Skip to main content
Log in

Tryptophan and serotonin levels as potent biomarkers in diabetes mellitus complications: a new approach of diagnostic role

  • Review article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Objective

Alterations in the serotonergic system were verified to act a role in the pathogenesis of altered neurological and psychiatric diseases. In recent years, Tryptophan (Trp) and serotonin (5-HT) levels have been considered potent biomarkers of diabetes mellitus (DM).

Method

The different Trp metabolism may also play roles in the pathogenesis of DM and mounting risk of complications. The whole blood (WB) 5-HT level was mainly lower among diabetic patients compared to others. That is mostly derived from a lower platelet concentration of 5-HT in these patients.

Results

Indeed, 5-HT level can be considered a potent biomarker for early detection of DM complications. Besides, it was proved that outside the digestive and central nervous systems, 5-HT was discovered in beta cells, and scientists have been attempting to realize its mechanism of action ever since. Towards to end, the determination methods, biomarker’s role, and approaches of 5-HT and Trp levels were thoroughly investigated in both healthy and diabetic patients with or without complications. Moreover, the association between insulin and 5-HT has been specifically discussed.

Conclusions

Our study concluded that Trp and 5-HT levels could be exclusively applied for early diagnosis of DM complications as well as many other complications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not Applicable.

References

  1. Comai S, Bertazzo A, Brughera M, Crotti S. Chapter Five - Tryptophan in health and disease. In: Makowski GSBT-A in CC, editor. Elsevier; 2020. p. 165–218. Available from: https://www.sciencedirect.com/science/article/pii/S0065242319300745.

  2. Khoshnevisan K, Chehrehgosha M, Conant M, Meftah AM, Baharifar H, Ejtahed H-S, et al. Interactive relationship between Trp metabolites and gut microbiota: The impact on human pathology of disease. J Appl Microbiol [Internet]. 2022;132:4186–207. https://doi.org/10.1111/jam.15533 (Wiley, Ltd).

    Article  CAS  Google Scholar 

  3. Berger M, Gray JA, Roth BL. The Expanded Biology of Serotonin. Annu Rev Med [Internet]. 2009;60:355–66. https://doi.org/10.1146/annurev.med.60.042307.110802 (Annual Reviews).

    Article  CAS  Google Scholar 

  4. Kim K, Oh C-M, Ohara-Imaizumi M, Park S, Namkung J, Yadav VK, et al. Functional Role of Serotonin in Insulin Secretion in a Diet-Induced Insulin-Resistant State. Endocrinology [Internet]. 2015;156:444–52. https://doi.org/10.1210/en.2014-1687.

    Article  CAS  Google Scholar 

  5. Pietraszek MH, Takada Y, Takada A, Fujita M, Watanabe I, Taminato A, et al. Blood serotonergic mechanisms in type 2 (non-insulin-dependent) diabetes mellitus. Thromb Res [Internet]. 1992;66:765–74. https://doi.org/10.1016/0049-3848(92)90052-C (Elsevier).

    Article  CAS  Google Scholar 

  6. Hara K, Hirowatari Y, Shimura Y, Takahashi H. Serotonin levels in platelet-poor plasma and whole blood in people with type 2 diabetes with chronic kidney disease. Diabetes Res Clin Pract [Internet]. 2011;94:167–71. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0168822711003421.

  7. Barradas MA, Gill DS, Fonseca VA, Mikhailidis DP, Dandona P. Intraplatelet serotonin in patients with diabetes mellitus and peripheral vascular disease. Eur J Clin Invest [Internet]. 1988;18:399–404. https://doi.org/10.1111/j.1365-2362.1988.tb01030.x (Wiley, Ltd).

    Article  CAS  Google Scholar 

  8. Khoshnevisan K, Maleki H, Honarvarfard E, Baharifar H, Gholami M, Faridbod F, et al. Nanomaterial based electrochemical sensing of the biomarker serotonin: a comprehensive review. Microchim Acta [Internet]. 2019;186:49. Available from: http://link.springer.com/10.1007/s00604-018-3069-y.

  9. Danaceau JP, Anderson GM, McMahon WM, Crouch DJ. A Liquid chromatographic-tandem mass spectrometric method for the analysis of serotonin and related indoles in human whole blood. J Anal Toxicol. 2003;27:440–4. Available from: https://academic.oup.com/jat/article-lookup/doi/10.1093/jat/27.7.440

  10. Labib M, Sargent EH, Kelley SO. Electrochemical Methods for the Analysis of Clinically Relevant Biomolecules. Chem Rev [Internet]. 2016;116:9001–90. https://doi.org/10.1021/acs.chemrev.6b00220 (American Chemical Society).

    Article  CAS  Google Scholar 

  11. Khoshnevisan K, Honarvarfard E, Torabi F, Maleki H, Baharifar H, Faridbod F, et al. Electrochemical detection of serotonin: A new approach. Clin Chim Acta [Internet]. 2020;501:112–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0009898119320947.

  12. Huang H, Chen Z, Yan X. Simultaneous determination of serotonin and creatinine in urine by combining two ultrasound-assisted emulsification microextractions with on-column stacking in capillary electrophoresis. J Sep Sci [Internet]. 2012;35:436–44. https://doi.org/10.1002/jssc.201100778 (Wiley, Ltd).

    Article  CAS  Google Scholar 

  13. Rognum IJ, Tran H, Haas EA, Hyland K, Paterson DS, Haynes RL, et al. Serotonin metabolites in the cerebrospinal fluid in sudden infant death syndrome. J Neuropathol Exp Neurol [Internet]. England; 2014;73:115–22. Available from: https://academic.oup.com/jnen/article-lookup/doi/10.1097/NEN.0000000000000034.

  14. Runions KC, Morandini HAE, Rao P, Wong JWY, Kolla NJ, Pace G, et al. Serotonin and aggressive behaviour in children and adolescents: a systematic review. Acta Psychiatr Scand [Internet]. 2019;139:117–44. https://doi.org/10.1111/acps.12986 (Wiley, Ltd).

    Article  CAS  Google Scholar 

  15. O’Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res [Internet]. Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland: Elsevier; 2015;277:32–48. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84912141027&doi=10.1016%2Fj.bbr.2014.07.027&partnerID=40&md5=151e9873ec34b130d9c81dcc5ce418d5.

  16. Sorgdrager FJH, Naudé PJW, Kema IP, Nollen EA, Deyn PP De. Tryptophan Metabolism in Inflammaging: From Biomarker to Therapeutic Target. Front Immunol [Internet]. 2019;10:2565. Available from: https://www.frontiersin.org/article/10.3389/fimmu.2019.02565.

  17. Khoshnevisan K, Torabi F, Baharifar H, Sajjadi-Jazi SM, Afjeh MS, Faridbod F, et al. Determination of the biomarker L-tryptophan level in diabetic and normal human serum based on an electrochemical sensing method using reduced graphene oxide/gold nanoparticles/18-crown-6. Anal Bioanal Chem [Internet]. 2020;412:3615–27. Available from: http://link.springer.com/10.1007/s00216-020-02598-5.

  18. Khoshnevisan K, Baharifar H, Torabi F, Sadeghi Afjeh M, Maleki H, Honarvarfard E, et al. Serotonin level as a potent diabetes biomarker based on electrochemical sensing: a new approach in a zebra fish model. Anal Bioanal Chem [Internet]. 2021;413:1615–27. Available from: http://link.springer.com/10.1007/s00216-020-03122-5.

  19. Hara K, Hirowatari Y, Shimura Y, Takahashi H. Serotonin levels in platelet-poor plasma and whole blood in people with type 2 diabetes with chronic kidney disease. Diabetes Res Clin Pract [Internet]. Elsevier; 2011 [cited 2019 Nov 10];94:167–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21775011.

  20. Leitner M, Fragner L, Danner S, Holeschofsky N, Leitner K, Tischler S, et al. Combined Metabolomic Analysis of Plasma and Urine Reveals AHBA, Tryptophan and Serotonin Metabolism as Potential Risk Factors in Gestational Diabetes Mellitus (GDM). Front Mol Biosci [Internet]. Frontiers Media SA; 2017 [cited 2019 Nov 13];4:84. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29312952.

  21. Saito J, Suzuki E, Tajima Y, Takami K, Horikawa Y, Takeda J. Increased plasma serotonin metabolite 5-hydroxyindole acetic acid concentrations are associated with impaired systolic and late diastolic forward flows during cardiac cycle and elevated resistive index at popliteal artery and renal insufficiency in type 2. Endocr J. 2016;63:69–76.

    Article  CAS  PubMed  Google Scholar 

  22. Zahn D, Petrak F, Franke L, Hägele A-K, Juckel G, Lederbogen F, et al. Cortisol, Platelet Serotonin Content, and Platelet Activity in Patients With Major Depression and Type 2 Diabetes. Psychosom Med [Internet]. 2015;77:145–55. Available from: https://journals.lww.com/psychosomaticmedicine/Fulltext/2015/02000/Cortisol,_Platelet_Serotonin_Content,_and_Platelet.6.aspx.

  23. Fukui M, Shiraishi E, Tanaka M, Senmaru T, Sakabe K, Harusato I, et al. Plasma serotonin is a predictor for deterioration of urinary albumin excretion in men with type 2 diabetes mellitus. Metabolism [Internet]. 2009;58:1076–9. https://doi.org/10.1016/j.metabol.2009.03.009 (Elsevier).

    Article  CAS  Google Scholar 

  24. Yanai H, Hirowatari Y. A significant association of plasma serotonin to cardiovascular risk factors and changes in pulse wave velocity in patients with type 2 diabetes. Int J Cardiol [Internet]. 2012;157:312–3. https://doi.org/10.1016/j.ijcard.2012.03.144 (Elsevier).

    Article  Google Scholar 

  25. Takada A, Shimizu F, Masuda J, Matsuoka K. Plasma Levels of Tryptophan Metabolites in Patients of Type 2 Diabetes Mellitus. Bioact Food as Diet Interv Diabetes. Elsevier; 2019. p. 265–76.

  26. Unluturk U, Erbas T. Diabetes and tryptophan metabolism. Cham: Humana Press; 2015.

    Book  Google Scholar 

  27. Matsuoka K, Kato K, Takao T, Ogawa M, Ishii Y, Shimizu F, et al. Concentrations of various tryptophan metabolites are higher in patients with diabetes mellitus than in healthy aged male adults. Diabetol Int. 2017;8:69–75.

    Article  PubMed  Google Scholar 

  28. Sakurai S, Inai Y, Minakata S, Manabe S, Ito Y, Ihara Y. A novel assay for detection and quantification of C-mannosyl tryptophan in normal or diabetic mice. Sci Rep. Nature Publishing Group; 2019;9.

  29. Chou CA, Lin CN, Chiu DTY, Chen IW, Chen ST. Tryptophan as a surrogate prognostic marker for diabetic nephropathy. J Diabetes Investig. 2018;9:366–74 (Blackwell Publishing).

    Article  CAS  PubMed  Google Scholar 

  30. Rebnord EW, Strand E, Midttun Ø, Svingen GFT, Christensen MHE, Ueland PM, et al. The kynurenine:tryptophan ratio as a predictor of incident type 2 diabetes mellitus in individuals with coronary artery disease. Diabetologia. 2017;60:1712–21 (Springer Verlag).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen T, Zheng X, Ma X, Bao Y, Ni Y, Hu C, et al. Tryptophan predicts the risk for future type 2 diabetes. PLoS One. 2016;11. (Public Library of Science).

  32. Mancuso P, Bouchard B. The impact of aging on adipose function and adipokine synthesis. Front Endocrinol. (Lausanne). Frontiers Media S.A.; 2019.

  33. Ramos-Chávez LA, Roldán-Roldán G, García-Juárez B, González-Esquivel D, Pérez de la Cruz G, Pineda B, et al. Low serum tryptophan levels as an indicator of global cognitive performance in nondemented women over 50 years of age. Oxid Med Cell Longev. Hindawi Limited; 2018;2018.

  34. Yu E, Papandreou C, Ruiz-Canela M, Guasch-Ferre M, Clish CB, Dennis C, et al. Association of tryptophan metabolites with incident type 2 diabetes in the PREDIMED trial: A case–cohort study. Clin Chem. 2018;64:1211–20 (American Association for Clinical Chemistry Inc).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Floegel A, Stefan N, Yu Z, Mühlenbruch K, Drogan D, Joost HG, et al. Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes Diabetes. 2013;62:639–48.

    Article  CAS  PubMed  Google Scholar 

  36. F S. Plasma Levels of Tryptophan Metabolites in Healthy Young and Old Men and Women, and Patients of Type 2 Diabetes Mellitus (T2DM). Obes Open Access. Sci Forschen, Inc.; 2018;4.

  37. Takada A, Shimizu F, Takao T, Masuda J. Measurement of tryptophan metabolites in healthy old men and patients of Type 2 Diabetes Mellitus (T2DM). Food Nutr Sci. 2018;09:1206–20 (Scientific Research Publishing, Inc).

    CAS  Google Scholar 

  38. Calvani R, Rodriguez-Mañas L, Picca A, Marini F, Biancolillo A, Laosa O, et al. Identification of a circulating amino acid signature in frail older persons with type 2 diabetes mellitus: Results from the metabofrail study. Nutrients. MDPI AG; 2020;12.

  39. Sipahi H, Girgin G, Inanici F, Ariogul S, Sahin G, Baydar T. Tryptophan degradation and neopterin levels by aging. Pteridines. 2013;24:33–9 (De Gruyter).

    Article  CAS  Google Scholar 

  40. Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. 2011;11:98–107. Available from: https://www.nature.com/articles/nri2925.

  41. Oxenkrug GF. Metabolic syndrome, age-associated neuroendocrine disorders, and dysregulation of tryptophan - Kynurenine metabolism. Ann N Y Acad Sci. Blackwell Publishing Inc.; 2010; 1–14.

  42. Fuertig R, Azzinnari D, Bergamini G, Cathomas F, Sigrist H, Seifritz E, et al. Mouse chronic social stress increases blood and brain kynurenine pathway activity and fear behaviour: Both effects are reversed by inhibition of indoleamine 2,3-dioxygenase. Brain Behav Immun. Academic Press Inc.; 2016;54:59–72.

  43. Robinson R. Serotonin's role in the pancreas revealed at last. PLoS Biology. 2009;7(10):e1000227.

  44. Zhang Q, Zhu Y, Zhou W, Gao L, Yuan L, Han X. Serotonin Receptor 2C and Insulin Secretion. PLoS One [Internet]. 2013;8:e54250. https://doi.org/10.1371/journal.pone.0054250 (Public Library of Science).

    Article  CAS  Google Scholar 

  45. Mohamed RA, Galal O, Mohammed AR, El-Abhar HS. Tropisetron modulates peripheral and central serotonin/insulin levels via insulin and nuclear factor kappa B/receptor for advanced glycation end products signalling to regulate type-2 diabetes in rats. RSC Adv [Internet]. 2018;8:11908–20. https://doi.org/10.1039/C7RA13105D (The Royal Society of Chemistry).

    Article  CAS  Google Scholar 

  46. Gylfe E. Association Between 5-Hydroxytryptamine Release And Insulin Secretion. J Endocrinol [Internet]. Bristol, UK: Bioscientifica Ltd; 78:239–48. Available from: https://joe.bioscientifica.com/view/journals/joe/78/2/joe_78_2_010.xml.

  47. Sugimoto Y, Kimura I, Yamada J, Watanabe Y, Takeuchi N, Horisaka K. Effects of serotonin on blood glucose and insulin levels of glucose and streptozotocin-treated mice. Jpn J Pharmacol. 1990;54:93–6 (The Japanese Pharmacological Society).

    Article  CAS  PubMed  Google Scholar 

  48. Paulmann N, Grohmann M, Voigt J-P, Bert B, Vowinckel J, Bader M, et al. Intracellular Serotonin Modulates Insulin Secretion from Pancreatic β-Cells by Protein Serotonylation. PLOS Biol [Internet]. 2009;7:e1000229. https://doi.org/10.1371/journal.pbio.1000229 (Public Library of Science).

    Article  CAS  Google Scholar 

  49. Malyszko J, Urano T, Knofler R, Taminato A, Yoshimi T, Takada Y, et al. Daily variations of platelet aggregation in relation to blood and plasma serotonin in diabetes. Thromb Res [Internet]. 1994;75:569–76. Available from: https://www.sciencedirect.com/science/article/pii/0049384894902313.

  50. Marti´n FJ, Mi´guez JM, Aldegunde M, Atienza G. Effect of streptozotocin-induced diabetes mellitus on serotonin measures of peripheral tissues in rats. Life Sci [Internet]. 1994;56:51–9. Available from: https://www.sciencedirect.com/science/article/pii/002432059400407J.

  51. Moon JH, Kim YG, Kim K, Osonoi S, Wang S, Saunders DC, et al. Serotonin Regulates Adult β-Cell Mass by Stimulating Perinatal β-Cell Proliferation. Diabetes [Internet]. 2020;69:205 LP – 214. Available from: http://diabetes.diabetesjournals.org/content/69/2/205.abstract.

  52. Ohara-Imaizumi M, Kim H, Yoshida M, Fujiwara T, Aoyagi K, Toyofuku Y, et al. Serotonin regulates glucose-stimulated insulin secretion from pancreatic β cells during pregnancy. Proc Natl Acad Sci [Internet]. 2013;110:19420 LP – 19425. Available from: http://www.pnas.org/content/110/48/19420.abstract.

  53. Bennet H, Mollet IG, Balhuizen A, Medina A, Nagorny C, Bagge A, et al. Serotonin (5-HT) receptor 2b activation augments glucose-stimulated insulin secretion in human and mouse islets of Langerhans. Diabetologia [Internet]. Springer; 2016;59:744–54. Available from: http://link.springer.com/10.1007/s00125-015-3847-6.

  54. Kim H, Toyofuku Y, Lynn FC, Chak E, Uchida T, Mizukami H, et al. Serotonin regulates pancreatic beta cell mass during pregnancy. Nat Med [Internet]. 2010;16:804–8. https://doi.org/10.1038/nm.2173.

    Article  CAS  Google Scholar 

  55. Ma N, Ma X. Dietary Amino Acids and the Gut-Microbiome-Immune Axis: Physiological Metabolism and Therapeutic Prospects. Compr Rev Food Sci Food Saf [Internet]. State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural Univ., Beijing, 100193, China: Blackwell Publishing Inc.; 2019;18:221–42. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058850635&doi=10.1111%2F1541-4337.12401&partnerID=40&md5=76abf6fd4e8ba1296e5dd585e7064d8b.

  56. Almaça J, Molina J, Menegaz D, Pronin AN, Tamayo A, Slepak V, et al. Human Beta Cells Produce and Release Serotonin to Inhibit Glucagon Secretion from Alpha Cells. Cell Rep [Internet]. 2016;17:3281–91. Available from: https://www.sciencedirect.com/science/article/pii/S2211124716316461.

  57. Heimes K, Feistel B, Verspohl EJ. Impact of the 5-HT3 receptor channel system for insulin secretion and interaction of ginger extracts. Eur J Pharmacol [Internet]. 2009;624:58–65. Available from: https://www.sciencedirect.com/science/article/pii/S0014299909008334.

  58. Cataldo Bascuñan LR, Lyons C, Bennet H, Artner I, Fex M. Serotonergic regulation of insulin secretion. Acta Physiol [Internet]. 2019;225:e13101. https://doi.org/10.1111/apha.13101 (Wiley, Ltd).

    Article  CAS  Google Scholar 

  59. Bennet H, Balhuizen A, Medina A, Dekker Nitert M, Ottosson Laakso E, Essén S, et al. Altered serotonin (5-HT) 1D and 2A receptor expression may contribute to defective insulin and glucagon secretion in human type 2 diabetes. Peptides [Internet]. 2015;71:113–20. Available from: https://www.sciencedirect.com/science/article/pii/S0196978115002041.

Download references

Acknowledgements

This work was nonfinancially supported by Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences.

Funding

Private funds were applied to carry out this study.

Author information

Authors and Affiliations

Authors

Contributions

KK: Conceptualization, Investigation, Methodology, Design, Writing-review &editing. MCG: Investigation, Methodology, Design, Writing-review &editing. SMSJ: Investigation, Methodology, Writing-review &editing. AMM: Investigation, Writing-review &editing.

Corresponding authors

Correspondence to Kamyar Khoshnevisan or Sayed Mahmoud Sajjadi-Jazi.

Ethics declarations

Ethics approval and consent to participate

Not Applicable.

Consent for publication

All the authors have approved this article and agreed with submission.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Kamyar Khoshnevisan and Maryam Chehrehgosha are equally contributed as first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khoshnevisan, K., Chehrehgosha, M., Sajjadi-Jazi, S.M. et al. Tryptophan and serotonin levels as potent biomarkers in diabetes mellitus complications: a new approach of diagnostic role. J Diabetes Metab Disord 21, 1923–1934 (2022). https://doi.org/10.1007/s40200-022-01096-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-022-01096-y

Keywords

Navigation