Skip to main content
Log in

Structure, Electrical Resistivity and Superconductivity of Low-alloyed γ-U Phase Retained to Low Temperatures by Means of Rapid Cooling

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The γ-U phase alloys can be retained down to low temperatures with less required alloying concentration by using the splat-cooling technique with a cooling rate better than 106 K/s. Doping with 15 at.% Mo, Pt, Pd, Nb leads to a stabilization of the cubic γ-U phase, while it requires much higher Zr concentrations (≥30 at.% Zr). All U–T splats become superconducting with T c in the range of 0.61–2.11 K. A good agreement of the experimentally observed specific-heat jump at T c with that from BCS theory prediction was obtained for U-15 at.% Mo consisting of the γ-U phase with an ideal bcc A2 structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. I. Grenthe, J. Drozdzynski, T. Fujino, E.C. Buck, T.E. Albrecht-Schmitt, S.F. Wolf, in The Chemistry of the Actinide and Transactinide Elements, vol. 1, ed. by L.R. Morss, N. Edelstein, J. Fuger, J.J. Katz (Springer, 2006), p. 253

  2. H.L. Yakel, A review of X-ray diffraction studies in uranium alloys, in Proceedings of the Physical Metallurgy of Uranium Alloys Conference, Vail, Colorado, USA, 12–14 February 1974

  3. G. Aschermann, E. Justi, Phys. Z. 43, 207 (1942)

    Google Scholar 

  4. G.H. Lander, E.S. Fisher, S.D. Bader, Adv. Phys. 43, 1 (1994)

    Article  Google Scholar 

  5. J.C. Lashley, J.C. Lashley, B.E. Lang, J. Boerio-Goates, B.F. Woodfield, G.M. Schmiedeshoff, E.C. Gay, C.C. McPheeters, D.J. Thoma, W.L. Hults, J.C. Cooley, R.J. Hanrahan Jr, J.L. Smith, Phys. Rev. B 63, 224510 (2001)

    Article  Google Scholar 

  6. D. Graf, R. Stillwell, T.P. Murphy, J.H. Park, M. Kano, E.C. Palm, P. Schlottmann, J. Bourg, K.N. Collar, J. Cooley, J. Lashley, J. Willit, S.W. Tozer, Phys. Rev. B 80, 241101R (2009)

    Article  Google Scholar 

  7. G.L. Hofman, M.K. Meyer, A.E. Ray, Design of high density gamma-phase uranium alloys for LEU dispersion fuel applications, in Proceedings of International Reduced Enrichment for Research and Test Reactors Conference, Sao Paulo, Brazil, 18–20 October 1998

  8. V.P. Sinha, P.V. Hegde, G.J. Prasad, G.K. Dey, H.S. Kamath, J. Alloys Compd. 506, 253 (2010)

    Article  Google Scholar 

  9. S. Van Den Berghe, A. Leenaers, E. Koonen, L. Sannen, Adv. Sci. Technol. 73, 78 (2010)

    Article  Google Scholar 

  10. S. Van Den Berghe, P. Lemoine, Nucl. Eng. Technol. 46, 125 (2014)

    Article  Google Scholar 

  11. M.K. Meyer, G.L. Hofman, S.L. Hayes, C.R. Clark, T.C. Wiencek, J.L. Snelgrove, R.V. Strain, K.-H. Kim, J. Nucl. Mater. 304, 221 (2002)

    Article  Google Scholar 

  12. D.E. Burkes, R. Prabhakaran, T. Hartmann, J.-F. Jue, F.J. Rice, Nucl. Eng. Des. 240, 1332 (2010)

    Article  Google Scholar 

  13. J. Lisboa, J. Marin, M. Barrera, H. Pesenti, World J. Nucl. Sci. Technol. 5, 274 (2015)

    Article  Google Scholar 

  14. B.S. Chandrasekhar, J.K. Hulm, J. Phys. Chem. Solids 7, 259 (1958)

    Article  Google Scholar 

  15. T.G. Berlincourt, J. Phys. Chem. Solids 11, 12 (1959)

    Article  Google Scholar 

  16. H. Jones, Rep. Prog. Phys. 36, 1425 (1973)

    Article  Google Scholar 

  17. R. Ray, E. Musso, U.S. Patent 3,981,722, 21 Sept 1976

  18. I. Tkach, N.-T.H. Kim-Ngan, S. Mašková, M. Dzevenko, L. Havela, A. Warren, C. Stitt, T. Scott, J. Alloys Compd. 534, 101 (2012)

    Article  Google Scholar 

  19. N.-T.H. Kim-Ngan, I. Tkach, S. Maškova, A.P. Goncalves, L. Havela, J. Alloys Compd. 580, 223 (2013)

    Article  Google Scholar 

  20. G.C. Allen, P.M. Tucker, R.A. Lewis, J. Chem. Soc., Faraday Trans. II 80, 991 (1984)

  21. N.-T.H. Kim-Ngan, M. Paukov, S. Sowa, M. Krupska, I. Tkach, L. Havela, J. Alloys Compd. 645, 158 (2015)

    Article  Google Scholar 

  22. A. Dommann, F. Hulliger, Solid State Commun. 65, 1093 (1988)

    Article  Google Scholar 

  23. B.A.S. Ross, D.E. Peterson, Bull. Alloy Ph. Diagr. 11, 240 (1990)

    Article  Google Scholar 

  24. H. Kleykamp, Pure Appl. Chem. 63, 1401 (1991)

    Article  Google Scholar 

  25. K. Tangri, D.K. Chaudhuri, J. Nucl. Mat. 15, 278 (1965)

    Article  Google Scholar 

  26. M. Anagnostidis, M. Colombia, H. Monti, J. Nucl. Mat. 11, 67 (1964)

    Article  Google Scholar 

  27. S. Dash, K. Ghoshal, T.R.G. Kutty, J. Therm. Anal. Calorim. 112, 179 (2013)

    Article  Google Scholar 

  28. J.G. Huber, P.H. Ansari, Phys. B 135, 441 (1985)

    Article  Google Scholar 

  29. J.C. Slater, J. Chem. Phys. 41, 3199 (1964)

    Article  Google Scholar 

  30. I. Tkach, N.-T.H. Kim-Ngan, A. Warren, T. Scott, A.P. Goncalves, L. Havela, Physica C 498, 14 (2014)

    Article  Google Scholar 

  31. N.-T.H. Kim-Ngan, S. Sowa, M. Krupska, M. Paukov, I. Tkach, L. Havela, Adv. Nat. Sci. Nanosci. Nanotechnol. 6, 015007 (2015)

    Article  Google Scholar 

  32. N. Toyota, A. Inoue, K. Matsuzaki, T. Fukase, T. Masumoto, J. Phys. Soc. Jpn. 53, 924 (1984)

    Article  Google Scholar 

  33. A. Slebarski, J. Goraus, J. Deniszczyk, L. Skoczen, J. Phys.: Condens. Matter 18, 10319 (2006)

    Google Scholar 

  34. A. Otop, I. Maksimov, E.-W. Scheidt, J.A. Mydosh, S. Sullow, Physica B 378–380, 371 (2006)

    Article  Google Scholar 

  35. J.S. Dugdale, Contemp. Phys. 28, 547 (1987)

    Article  Google Scholar 

  36. R.D. Barnard, Proc. Phys. Soc. 78, 722 (1961)

    Article  Google Scholar 

  37. L.E. DeLong, J.G. Huber, K.N. Yang, M.B. Maple, Phys. Rev. Lett. 51, 312 (1983)

    Article  Google Scholar 

  38. O. Pena, Physica C 514, 95 (2015)

    Article  Google Scholar 

  39. I. Tkach, S. Maskova, Z. Matej, N.-T.H. Kim-Ngan, A.V. Andreev, L. Havela, Phys. Rev. B 88, 060407R (2013)

    Article  Google Scholar 

  40. I. Tkach, M. Paukov, D. Drozdenko, M. Cieslar, B. Vondrackova, Z. Matej, D. Kriegner, A.V. Andreev, N.-T.H. Kim-Ngan, I. Turek, M. Divis, L. Havela, Phys. Rev. B 91, 115116 (2015)

    Article  Google Scholar 

  41. A.V. Andreev, S.M. Zadvorkin, M.I. Bartashevich, T. Goto, J. Kamarad, Z. Arnold, H. Drulis, J. Alloys Compd. 267, 32 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Czech Science Foundation under the Grant No. 15-01100S. Experiments were partly performed at MLTL (http://mltl.eu/) supported within the program of Czech Research Infrastructures (No. LM2011025). M.P. was supported by the Grant Agency of the Charles University under the Project No. 1332314. Participation of Krakow group was supported by the Czech-Polish cooperation in the scope of Czech-Polish project 7AMB14PL036 (9004/R14/R15). N-T.H.K-N acknowledges the European Regional Development Fund under the Infrastructure and Environment Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N.-T. H. Kim-Ngan.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krupska, M., Kim-Ngan, NT.H., Sowa, S. et al. Structure, Electrical Resistivity and Superconductivity of Low-alloyed γ-U Phase Retained to Low Temperatures by Means of Rapid Cooling. Acta Metall. Sin. (Engl. Lett.) 29, 388–398 (2016). https://doi.org/10.1007/s40195-016-0400-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-016-0400-7

Keywords

Navigation