Skip to main content
Log in

3D Fe-Rich Phases Evolution and Its Effects on the Fracture Behavior of Al–7.0Si–1.2Fe Alloys by Mn Neutralization

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The evolution of the 3D Fe-rich phases of Al–7.0Si–1.2Fe alloys with different Mn contents was visualized and characterized using synchrotron X-ray computed tomography, and the effect of Fe-rich phases with typical morphologies on the fracture behavior during tensile testing was analyzed. The results showed that the Fe-rich phase changed from platelet-like β-Al5FeSi into α-Al15(FeMn)3Si2 with various morphologies after the addition of Mn. The Mn addition not only significantly reduced the volume fraction, equivalent diameter and interconnectivity of the Fe-rich phase but also greatly increased the sphericity, surface thickness, and distribution of the mean curvature and surface thickness. Furthermore, the equivalent diameter of α-Al15(FeMn)3Si2 had an inverse exponential function relationship with its sphericity. The 3D morphology of α-Al15(FeMn)3Si2 can be summarized as massive and regular polyhedrons, hollow and regular polyhedrons, and multibranched polyhedrons. The fraction of the different 3D morphologies in each alloy is related to the Mn content, where excess Mn increased the number and volume fraction of the large Fe-rich particles with a low sphericity. The ductility of each alloy was significantly improved by the addition of Mn but gradually decreased when the Mn/Fe ratio exceeded 1.2. The increase in large α-Al15(MnFe)3Si2 with a low sphericity was the main reason for the decreased ductility of alloys with a high Mn content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7.
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. N. Ding, F. Gao, Z. Wang, X. Gong, Z. Nie, Procedia Eng. 27, 465 (2012)

    Article  CAS  Google Scholar 

  2. L. Hurtalová, E. Tillová, M. Chalupová, E. Ďuriníková, Mach. Technol. Mater. 6, 11 (2012)

    Google Scholar 

  3. J.A. Taylor, Procedia Mater. Sci. 1, 19 (2012)

    Article  CAS  Google Scholar 

  4. L.F. Zhang, J.W. Gao, L.N.W. Damoah, D.G. Robertson, Min. Proc. Ext. Met. Rev. 33, 99 (2012)

    Article  Google Scholar 

  5. Z. Li, N. Limodin, A. Tandjaoui, P. Quaegebeur, J.F. Witz, D. Balloy, Eng. Fract. Mech. 183, 94 (2017)

    Article  Google Scholar 

  6. I. Bacaicoa, M. Luetje, M. Wicke, A. Geisert, F. Zeismann, M. Fehlbier, A. Brueckner-Foit, Procedia Struct. Integr. 2, 2269 (2016)

    Article  Google Scholar 

  7. M.A. Moustafa, J. Mater. Process. Technol. 209, 605 (2009)

    Article  CAS  Google Scholar 

  8. C.M. Dinnis, J.A. Taylor, A.K. Dahle, Metall. Mater. Trans. A 37, 3283 (2006)

    Article  Google Scholar 

  9. S.G. Shabestari, Mater. Sci. Eng. A 383, 289 (2004)

    Article  Google Scholar 

  10. D.F. Song, S.C. Wang, K.H. Zheng, Chin. J. Nonferr. Metal. 25, 1832 (2015)

    CAS  Google Scholar 

  11. H. Becker, T. Bergh, P.E. Vullum, A. Leineweber, Y. Li, Materialia 780, 100198 (2019)

    Article  Google Scholar 

  12. J.Y. Hwang, H.W. Doty, M.J. Kaufman, Mater. Sci. Eng. A 488, 496 (2008)

    Article  Google Scholar 

  13. D. Bösch, S. Pogatscher, M. Hummel, W. Fragner, P.J. Uggowitzer, M. Göken, H.W. Höppel, Metall. Mater. Tran. A 46, 1035 (2015)

    Article  Google Scholar 

  14. X. Cao, J. Campbell, Metall. Mater. Tran. A 35, 1425 (2004)

    Article  Google Scholar 

  15. A. Fabrizia, G. Timelli, IOP Conf. Ser. Mater. Sci. Eng. 117, 12 (2016)

    Google Scholar 

  16. G. Timelli, S. Capuzzi, A. Fabrizi, J. Therm. Anal. Nal. Calorim. 123, 249 (2016)

    Article  CAS  Google Scholar 

  17. Z.Q. Qiu, X.C. Meng, Q.H.X.S. Zeng, X.X. Rao, Y. Ding, L. Luo, Y. Liu, Acta Metall. Sin. Engl. Lett. 31, 629 (2018)

    Article  CAS  Google Scholar 

  18. X. Cao, J. Campbell, Int. J. Cast Metal Res. 17, 1 (2004)

    Article  CAS  Google Scholar 

  19. Z. Xu, T. Li, Y. Zhou, J. Mater. Sci. 38, 4557 (2003)

    Article  CAS  Google Scholar 

  20. S.W. Kim, U.H. Im, H.C. Cha, S.H. Kim, J.E. Jang, K.Y. Kim, China Foundry 10, 112 (2013)

    CAS  Google Scholar 

  21. H.L.D. Moraes, J.R.D. Oliveira, D.C.R. Espinosa, J.A.S. Tenório, Mater. Trans. 47, 1731 (2006)

    Article  Google Scholar 

  22. D.F. Song, Y.L. Zhao, Z. Wang, Y.W. Jia, H.L. Huang, D.T. Zhang, W.W. Zhang, J. Mater. Res. 36, 1357 (2021)

    Article  CAS  Google Scholar 

  23. D.F. Song, S.C. Wang, Y.L. Zhao, S.H. Liu, Y. Du, Y.H. Kang, Z. Wang, W.W. Zhang, Trans. Nonferrous Metals Soc. China 30, 1 (2020)

    Article  CAS  Google Scholar 

  24. C.M. Dinnis, J.A. Taylor, A.K. Dahle, Scr. Mater. 53, 955 (2005)

    Article  CAS  Google Scholar 

  25. M. Timpel, N. Wanderka, R. Grothausmann, J. Banhart, J. Alloys Compd. 558, 18 (2013)

    Article  CAS  Google Scholar 

  26. J.M. Yu, N. Wanderka, G. Miehe, J. Banhart, Intermetallics 72, 53 (2016)

    Article  CAS  Google Scholar 

  27. Z. Li, N. Limodin, A. Tandjaoui, P. Quaegebeur, P. Osmond, D. Balloy, Mater. Sci. Eng. A 689, 286 (2017)

    Article  CAS  Google Scholar 

  28. C. Hu, W.F. Luo, H.D. Zhao, China Foundry 14, 379 (2017)

    Article  Google Scholar 

  29. Z.Y. Ding, N.F. Zhang, L. Yu, W.Q. Lu, J.G. Li, Q.D. Hu, Acta Metall. Sin. Engl. Lett. 34, 45 (2021)

    Article  Google Scholar 

  30. Y. Zhao, D. Song, L. Bo, C. Zhang, W. Zhang, Mater. Charact. 153, 354 (2019)

    Article  CAS  Google Scholar 

  31. X.Y. Jiao, C.F. Liu, Z.P. Guo, G.D. Tong, S.L. Ma, Y. Bi, Y.F. Zhang, S.M. Xiong, J. Mater. Sci. Technol. 51, 54 (2020)

    Article  Google Scholar 

  32. J.M. Yu, N. Wanderka, A. Rack, E. Raudin, E. Boller, H. Markötter, A. Manzoni, F. Vogel, T. Arlt, I. Manke, J. Banhart, Acta. Mater. 129, 194 (2017)

    Article  CAS  Google Scholar 

  33. C. Puncreobutr, P.D. Lee, K.M. Kareh, T. Connolley, A.B. Phillion, Acta. Mater. 68, 42 (2014)

    Article  CAS  Google Scholar 

  34. N.F. Zhang, Q.D. Hu, F. Yang, W.Q. Lu, Z.Y. Ding, S. Cao, L. Yu, X. Ge, J.G. Li, Metall. Mater. Trans. A 51, 2711 (2020)

    Article  CAS  Google Scholar 

  35. Y. Zhao, W. Zhi, C. Zhang, W. Zhang, J. Alloys Compd. 777, 1054 (2019)

    Article  CAS  Google Scholar 

  36. Y. Zhao, W. Du, B. Koe, T. Connolley, S. Irvine, P.K. Allan, C.M. Schlepütz, W. Zhang, F. Wang, D.G. Eskin, Scr. Mater. 146, 321 (2018)

    Article  CAS  Google Scholar 

  37. Y. Zhao, W. Zhang, D. Song, B. Lin, F. Shen, D. Zheng, X. Xie, Z. Sun, Y. Fu, R. Li, J. Mater. Sci. Technol. 80, 84 (2021)

    Article  Google Scholar 

  38. INFN Trieste, PITRE, http://webint.ts.infn.it/en/research/exp/beats2/pitre.html (2013)

  39. FEI, Amira-Avizo 3D Software. http://www.fei.com/software/avizo3d/ (2017)

  40. T. Gao, Y. Wu, C. Li, X. Liu, Mater. Lett. 110, 191 (2013)

    Article  CAS  Google Scholar 

  41. J. Wang, P.D. Lee, R.W. Hamilton, M. Li, J. Allison, Scr. Mater. 60, 516 (2009)

    Article  CAS  Google Scholar 

  42. S. Terzi, J.A. Taylor, Y.H. Cho, L. Salvo, M. Suéry, E. Boller, A.K. Dahle, Acta. Mater. 58, 5370 (2010)

    Article  CAS  Google Scholar 

  43. M.H. Mulazimoglu, A. Zaluska, J.E. Gruzleski, F. Paray, Metall. Mater. Trans. A 27, 929 (1996)

    Article  Google Scholar 

  44. S. Seifeddine, S. Johansson, L.S. Ingvar, Mater. Sci. Eng. A 490, 385 (2008)

    Article  Google Scholar 

  45. X. Lan, K. Li, F. Wang, M. Yang, S. Liu, J. Wang, Y. Du, J. Alloys Compd. 784, 68 (2019)

    Article  CAS  Google Scholar 

  46. J. Yi, Y. Gao, P. Lee, T. Lindley, Mater. Sci. Eng. A 386, 396 (2004)

    Article  Google Scholar 

  47. A. Bjurenstedt, E. Ghassemali, S. Seifeddine, A. Dahle, Mater. Sci. Eng. A 756, 502 (2019)

    Article  CAS  Google Scholar 

  48. L. Ceschini, A. Morri, A. Morri, A. Gamberini, S. Messieri, Mater. Des. 30, 4525 (2009)

    Article  CAS  Google Scholar 

  49. L. Wang, N. Limodin, A.E. Bartali, J.F. Witz, J.Y. Buffiere, E. Charkaluk, Metall. Mater. Trans. A 51, 3843 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the National Natural Science Foundation of China (No. 52074131), the Foundation and Applied Foundation Program of Guangdong Province (No. 2020B1515120065), the Key-Area Research and Development Program of Guangdong Province (No. 2020B010186002), and the Science and Technology Plan Program of Guangdong Province (Nos. 2015B090926013, 2019B090905009). We would also like to thank the WL13W1 beamline of Shanghai Synchrotron Radiation Facility, SSRF (proposal number 2018-SSRF-PT-006299, 2020-SSRF-PT-011937), for providing synchrotron radiation beamtime.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Wen Zhang.

Ethics declarations

Conflict of interest

The authors state that there are no conflicts of interest to disclose.

Additional information

Available online at http://link.springer.com/journal/40195.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (AVI 4368 kb)

Supplementary file2 (AVI 4596 kb)

Supplementary file3 (AVI 4543 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, DF., Zhao, YL., Wang, Z. et al. 3D Fe-Rich Phases Evolution and Its Effects on the Fracture Behavior of Al–7.0Si–1.2Fe Alloys by Mn Neutralization. Acta Metall. Sin. (Engl. Lett.) 35, 163–175 (2022). https://doi.org/10.1007/s40195-021-01299-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-021-01299-x

Keywords

Navigation