Skip to main content

Advertisement

Log in

Association of dietary intake, medication and anthropometric indices with serum levels of advanced glycation end products, caspase-3, and matrix metalloproteinase-9 in diabetic patients

  • Research article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Background and objective

Increased serum levels of advanced glycation end products (AGEs), caspase-3 (Cas-3) and matrix metalloproteinase-9 (MMP-9) have been reported in diabetic patients. This study aimed to evaluate association of anthropometric, dietary, and therapeutic factors with serum levels of methylglyoxal (MGO), carboxymethyl lysine (CML), pentosidine (Pen), Cas-3, and MMP-9 in diabetic patients.

Methods

The current study included 36 diabetic subjects. Dietary intake of the participants was assessed using three-day 24-h recall survey and anthropometric indices were measured. Demographic factors and medication intake of every subject were obtained. Serum levels of CML, MGO, Pen, MMP-9, and Cas-3 were measured using ELISA method.

Results

Gliclazide consumption was positively correlated with MMP-9 and Cas-3, but not AGEs levels. Females had higher MGO level compared with males. Further, CML levels were negatively correlated with BMI and WHR. Dietary protein intake was positively correlated with MMP-9, Cas-3, and MGO levels. As well as dietary energy and fat intake had significant positive relationship with serum Cas-3 concentration.

Conclusion

It is concluded that anthropometric characteristics, dietary intake, and therapeutic medications are possible factors that may determine the circulating levels of AGEs, MMP-9, and Cas-3 in patients with diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mukhtar Y, Galalain A, Yunusa U. A modern overvİew on dİabetes mellİtus: a chronic endocrine disorder. European Journal of Biology. 2020;5(2):1–14.

    Article  Google Scholar 

  2. Kerner W, Brückel J. Definition, classification and diagnosis of diabetes mellitus. Exp Clin Endocrinol Diabetes. 2014;122(07):384–6.

    Article  CAS  PubMed  Google Scholar 

  3. Riddle MC, Herman WH. The cost of diabetes care—an elephant in the room. Diabetes Care. 2018;41(5):929–32.

    Article  PubMed  Google Scholar 

  4. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas. Diabetes Res Clin Pract. 2019;157:107843.

    Article  PubMed  Google Scholar 

  5. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87(1):4–14.

    Article  CAS  PubMed  Google Scholar 

  6. Harding JL, Pavkov ME, Magliano DJ, Shaw JE, Gregg EW. Global trends in diabetes complications: a review of current evidence. Diabetologia. 2019;62(1):3–16.

    Article  PubMed  Google Scholar 

  7. Haque N, Salma U, Nurunnabi T, Uddin M, Jahangir M, Islam S, et al. Management of type 2 diabetes mellitus by lifestyle, diet and medicinal plants. Pakistan journal of biological sciences: PJBS. 2011;14(1):13–24.

    Article  CAS  PubMed  Google Scholar 

  8. Stryker LS. Modifying risk factors: strategies that work diabetes mellitus. J Arthroplasty. 2016;31(8):1625–7.

    Article  PubMed  Google Scholar 

  9. Sakane N, Sato J, Tsushita K, Tsujii S, Kotani K, Tsuzaki K, et al. Prevention of type 2 diabetes in a primary healthcare setting: three-year results of lifestyle intervention in Japanese subjects with impaired glucose tolerance. BMC Public Health. 2011;11(1):40.

    Article  PubMed  Google Scholar 

  10. Aroda VR, Knowler WC, Crandall JP, Perreault L, Edelstein SL, Jeffries SL, et al. Metformin for diabetes prevention: Insights gained from the diabetes prevention program/diabetes prevention program outcomes study. Diabetologia. 2017;60(9):1601–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gong Q, Zhang P, Wang J, Ma J, An Y, Chen Y, et al. Morbidity and mortality after lifestyle intervention for people with impaired glucose tolerance: 30-year results of the Da Qing Diabetes Prevention Outcome Study. Lancet Diabetes Endocrinol. 2019;7(6):452–61.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Newsholme P, Cruzat VF, Keane KN, Carlessi R, de Bittencourt Jr PIH. Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochemical Journal. 2016;473(24):4527–50.

    Article  CAS  Google Scholar 

  13. Roberts AC, Porter KE. Cellular and molecular mechanisms of endothelial dysfunction in diabetes. Diab Vasc Dis Res. 2013;10(6):472–82.

    Article  PubMed  Google Scholar 

  14. Orang Z, Mohsenpour MA, Mozaffari-Khosravi H. Effect of Omega-3 fatty acid supplementation on inflammatory markers and insulin resistance indices in patient with type 2 diabetes and nonalcoholic fatty liver: A randomized double-blind clinical trial. Obesity Medicine. 2020;19:100278.

    Article  Google Scholar 

  15. Ola MS, Nawaz MI, Siddiquei MM, Al-Amro S, El-Asrar AMA. Recent advances in understanding the biochemical and molecular mechanism of diabetic retinopathy. J Diabetes Complications. 2012;26(1):56–64.

    Article  PubMed  Google Scholar 

  16. Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. diabetes. 2005;54(6):1615–25.

  17. Ghodsi R, Kheirouri S. Carnosine and advanced glycation end products: a systematic review. Amino Acids. 2018;50(9):1177–86.

    Article  CAS  PubMed  Google Scholar 

  18. Del Turco S, Basta G. An update on advanced glycation endproducts and atherosclerosis. BioFactors. 2012;38(4):266–74.

    Article  PubMed  Google Scholar 

  19. Kooshki A, Tofighiyan T, Rastgoo N, Rakhshani MH, Miri M. Effect of Nigella sativa oil supplement on risk factors for cardiovascular diseases in patients with type 2 diabetes mellitus. Phytother Res. 2020;34(10):2706–11.

    Article  CAS  PubMed  Google Scholar 

  20. Li J, Liu D, Sun L, Lu Y, Zhang Z. Advanced glycation end products and neurodegenerative diseases: mechanisms and perspective. J Neurol Sci. 2012;317(1–2):1–5.

    Article  CAS  PubMed  Google Scholar 

  21. Iacobini C, Menini S, Ricci C, Scipioni A, Sansoni V, Mazzitelli G, et al. Advanced lipoxidation end-products mediate lipid-induced glomerular injury: role of receptor-mediated mechanisms. The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland. 2009;218(3):360–9.

    Article  CAS  Google Scholar 

  22. Nowotny K, Jung T, Höhn A, Weber D, Grune T. Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules. 2015;5(1):194–222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xu J, Chen J, Yu J, Wang HJ, Zhang F, Liu Q, et al. Involvement of advanced glycation end products in the pathogenesis of diabetic retinopathy. Cell Physiol Biochem. 2018;48(2):705–17.

    Article  CAS  PubMed  Google Scholar 

  24. Stitt AW. The role of advanced glycation in the pathogenesis of diabetic retinopathy. Exp Mol Pathol. 2003;75(1):95–108.

    Article  CAS  PubMed  Google Scholar 

  25. Katagiri M, Shoji J, Inada N, Kato S, Kitano S, Uchigata Y. Evaluation of vitreous levels of advanced glycation end products and angiogenic factors as biomarkers for severity of diabetic retinopathy. Int Ophthalmol. 2018;38(2):607–15.

    Article  PubMed  Google Scholar 

  26. Grünwald B, Vandooren J, Gerg M, Ahomaa K, Hunger A, Berchtold S, et al. Systemic ablation of MMP-9 triggers invasive growth and metastasis of pancreatic cancer via deregulation of IL6 expression in the bone marrow. Mol Cancer Res. 2016;14(11):1147–58.

    Article  PubMed  Google Scholar 

  27. Aung LL, Mouradian MM, Dhib-Jalbut S, Balashov KE. MMP-9 expression is increased in B lymphocytes during multiple sclerosis exacerbation and is regulated by microRNA-320a. J Neuroimmunol. 2015;278:185–9.

    Article  CAS  PubMed  Google Scholar 

  28. Kim KS, Choi HM, Lee YA, Choi IA, Lee SH, Hong SJ, et al. Expression levels and association of gelatinases MMP-2 and MMP-9 and collagenases MMP-1 and MMP-13 with VEGF in synovial fluid of patients with arthritis. Rheumatol Int. 2011;31(4):543–7.

    Article  CAS  PubMed  Google Scholar 

  29. Opstad TB, Arnesen H, Pettersen AÅ, Seljeflot I. The MMP-9-1562 C/T polymorphism in the presence of metabolic syndrome increases the risk of clinical events in patients with coronary artery disease. PLoS ONE. 2014;9(9):e106816.

    Article  PubMed  Google Scholar 

  30. Lazăr L, Loghin A, Bud E-S, Cerghizan D, Horváth E, Nagy EE. Cyclooxygenase-2 and matrix metalloproteinase-9 expressions correlate with tissue inflammation degree in periodontal disease. Rom J Morphol Embryol. 2015;56(4):1441–6.

    PubMed  Google Scholar 

  31. Rajagopalan S, Meng XP, Ramasamy S, Harrison DG, Galis ZS. Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. Implications for atherosclerotic plaque stability. The Journal of clinical investigation. 1996;98(11):2572–9.

  32. Nosrati R, Kheirouri S, Ghodsi R, Ojaghi H. The effects of zinc treatment on matrix metalloproteinases: A systematic review. J Trace Elem Med Biol. 2019;56:107–15.

    Article  CAS  PubMed  Google Scholar 

  33. Mroczko B, Kozłowski M, Groblewska M, Lukaszewicz M, Nikliński J, Laudański J, et al. Expression of matrix metalloproteinase-9 in the neoplastic and interstitial inflammatory infiltrate cells in the different histopathological types of esophageal cancer. Folia Histochem Cytobiol. 2008;46(4):471–8.

    PubMed  Google Scholar 

  34. Cicero AF, Derosa G, Manca M, Bove M, Borghi C, Gaddi AV. Vascular remodeling and prothrombotic markers in subjects affected by familial combined hyperlipidemia and/or metabolic syndrome in primary prevention for cardiovascular disease. Endothelium. 2007;14(4–5):193–8.

    Article  CAS  PubMed  Google Scholar 

  35. Alnemri ES. Mammalian cell death proteases: a family of highly conserved aspartate specific cysteine proteases. J Cell Biochem. 1997;64(1):33–42.

    Article  CAS  PubMed  Google Scholar 

  36. Hu Q, Peng J, Liu W, He X, Cui L, Chen X, et al. Elevated cleaved caspase-3 is associated with shortened overall survival in several cancer types. Int J Clin Exp Pathol. 2014;7(8):5057.

    PubMed  PubMed Central  Google Scholar 

  37. Khan S, Ahmad K, Alshammari E, Adnan M, Baig MH, Lohani M, et al. Implication of caspase-3 as a common therapeutic target for multineurodegenerative disorders and its inhibition using nonpeptidyl natural compounds. BioMed research international. 2015;2015.

  38. Pradeep AR, Suke DK, Prasad MR, Singh SP, Martande SS, Nagpal K, et al. Expression of key executioner of apoptosis caspase-3 in periodontal health and disease. J Investig Clin Dent. 2016;7(2):174–9.

    Article  PubMed  Google Scholar 

  39. Kowluru RA, Chan PS. Oxidative stress and diabetic retinopathy. Experimental diabetes research. 2007;2007.

  40. Kowluru RA, Koppolu P. Diabetes-induced activation of caspase-3 in retina: effect of antioxidant therapy. Free Radical Res. 2002;36(9):993–9.

    Article  CAS  Google Scholar 

  41. Nakamura N, Hasegawa G, Obayashi H, Yamazaki M, Ogata M, Nakano K, et al. Increased concentration of pentosidine, an advanced glycation end product, and interleukin-6 in the vitreous of patients with proliferative diabetic retinopathy. Diabetes Res Clin Pract. 2003;61(2):93–101.

    Article  CAS  PubMed  Google Scholar 

  42. Ghanem AA, Elewa A, Arafa LF. Pentosidine and N-carboxymethyl-lysine: biomarkers for type 2 diabetic retinopathy. Eur J Ophthalmol. 2011;21(1):48–54.

    Article  PubMed  Google Scholar 

  43. Rysz J, Banach M, Stolarek RA, Pasnik J, Cialkowska-Rysz A, Koktysz R, et al. Serum matrix metalloproteinases MMP-2 and MMP-9 and metalloproteinase tissue inhibitors TIMP-1 and TIMP-2 in diabetic nephropathy. J Nephrol. 2007;20(4):444–52.

    CAS  PubMed  Google Scholar 

  44. Kostov K, Blazhev A, Atanasova M, Dimitrova A. Serum concentrations of endothelin-1 and matrix metalloproteinases-2,-9 in pre-hypertensive and hypertensive patients with type 2 diabetes. Int J Mol Sci. 2016;17(8):1182.

    Article  PubMed Central  Google Scholar 

  45. Adedara IA, Fasina OB, Ayeni MF, Ajayi OM, Farombi EO. Protocatechuic acid ameliorates neurobehavioral deficits via suppression of oxidative damage, inflammation, caspase-3 and acetylcholinesterase activities in diabetic rats. Food Chem Toxicol. 2019;125:170–81.

    Article  CAS  PubMed  Google Scholar 

  46. Maellaro E, Leoncini S, Moretti D, Del Bello B, Tanganelli I, De Felice C, et al. Erythrocyte caspase-3 activation and oxidative imbalance in erythrocytes and in plasma of type 2 diabetic patients. Acta Diabetol. 2013;50(4):489–95.

    Article  CAS  PubMed  Google Scholar 

  47. Li L, Renier G. The oral anti-diabetic agent, gliclazide, inhibits oxidized LDL-mediated LOX-1 expression, metalloproteinase-9 secretion and apoptosis in human aortic endothelial cells. Atherosclerosis. 2009;204(1):40–6.

    Article  CAS  PubMed  Google Scholar 

  48. Forst T, Karagiannis E, Lübben G, Hohberg C, Schöndorf T, Dikta G, et al. Pleiotrophic and anti-inflammatory effects of pioglitazone precede the metabolic activity in type 2 diabetic patients with coronary artery disease. Atherosclerosis. 2008;197(1):311–7.

    Article  CAS  PubMed  Google Scholar 

  49. Goldstein BJ, Weissman PN, Wooddell MJ, Waterhouse BR, Cobitz AR. Reductions in biomarkers of cardiovascular risk in type 2 diabetes with rosiglitazone added to metformin compared with dose escalation of metformin: an EMPIRE trial sub-study. Curr Med Res Opin. 2006;22(9):1715–23.

    Article  CAS  PubMed  Google Scholar 

  50. Beeri MS, Moshier E, Schmeidler J, Godbold J, Uribarri J, Reddy S, et al. Serum concentration of an inflammatory glycotoxin, methylglyoxal, is associated with increased cognitive decline in elderly individuals. Mech Ageing Dev. 2011;132(11–12):583–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Saulnier PJ, Wheelock KM, Howell S, Weil EJ, Tanamas SK, Knowler WC, et al. Advanced glycation end products predict loss of renal function and correlate with lesions of diabetic kidney disease in American Indians with type 2 diabetes. Diabetes. 2016;65(12):3744–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Foroumandi E, Alizadeh M, Kheirouri S. Age-dependent changes in plasma amino acids contribute to alterations in glycoxidation products. Journal of Medical Biochemistry. 2018;37(4):426–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Slowick-Zylka D, Safranow K, Dziedziejko V, Dutkiewicz G, Ciechanowski K, Chlubek D. The influence of gender, weight, height and BMI on pentosidine concentrations in plasma of hemodialyzed patients. J Nephrol. 2006;19(1):65–9.

    PubMed  Google Scholar 

  54. Vos P, Mastbergen S, Huisman A, de Boer T, DeGroot J, Polak A, et al. In end stage osteoarthritis, cartilage tissue pentosidine levels are inversely related to parameters of cartilage damage. Osteoarthritis Cartilage. 2012;20(3):233–40.

    Article  CAS  PubMed  Google Scholar 

  55. Vos P, Welsing P, deGroot J, Huisman A, Oostveen J, Reijman M, et al. Skin pentosidine in very early hip/knee osteoarthritis (CHECK) is not a strong independent predictor of radiographic progression over 5 years follow-up. Osteoarthritis Cartilage. 2013;21(6):823–30.

    Article  CAS  PubMed  Google Scholar 

  56. Godsland I. Oestrogens and insulin secretion. Diabetologia. 2005;48(11):2213–20.

    Article  CAS  PubMed  Google Scholar 

  57. Van Deemter M, Ponsioen T, Bank R, Snabel J, Van der Worp R, Hooymans J, et al. Pentosidine accumulates in the aging vitreous body: a gender effect. Exp Eye Res. 2009;88(6):1043–50.

    Article  PubMed  Google Scholar 

  58. Foroumandi E, Alizadeh M, Kheirouri S, Asghari JM. Exploring the role of body mass index in relationship of serum nitric oxide and advanced glycation end products in apparently healthy subjects. PLoS ONE. 2019;14(3):e0213307.

    Article  CAS  PubMed  Google Scholar 

  59. Semba RD, Kai S, Schwartz AV, Varadhan R, Harris TB, Satterfield S, et al. Serum carboxymethyl-lysine, an advanced glycation end product, is associated with arterial stiffness in older adults. J Hypertens. 2015;33(4):797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gaens KH, Ferreira I, Van de Waarenburg MP, van Greevenbroek MM, Van Der Kallen CJ, Dekker JM, et al. Protein-bound plasma Nε-(carboxymethyl) lysine is inversely associated with central obesity and inflammation and significantly explain a part of the central obesity–related increase in inflammation: The Hoorn and CODAM studies. Arterioscler Thromb Vasc Biol. 2015;35(12):2707–13.

    Article  CAS  PubMed  Google Scholar 

  61. Norata GD, Garlaschelli K, Grigore L, Tibolla G, Raselli S, Redaelli L, et al. Circulating soluble receptor for advanced glycation end products is inversely associated with body mass index and waist/hip ratio in the general population. Nutr Metab Cardiovasc Dis. 2009;19(2):129–34.

    Article  CAS  PubMed  Google Scholar 

  62. Semba RD, Arab L, Sun K, Nicklett EJ, Ferrucci L. Fat mass is inversely associated with serum carboxymethyl-lysine, an advanced glycation end product, in adults. J Nutr. 2011;141(9):1726–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Makino N, Oyama JI, Maeda T, Koyanagi M, Higuchi Y, Tsuchida K. Calorie restriction increases telomerase activity, enhances autophagy, and improves diastolic dysfunction in diabetic rat hearts. Molecular and cellular biochemistry. 2015;403(1–2):1–11.

  64. Dan-Dan R, Jing L, CHANG B, Chun-Shen L, Ju-Hong Y. Early intervention with Didang decoction delays macrovascular lesions in diabetic rats through regulating AMP-activated protein kinase signaling pathway. Chinese journal of natural medicines. 2017;15(11):847–54.

  65. Rivera P, Pérez-Martín M, Pavón FJ, Serrano A, Crespillo A, Cifuentes M, et al. Pharmacological administration of the isoflavone daidzein enhances cell proliferation and reduces high fat diet-induced apoptosis and gliosis in the rat hippocampus. PLoS ONE. 2013;8(5):e64750.

    Article  CAS  PubMed  Google Scholar 

  66. Li SY, Liu Y, Sigmon V, McCort A, Ren J. High-fat diet enhances visceral advanced glycation end products, nuclear O-Glc-Nac modification, p38 mitogen-activated protein kinase activation and apoptosis. Diabetes Obes Metab. 2005;7(4):448–54.

    Article  CAS  PubMed  Google Scholar 

  67. Ma L, Wang R, Dong W, Li Y, Xu B, Zhang J, et al. Long-term caloric restriction in mice may prevent age-related learning impairment via suppression of apoptosis. Behav Brain Res. 2016;315:45–50.

    Article  PubMed  Google Scholar 

  68. Bengmark S. Advanced glycation and lipoxidation end products–amplifiers of inflammation: the role of food. J Parenter Enter Nutr. 2007;31(5):430–40.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by a Grant from Tabriz University of Medical Sciences, Tabriz, Iran.

Author information

Authors and Affiliations

Authors

Contributions

RN and SK conceptualized the research proposal. RG assisted in designing and facilitating intersectoral collaboration. EF participated in data collection. All authors contributed in analysis and interpretation and manuscript writing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sorayya Kheirouri.

Ethics declarations

Ethics approval

The protocol of this study was approved by the Ethics Committee of Tabriz University of Medical Sciences (No: IR.TBZMED.REC.1396.960).

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foroumandi, E., Kheirouri, S., Nosrati, R. et al. Association of dietary intake, medication and anthropometric indices with serum levels of advanced glycation end products, caspase-3, and matrix metalloproteinase-9 in diabetic patients. J Diabetes Metab Disord 20, 719–725 (2021). https://doi.org/10.1007/s40200-021-00803-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-021-00803-5

Keywords

Navigation