Skip to main content
Log in

Amino-metalloporphyrin polymers derived Fe single atom catalysts for highly efficient oxygen reduction reaction

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Recently, nitrogen-doped porous carbon supported single atom catalysts (SACs) have become one of the most promising alternatives to precious metal catalysts in oxygen reduction reaction (ORR) due to their outstanding performance, especially those derived from porphyrin-based materials. However, most of them involve other metal residuals, which would cause the tedious pre- and/or post-treatment, even mislead the mechanistic investigations and active-site identification. Herein, we report a precursor-dilution strategy to synthesize Fe SACs through the Schiff-based reaction via co-polycondensation of amino-metalloporphyrin, followed by pyrolysis at high temperature. Systematic characterization results provide the compelling evidence of the dominant presence of atomically dispersed Fe-Nx species. Our catalyst shows superior ORR performance with positive half-wave potential (E1/2=0.85 V vs. RHE) in alkaline condition and moderate activity (E1/2=0.68 V vs. RHE) under the acidic condition, excellent methanol tolerance and good long-term stability. All the results indicate Fe SACs would be a promising candidate for replacing the precious Pt in metal-air batteries and fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang Y, Mao J, Meng X, Yu L, Deng D, Bao X. Chem Rev, 2019, 119: 1806–1854

    Article  CAS  PubMed  Google Scholar 

  2. Sultan S, Tiwari JN, Singh AN, Zhumagali S, Ha M, Myung CW, Thangavel P, Kim KS. Adv Energy Mater, 2019, 9: 1900624

    Article  CAS  Google Scholar 

  3. Fei H, Dong J, Feng Y, Allen CS, Wan C, Volosskiy B, Li M, Zhao Z, Wang Y, Sun H, An P, Chen W, Guo Z, Lee C, Chen D, Shakir I, Liu M, Hu T, Li Y, Kirkland AI, Duan X, Huang Y. Nat Catal, 2018, 1: 63–72

    Article  CAS  Google Scholar 

  4. Zhang L, Si R, Liu H, Chen N, Wang Q, Adair K, Wang Z, Chen J, Song Z, Li J, Banis MN, Li R, Sham TK, Gu M, Liu LM, Botton GA, Sun X. Nat Commun, 2019, 10: 4936

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Zhang L, Doyle-Davis K, Sun X. Energy Environ Sci, 2019, 12: 492–517

    Article  CAS  Google Scholar 

  6. Yan H, Lin Y, Wu H, Zhang W, Sun Z, Cheng H, Liu W, Wang C, Li J, Huang X, Yao T, Yang J, Wei S, Lu J. Nat Commun, 2017, 8: 1070

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Wan X, Chen W, Yang J, Liu M, Liu X, Shui J. ChemElectroChem, 2019, 6: 304–315

    Article  CAS  Google Scholar 

  8. Wang XX, Prabhakaran V, He Y, Shao Y, Wu G. Adv Mater, 2019, 1805126

    Google Scholar 

  9. Shi Q, Fu S, Zhu C, Song J, Du D, Lin Y. Mater Horiz, 2019, 6: 684–702

    Article  CAS  Google Scholar 

  10. Chen Y, Ji S, Chen C, Peng Q, Wang D, Li Y. Joule, 2018, 2: 1242–1264

    Article  CAS  Google Scholar 

  11. Bashyam R, Zelenay P. Nature, 2006, 443: 63–66

    Article  CAS  PubMed  Google Scholar 

  12. Chen P, Zhou T, Xing L, Xu K, Tong Y, Xie H, Zhang L, Yan W, Chu W, Wu C, Xie Y. Angew Chem Int Ed, 2017, 56: 610–614

    Article  CAS  Google Scholar 

  13. Zhao L, Zhang Y, Huang LB, Liu XZ, Zhang QH, He C, Wu ZY, Zhang LJ, Wu J, Yang W, Gu L, Hu JS, Wan LJ. Nat Commun, 2019, 10: 1278

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Chen Y, Li Z, Zhu Y, Sun D, Liu X, Xu L, Tang Y. Adv Mater, 2019, 31: 1806312

    Article  CAS  Google Scholar 

  15. Han Y, Wang YG, Chen W, Xu R, Zheng L, Zhang J, Luo J, Shen RA, Zhu Y, Cheong WC, Chen C, Peng Q, Wang D, Li Y. J Am Chem Soc, 2017, 139: 17269–17272

    Article  CAS  PubMed  Google Scholar 

  16. Lu S, Jin Y, Gu H, Zhang W. Sci China Chem, 2017, 60: 999–1006

    Article  CAS  Google Scholar 

  17. Wang X, Li P, Li Z, Chen W, Zhou H, Zhao Y, Wang X, Zheng L, Dong J, Lin Y, Zheng X, Yan W, Yang J, Yang Z, Qu Y, Yuan T, Wu Y, Li Y. Chem Commun, 2019, 55: 6563–6566

    Article  CAS  Google Scholar 

  18. Yi JD, Xu R, Wu Q, Zhang T, Zang KT, Luo J, Liang YL, Huang YB, Cao R. ACS Energy Lett, 2018, 3: 883–889

    Article  CAS  Google Scholar 

  19. Liu W, Wang K, Wang C, Liu W, Pan H, Xiang Y, Qi D, Jiang J. J Mater Chem A, 2018, 6: 22851–22857

    Article  CAS  Google Scholar 

  20. Lim AC, Jadhav HS, Seo JG. Dalton Trans, 2018, 47: 852–858

    Article  CAS  PubMed  Google Scholar 

  21. Hua X, Luo J, Shen C, Chen S. Catal Sci Technol, 2018, 8: 1945–1952

    Article  CAS  Google Scholar 

  22. Wang L, Pumera M. Chem Commun, 2014, 50: 12662–12664

    Article  CAS  Google Scholar 

  23. Yan X, Jia Y, Yao X. Chem Soc Rev, 2018, 47: 7628–7658

    Article  CAS  PubMed  Google Scholar 

  24. Xu XL, Lin FW, Xu W, Wu J, Xu ZK. Chem Eur J, 2015, 21: 984–987

    Article  CAS  PubMed  Google Scholar 

  25. El-Deab MS, Ohsaka T. Electrochim Acta, 2002, 47: 4255–4261

    Article  CAS  Google Scholar 

  26. Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, Dai H. Nat Mater, 2011, 10: 780–786

    Article  CAS  PubMed  Google Scholar 

  27. He X, He Q, Deng Y, Peng M, Chen H, Zhang Y, Yao S, Zhang M, Xiao D, Ma D, Ge B, Ji H. Nat Commun, 2019, 10: 3663

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. He Q, Meng Y, Zhang H, Zhang Y, Chen H, Xiao H, He X, Wu M, Ji H. Catal Sci Technol, 2019, 9: 6556–6560

    Article  CAS  Google Scholar 

  29. Wang X, Chen Z, Zhao X, Yao T, Chen W, You R, Zhao C, Wu G, Wang J, Huang W, Yang J, Hong X, Wei S, Wu Y, Li Y. Angew Chem Int Ed, 2018, 57: 1944–1948

    Article  CAS  Google Scholar 

  30. Song P, Zhang Y, Pan J, Zhuang L, Xu W. Chem Commun, 2015, 51: 1972–1975

    Article  CAS  Google Scholar 

  31. Chen Y, Ji S, Zhao S, Chen W, Dong J, Cheong WC, Shen R, Wen X, Zheng L, Rykov AI, Cai S, Tang H, Zhuang Z, Chen C, Peng Q, Wang D, Li Y. Nat Commun, 2018, 9: 5422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liang S, Chen R, Yu P, Ni M, Zhang Q, Zhang X, Yang W. Chem Commun, 2017, 53: 11453–11456

    Article  CAS  Google Scholar 

  33. Tan H, Tang J, Henzie J, Li Y, Xu X, Chen T, Wang Z, Wang J, Ide Y, Bando Y, Yamauchi Y. ACS Nano, 2018, 12: 5674–5683

    Article  CAS  PubMed  Google Scholar 

  34. Cheng Q, Yang L, Zou L, Zou Z, Chen C, Hu Z, Yang H. ACS Catal, 2017, 7: 6864–6871

    Article  CAS  Google Scholar 

  35. Jiao L, Wan G, Zhang R, Zhou H, Yu SH, Jiang HL. Angew Chem Int Ed, 2018, 57: 8525–8529

    Article  CAS  Google Scholar 

  36. Miao Z, Wang X, Tsai MC, Jin Q, Liang J, Ma F, Wang T, Zheng S, Hwang BJ, Huang Y, Guo S, Li Q. Adv Energy Mater, 2018, 8: 1801226

    Article  CAS  Google Scholar 

  37. Li JC, Xiao F, Zhong H, Li T, Xu M, Ma L, Cheng M, Liu D, Feng S, Shi Q, Cheng HM, Liu C, Du D, Beckman SP, Pan X, Lin Y, Shao M. ACS Catal, 2019, 9: 5929–5934

    Article  CAS  Google Scholar 

  38. Han A, Chen W, Zhang S, Zhang M, Han Y, Zhang J, Ji S, Zheng L, Wang Y, Gu L, Chen C, Peng Q, Wang D, Li Y. Adv Mater, 2018, 30: 1706508

    Article  CAS  Google Scholar 

  39. Wang J, Zhang H, Wang C, Zhang Y, Wang J, Zhao H, Cheng M, Li A, Wang J. Energy Storage Mater, 2018, 12: 1–7

    Article  Google Scholar 

  40. Gojkovic SL, Gupta S, Savinell RF. J Electroanal Chem, 1999, 462: 63–72

    Article  CAS  Google Scholar 

  41. Meng Y, Voiry D, Goswami A, Zou X, Huang X, Chhowalla M, Liu Z, Asefa T. J Am Chem Soc, 2014, 136: 13554–13557

    Article  CAS  PubMed  Google Scholar 

  42. Sarapuu A, Kibena-Pöldsepp E, Borghei M, Tammeveski K. J Mater Chem A, 2018, 6: 776–804

    Article  CAS  Google Scholar 

  43. Huang S, Meng Y, Cao Y, He S, Li X, Tong S, Wu M. Appl Catal BEnviron, 2019, 248: 239–248

    Article  CAS  Google Scholar 

  44. Jiang WJ, Hu WL, Zhang QH, Zhao TT, Luo H, Zhang X, Gu L, Hu JS, Wan LJ. Chem Commun, 2018, 54: 1307–1310

    Article  CAS  Google Scholar 

  45. Lefèvre M, Proietti E, Jaouen F, Dodelet JP. Science, 2009, 324: 71–74

    Article  PubMed  CAS  Google Scholar 

  46. Chung HT, Cullen DA, Higgins D, Sneed BT, Holby EF, More KL, Zelenay P. Science, 2017, 357: 479–484

    Article  CAS  PubMed  Google Scholar 

  47. Chen DJ, Tong YYJ. Angew Chem Int Ed, 2015, 54: 9394–9398

    Article  CAS  Google Scholar 

  48. Liu D, Wu C, Chen S, Ding S, Xie Y, Wang C, Wang T, Haleem YA, ur Rehman Z, Sang Y, Liu Q, Zheng X, Wang Y, Ge B, Xu H, Song L. Nano Res, 2018, 11: 2217–2228

    Article  CAS  Google Scholar 

  49. Liu Y, Huang B, Zhang X, Huang X, Xie Z. J Power Sources, 2019, 412: 125–133

    Article  CAS  Google Scholar 

  50. Yang H, Chen X, Chen WT, Wang Q, Cuello NC, Nafady A, Al-Enizi AM, Waterhouse GIN, Goenaga GA, Zawodzinski TA, Kruger PE, Clements JE, Zhang J, Tian H, Telfer SG, Ma S. ACS Nano, 2019, 13: 8087–8098

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21938001, 21606260, 21576302, 21376278, 21425627, 21701199), the National Natural Science Foundation of China-SINOPEC Joint Fund (U1663220), the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01C102), the Natural Science Foundation of Guangdong Province (2015A030313104), the Fundamental Research Funds for the Central Universities of Sun Yatsen University (15lgjc33, 19lgpy129).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaohui He or Hongbing Ji.

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Q., Meng, Y., Zhang, H. et al. Amino-metalloporphyrin polymers derived Fe single atom catalysts for highly efficient oxygen reduction reaction. Sci. China Chem. 63, 810–817 (2020). https://doi.org/10.1007/s11426-019-9703-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9703-7

Keywords

Navigation