Y., Xu Y., Zhao M., Deng M., Wang Y., Carbon, 2021, 180, 92

    Article  CAS  Google Scholar 

  21. Cao Y., Zhu Y., Chen X., Abraha B. S., Peng W., Li Y., Zhang G., Zhang F., Fan X., Catal. Sci. Technol., 2019, 9, 6606

    Article  CAS  Google Scholar 

  22. Li D., Li C., Zhang L., Li H., Zhu L., Yang D., Fang Q., Qiu S., Yao X., J. Am. Chem. Soc., 2020, 142, 8104

    Article  CAS  PubMed  Google Scholar 

  23. Liu Z., Nie H., Yang Z., Zhang J., Jin Z., Lu Y., Xiao Z., Huang S., Nanoscale, 2013, 5, 3283

    Article  CAS  PubMed  Google Scholar 

  24. Wang Y., Lei Y., Wang H., RSC Adv., 2016, 6, 73560

    Article  CAS  Google Scholar 

  25. Zhang W., Wu Z. Y., Jiang H. L., Yu S. H., J. Am. Chem. Soc., 2014, 136, 14385

    Article  CAS  PubMed  Google Scholar 

  26. Denisa H. J., Alexander M. P., Olga I. P., Fabian S. G., Tascón J. M. D., Gao Q. L., J. Am. Chem. Soc., 2009, 131, 5026

    Article  Google Scholar 

  27. Shi Q., Lei Y., Wang Y., Wang H., Jiang L., Yuan H., Fang D., Wang B., Wu N., Gou Y., Curr. Appl. Phys., 2015, 15, 1606

    Article  Google Scholar 

  28. Gong K., Du F., Xia Z., Michael D., Dai L., Science, 2009, 323, 760

    Article  CAS  PubMed  Google Scholar 

  29. Liang J., Jiao Y., Jaroniec M., Qiao S. Z., Angew. Chem. Int. Ed., 2012, 51, 11496

    Article  CAS  Google Scholar 

  30. Zhu Y. N., Cao C. Y., Jiang W. J., Yang S. L., Hu J. S., Song W. G., Wan L. J., J. Mater. Chem., A, 2016, 4, 18470

    Article  CAS  Google Scholar 

  31. Yang C., Maenosono S., Duan J., Zhang X., ChemNanoMat, 2019, 5, 957

    Article  CAS  Google Scholar 

  32. Côté A. P., Benin A. I., Ockwig N. W., O’Keeffe M., Matzger A. J., Yaghi O. M., Science, 2005, 310, 1166

    Article  PubMed  Google Scholar 

  33. Colson J. W., Dichtel W. R., Nat. Chem., 2013, 5, 453

    Article  CAS  PubMed  Google Scholar 

  34. Huang N., Wang P., Jiang D. L., Nat. Rev. Mater., 2016, 1, 1

    Article  Google Scholar 

  35. Guan X., Chen F., Fang Q., Qiu S., Chem. Soc. Rev., 2020, 49, 1357

    Article  CAS  PubMed  Google Scholar 

  36. Geng K., He T., Liu R., Dalapati S., Tan K. T., Li Z., Tao S., Gong Y., Jiang Q., Jiang D., Chem. Rev., 2020, 120, 8814

    Article  CAS  PubMed  Google Scholar 

  37. Liang R. R., Cui F. Z., A. R. H., Qi Q. Y., Zhao X., CCS Chem., 2020, 2, 139

    Article  CAS  Google Scholar 

  38. Kuhn P., Antonietti M., Thomas A., Angew. Chem. Int. Ed., 2008, 47, 3450

    Article  CAS  Google Scholar 

  39. Furukawa H., Yaghi O. M., J. Am. Chem. Soc., 2009, 131, 8875

    Article  CAS  PubMed  Google Scholar 

  40. Li H., Pan Q., Ma Y., Guan X., Xue M., Fang Q., Yan Y., Valtchev V., Qiu S., J. Am. Chem. Soc., 2016, 138, 14783

    Article  CAS  PubMed  Google Scholar 

  41. Chang J., Xu G., Li H., Fang Q., Chem. J. Chinese Universities., 2020, 41(7), 1609

    CAS  Google Scholar 

  42. Fang Q., Zhuang Z., Gu S., Kaspar R. B., Zheng J., Wang J., Qiu S., Yan Y., Nat. Commun., 2014, 5, 4503

    Article  PubMed  Google Scholar 

  43. Fang Q., Wang J., Gu S., Kaspar R. B., Zhuang Z., Zheng J., Guo H., Qiu S., Yan Y., J. Am. Chem. Soc., 2015, 137, 8352

    Article  CAS  PubMed  Google Scholar 

  44. Wan S., Guo J., Kim J., Ihee H., Jiang D., Angew. Chem. Int. Ed., 2008, 47, 8826

    Article  CAS  Google Scholar 

  45. Guan X., Li H., Ma Y., Xue M., Fang Q., Yan Y., Valtchev V., Qiu S., Nat. Chem., 2019, 11, 587

    Article  CAS  PubMed  Google Scholar 

  46. Li S., Zhao W., Li H., Fang Q., Chem. J. Chinese Universities., 2020, 41(6), 1384

    CAS  Google Scholar 

  47. Wang Z. T., Li H., Yan S. C., Fang Q. R., Acta Chim. Sinica, 2020, 78, 63

    Article  CAS  Google Scholar 

  48. Keller N., Calik M., Sharapa D., Soni H. R., Zehetmaier P. M., Rager S., Auras F., Jakowetz A. C., Görling A., Clark T., Bein T., J. Am. Chem. Soc., 2018, 140, 16544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zou C., Wu C. D., Dalton Trans., 2012, 41, 3879

    Article  CAS  PubMed  Google Scholar 

  50. Liang Z., Wang H. Y., Zheng H., Zhang W., Cao R., Chem. Soc. Rev., 2021, 50, 2540

    Article  CAS  PubMed  Google Scholar 

  51. Accelrys Inc., Materials Studio Ver. 7.0, Accelrys Inc., San Diego, CA, 2013

    Google Scholar 

  52. Sick T., Rotter J. M., Reuter S., Kandambeth S., Bach N. N., Döblinger M., Merz J., Clark T., Marder T. B., Bein T., Medina D. D., J. Am. Chem. Soc., 2019, 141, 12570

    Article  CAS  PubMed  Google Scholar 

  53. Pachfule P., Acharjya A., Roeser J., Sivasankaran R. P., Ye M., Brückner A., Schmidt J., Thomas A., Chem. Sci., 2019, 10, 8316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yang C., Tao S., Huang N., Zhang X., Duan J., Makiura R., Maenosono S., ACS Appl. Nano Mater., 2020, 3, 5481

    Article  CAS  Google Scholar 

  55. Royuela S., Martinez-Perinan E., Arrieta M. P., Chem. Commun., 2020, 56, 1267

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China(Nos.22025504, 21621001, 21390394), the “111” Project of China (Nos.BP0719036, B17020), the China Postdoctoral Science Foundation (Nos.2020TQ0118, 2020M681034), and the Program for JLU Science and Technology Innovative Research Team, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qianrong Fang or Shilun Qiu.

Ethics declarations

The authors declare no conflicts of interest.

Supporting Information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Ma, Y., Li, C. et al. A Nitrogen, Sulfur co-Doped Porphyrin-based Covalent Organic Framework as an Efficient Catalyst for Oxygen Reduction. Chem. Res. Chin. Univ. 38, 167–172 (2022). https://doi.org/10.1007/s40242-021-1374-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-021-1374-1

Keywords

Navigation