Skip to main content

Advertisement

Log in

Stem Cell Senescence as the Memory of Past Injuries

  • Tissue Engineering and Regeneration, (Bryan Brown and Christopher Dearth, Section Editors)
  • Published:
Current Pathobiology Reports

Abstract

Stem cell senescence may play a central role in both aging and age-related pathologies, being associated with a functional impairment of both homeostasis and the regenerative properties of tissues. The possibility to interfere with this detrimental phenomenon requires a careful elucidation of the mechanisms that initiate and maintain this cellular response. In this review, we will discuss the hypothesis that cellular senescence could be considered the biological memory of the action of different types of stressors on the organism, leading to a complex phenotype that includes both intrinsic (e.g., gene expression, chromatin organization, and cell metabolism) and extrinsic (e.g., secretome) changes. Finally, it will be shown that cell senescence blunts the regenerative ability of human cardiac stem cells and that the pharmacological inhibition of this detrimental cell process restores the functional properties of primitive cells in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: ∙ Of importance ∙∙ Of major importance

  1. Beltrami AP, Barlucchi L, Torella D et al (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114(6):763–776

    Article  CAS  PubMed  Google Scholar 

  2. Pellegrini G, Rama P, Mavilio F et al (2009) Epithelial stem cells in corneal regeneration and epidermal gene therapy. J Pathol 217(2):217–228

    Article  CAS  PubMed  Google Scholar 

  3. Beltrami A, Cesselli D, Beltrami C (2012) Cardiac resident stem cells: work (still) in progress. J Stem Cell Res Ther S9:001

    Google Scholar 

  4. Tongers J, Losordo DW, Landmesser U (2011) Stem and progenitor cell-based therapy in ischaemic heart disease: promise, uncertainties, and challenges. Eur Heart J 32(10):1197–1206

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Beltrami AP, Cesselli D, Beltrami CA (2012) Stem cell senescence and regenerative paradigms. Clin Pharmacol Ther 91(1):21–29

    Article  CAS  PubMed  Google Scholar 

  6. Lopez-Otin C, Blasco MA, Partridge L et al (2013) The hallmarks of aging. Cell 153(6):1194–1217

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Clegg A, Young J, Iliffe S et al (2013) Frailty in elderly people. Lancet 381(9868):752–762

    Article  PubMed  Google Scholar 

  8. Rando TA (2006) Stem cells, ageing and the quest for immortality. Nature 441(7097):1080–1086

    Article  CAS  PubMed  Google Scholar 

  9. Trindade LS, Aigaki T, Peixoto AA et al (2013) A novel classification system for evolutionary aging theories. Front Genet 4:25

    Article  PubMed Central  PubMed  Google Scholar 

  10. •• Jones OR, Scheuerlein A, Salguero-Gomez R et al (2014) Diversity of ageing across the tree of life. Nature 505(7482):169–173. Study showing that patterns of mortality and fertility differ profoundly among species.

  11. Le Cunff Y, Baudisch A, Pakdaman K (2014) Evolution of aging: individual life history trade-offs and population heterogeneity account for mortality patterns across species. J Evol Biol 27(8):1706–1720

    Article  PubMed  Google Scholar 

  12. Wensink M (2013) Age-specificity and the evolution of senescence: a discussion. Biogerontology 14(1):99–105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    Article  CAS  PubMed  Google Scholar 

  14. Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345(6274):458–460

    Article  CAS  PubMed  Google Scholar 

  15. von Zglinicki T, Saretzki G, Docke W et al (1995) Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: a model for senescence? Exp Cell Res 220(1):186–193

    Article  Google Scholar 

  16. Rudolph KL, Chang S, Lee HW et al (1999) Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96(5):701–712

    Article  CAS  PubMed  Google Scholar 

  17. •• Vera E, Bernardes de Jesus B, Foronda M et al (2012) The rate of increase of short telomeres predicts longevity in mammals. Cell Rep 2(4):732–737. Study demonstrating that the rate of formation of short telomeres predicts longevity.

  18. •• Hewitt G, Jurk D, Marques FD et al (2012) Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nat Commun 3:708. In this study, authors show that telomeric DNA damage cannot be repaired and may be responsible for the permanently mantained DDR.

  19. •• Baker DJ, Wijshake T, Tchkonia T et al (2011) Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479:232–236. This study demonstrates that removal of senescent cells may result in a reduction of age related tissue changes.

  20. Baker DJ, Sedivy JM (2013) Probing the depths of cellular senescence. J Cell Biol 202(1):11–13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Beltrami AP, Cesselli D, Beltrami CA (2011) At the stem of youth and health. Pharmacol Ther 129(1):3–20

    Article  CAS  PubMed  Google Scholar 

  22. van Deursen JM (2014) The role of senescent cells in ageing. Nature 509(7501):439–446

    Article  PubMed Central  PubMed  Google Scholar 

  23. Rodier F, Munoz DP, Teachenor R et al (2011) DNA-SCARS: distinct nuclear structures that sustain damage-induced senescence growth arrest and inflammatory cytokine secretion. J Cell Sci 124(Pt 1):68–81

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Sherr CJ (2012) Ink4-Arf locus in cancer and aging. Wiley Interdiscip Rev Dev Biol 1(5):731–741

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Sage J, Straight AF (2010) RB’s original CIN? Genes Dev 24(13):1329–1333

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Zhang Y, Xiong Y, Yarbrough WG (1998) ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 92(6):725–734

    Article  CAS  PubMed  Google Scholar 

  27. Decottignies A, d’Adda di Fagagna F (2011) Epigenetic alterations associated with cellular senescence: a barrier against tumorigenesis or a red carpet for cancer? Semin Cancer Biol 21(6):360–366

    Article  CAS  PubMed  Google Scholar 

  28. de Koning AP, Gu W, Castoe TA et al (2011) Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet 7(12):e1002384

    Article  PubMed Central  PubMed  Google Scholar 

  29. Huidobro C, Fernandez AF, Fraga MF (2013) Aging epigenetics: causes and consequences. Mol Aspects Med 34(4):765–781

    Article  CAS  PubMed  Google Scholar 

  30. Shen H, Laird PW (2013) Interplay between the cancer genome and epigenome. Cell 153(1):38–55

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. • Wang J, Geesman GJ, Hostikka SL et al (2011) Inhibition of activated pericentromeric SINE/Alu repeat transcription in senescent human adult stem cells reinstates self-renewal. Cell Cycle 10(17):3016–3030. This study shows the importance of ME activation in stem cell senescence and dysfunction.

  32. • De Cecco M, Criscione SW, Peckham EJ et al (2013) Genomes of replicatively senescent cells undergo global epigenetic changes leading to gene silencing and activation of transposable elements. Aging Cell 12(2):247–256. This study shows the importance of ME activation in stem cell senescence and dysfunction.

  33. Squillaro T, Alessio N, Cipollaro M et al (2010) Partial silencing of methyl cytosine protein binding 2 (MECP2) in mesenchymal stem cells induces senescence with an increase in damaged DNA. FASEB J 24(5):1593–1603

    Article  CAS  PubMed  Google Scholar 

  34. Arnoult N, Van Beneden A, Decottignies A (2012) Telomere length regulates TERRA levels through increased trimethylation of telomeric H3K9 and HP1alpha. Nat Struct Mol Biol 19(9):948–956

    Article  CAS  PubMed  Google Scholar 

  35. Michishita E, McCord RA, Boxer LD et al (2009) Cell cycle-dependent deacetylation of telomeric histone H3 lysine K56 by human SIRT6. Cell Cycle 8(16):2664–2666

    Article  CAS  PubMed  Google Scholar 

  36. Benetti R, Garcia-Cao M, Blasco MA (2007) Telomere length regulates the epigenetic status of mammalian telomeres and subtelomeres. Nat Genet 39(2):243–250

    Article  CAS  PubMed  Google Scholar 

  37. Pfeiffer V, Lingner J (2012) TERRA promotes telomere shortening through exonuclease 1-mediated resection of chromosome ends. PLoS Genet 8(6):e1002747

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. O’Sullivan RJ, Karlseder J (2012) The great unravelling: chromatin as a modulator of the aging process. Trends Biochem Sci 37(11):466–476

    Article  PubMed Central  PubMed  Google Scholar 

  39. Dixon JR, Selvaraj S, Yue F et al (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485(7398):376–380

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Fiorentino FP, Giordano A (2012) The tumor suppressor role of CTCF. J Cell Physiol 227(2):479–492

    Article  CAS  PubMed  Google Scholar 

  41. Dreesen O, Chojnowski A, Ong PF et al (2013) Lamin B1 fluctuations have differential effects on cellular proliferation and senescence. J Cell Biol 200(5):605–617

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Shah PP, Donahue G, Otte GL et al (2013) Lamin B1 depletion in senescent cells triggers large-scale changes in gene expression and the chromatin landscape. Genes Dev 27(16):1787–1799

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Sang L, Coller HA, Roberts JM (2008) Control of the reversibility of cellular quiescence by the transcriptional repressor HES1. Science 321(5892):1095–1100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Chen JH, Ozanne SE (2006) Deep senescent human fibroblasts show diminished DNA damage foci but retain checkpoint capacity to oxidative stress. FEBS Lett 580(28–29):6669–6673

    Article  CAS  PubMed  Google Scholar 

  45. Passos JF, Nelson G, Wang C et al (2010) Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol Syst Biol 6:347

    Article  PubMed Central  PubMed  Google Scholar 

  46. •• Acosta JC, Banito A, Wuestefeld T et al (2013) A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol 15(8):978–990. This study demonstrates the pivotal role of inflammasome activation and IL-1 secretion in regulating the SASP.

  47. Ivanov A, Pawlikowski J, Manoharan I et al (2013) Lysosome-mediated processing of chromatin in senescence. J Cell Biol 202(1):129–143

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11(3):298–300

    Article  CAS  PubMed  Google Scholar 

  49. Zhang Y, Ikeno Y, Qi W et al (2009) Mice deficient in both Mn superoxide dismutase and glutathione peroxidase-1 have increased oxidative damage and a greater incidence of pathology but no reduction in longevity. J Gerontol A 64(12):1212–1220

    Article  Google Scholar 

  50. Schriner SE, Linford NJ, Martin GM et al (2005) Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308(5730):1909–1911

    Article  CAS  PubMed  Google Scholar 

  51. Blagosklonny MV (2008) Aging: ROS or TOR. Cell Cycle 7(21):3344–3354

    Article  CAS  PubMed  Google Scholar 

  52. Passos JF, Saretzki G, Ahmed S et al (2007) Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol 5(5):e110

    Article  PubMed Central  PubMed  Google Scholar 

  53. Takahashi A, Ohtani N, Yamakoshi K et al (2006) Mitogenic signalling and the p16INK4a-Rb pathway cooperate to enforce irreversible cellular senescence. Nat Cell Biol 8(11):1291–1297

    Article  CAS  PubMed  Google Scholar 

  54. Coller HA, Sang L, Roberts JM (2006) A new description of cellular quiescence. PLoS Biol 4(3):e83

    Article  PubMed Central  PubMed  Google Scholar 

  55. Chien Y, Scuoppo C, Wang X et al (2011) Control of the senescence-associated secretory phenotype by NF-kappaB promotes senescence and enhances chemosensitivity. Genes Dev 25(20):2125–2136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. • Jurk D, Wilson C, Passos JF et al (2014) Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat Commun 2:4172. Study showing the role of inflammation in impairing tissue regeneration and aging.

  57. Freund A, Orjalo AV, Desprez PY et al (2010) Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med 16(5):238–246

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Bonafe M, Storci G, Franceschi C (2012) Inflamm-aging of the stem cell niche: breast cancer as a paradigmatic example: breakdown of the multi-shell cytokine network fuels cancer in aged people. BioEssays 34(1):40–49

    Article  CAS  PubMed  Google Scholar 

  59. Salminen A, Kaarniranta K, Kauppinen A (2012) Inflammaging: disturbed interplay between autophagy and inflammasomes. Aging (Albany NY) 4(3):166–175

    CAS  Google Scholar 

  60. Salminen A, Huuskonen J, Ojala J et al (2008) Activation of innate immunity system during aging: NF-kB signaling is the molecular culprit of inflamm-aging. [Research Support, Non-U.S. Gov’t Review]. Ageing Res Rev 7(2):83–105

    Article  CAS  PubMed  Google Scholar 

  61. Olivieri F, Rippo MR, Procopio AD et al (2013) Circulating inflamma-miRs in aging and age-related diseases. Front Genet 4:121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Coppe JP, Desprez PY, Krtolica A et al (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5:99–118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Shelton DN, Chang E, Whittier PS et al (1999) Microarray analysis of replicative senescence. Curr Biol 9(17):939–945

    Article  CAS  PubMed  Google Scholar 

  64. Martin P (1997) Wound healing–aiming for perfect skin regeneration. Science 276(5309):75–81

    Article  CAS  PubMed  Google Scholar 

  65. Coppe JP, Patil CK, Rodier F et al (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6(12):2853–2868

    Article  CAS  PubMed  Google Scholar 

  66. Coppe JP, Rodier F, Patil CK et al (2011) Tumor suppressor and aging biomarker p16(INK4a) induces cellular senescence without the associated inflammatory secretory phenotype. J Biol Chem 286(42):36396–36403

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Minamino T, Yoshida T, Tateno K et al (2003) Ras induces vascular smooth muscle cell senescence and inflammation in human atherosclerosis. Circulation 108(18):2264–2269

    Article  CAS  PubMed  Google Scholar 

  68. Xue W, Zender L, Miething C et al (2007) Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445(7128):656–660

    Article  CAS  PubMed  Google Scholar 

  69. Serrano M (2011) Cancer: final act of senescence. Nature 479(7374):481–482

    Article  CAS  PubMed  Google Scholar 

  70. Soriani A, Zingoni A, Cerboni C et al (2009) ATM-ATR-dependent up-regulation of DNAM-1 and NKG2D ligands on multiple myeloma cells by therapeutic agents results in enhanced NK-cell susceptibility and is associated with a senescent phenotype. Blood 113(15):3503–3511

    Article  CAS  PubMed  Google Scholar 

  71. Kang TW, Yevsa T, Woller N et al (2011) Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479(7374):547–551

    Article  CAS  PubMed  Google Scholar 

  72. Hoenicke L, Zender L (2012) Immune surveillance of senescent cells—biological significance in cancer- and non-cancer pathologies. Carcinogenesis 33(6):1123–1126

    Article  CAS  PubMed  Google Scholar 

  73. Effros RB, Boucher N, Porter V et al (1994) Decline in CD28+ T cells in centenarians and in long-term T cell cultures: a possible cause for both in vivo and in vitro immunosenescence. Exp Gerontol 29(6):601–609

    Article  CAS  PubMed  Google Scholar 

  74. Leng Q, Bentwich Z, Borkow G (2002) CTLA-4 upregulation during aging. Mech Ageing Dev 123(10):1419–1421

    Article  CAS  PubMed  Google Scholar 

  75. Goronzy JJ, Weyand CM (2003) Aging, autoimmunity and arthritis: T-cell senescence and contraction of T-cell repertoire diversity—catalysts of autoimmunity and chronic inflammation. Arthritis Res Ther 5(5):225–234

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Appay V, Zaunders JJ, Papagno L et al (2002) Characterization of CD4(+) CTLs ex vivo. J Immunol 168(11):5954–5958

    Article  CAS  PubMed  Google Scholar 

  77. Epel ES, Lithgow GJ (2014) Stress biology and aging mechanisms: toward understanding the deep connection between adaptation to stress and longevity. J Gerontol A 69(Suppl 1):S10–S16

    Article  CAS  Google Scholar 

  78. Murakami S (2006) Stress resistance in long-lived mouse models. Exp Gerontol 41(10):1014–1019

    Article  CAS  PubMed  Google Scholar 

  79. Harper JM, Salmon AB, Leiser SF et al (2007) Skin-derived fibroblasts from long-lived species are resistant to some, but not all, lethal stresses and to the mitochondrial inhibitor rotenone. Aging Cell 6(1):1–13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Morimoto RI, Cuervo AM (2014) Proteostasis and the aging proteome in health and disease. J Gerontol A 69(Suppl 1):S33–S38

    Article  CAS  Google Scholar 

  81. Balch WE, Morimoto RI, Dillin A et al (2008) Adapting proteostasis for disease intervention. Science 319(5865):916–919

    Article  CAS  PubMed  Google Scholar 

  82. •• Ben-Zvi A, Miller EA, Morimoto RI (2009) Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging. Proc Natl Acad Sci USA 106(35):14914–14919. Study showing that loss of proteostasis is one of the earliest events in aging.

  83. Olzscha H, Schermann SM, Woerner AC et al (2011) Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell 144(1):67–78

    Article  CAS  PubMed  Google Scholar 

  84. •• Taylor RC, Dillin A (2013) XBP-1 is a cell-nonautonomous regulator of stress resistance and longevity. Cell 153(7):1435–1447. Study showing that proteostasis may be enhanced paracrinally through the release of microvesicles.

  85. Tanskanen M, Peuralinna T, Polvikoski T et al (2008) Senile systemic amyloidosis affects 25% of the very aged and associates with genetic variation in alpha2-macroglobulin and tau: a population-based autopsy study. Ann Med 40(3):232–239

    Article  CAS  PubMed  Google Scholar 

  86. Hohn A, Grune T (2013) Lipofuscin: formation, effects and role of macroautophagy. Redox Biol 1(1):140–144

    Article  PubMed Central  PubMed  Google Scholar 

  87. Krohne TU, Stratmann NK, Kopitz J et al (2010) Effects of lipid peroxidation products on lipofuscinogenesis and autophagy in human retinal pigment epithelial cells. Exp Eye Res 90(3):465–471

    Article  CAS  PubMed  Google Scholar 

  88. Dalle Pezze P, Nelson G, Otten EG et al (2014) Dynamic modelling of pathways to cellular senescence reveals strategies for targeted interventions. PLoS Comput Biol 10(8):e1003728

    Article  PubMed Central  PubMed  Google Scholar 

  89. Kurz T, Terman A, Gustafsson B et al (2008) Lysosomes and oxidative stress in aging and apoptosis. Biochim Biophys Acta 1780(11):1291–1303

    Article  CAS  PubMed  Google Scholar 

  90. Schneider A, Simons M (2013) Exosomes: vesicular carriers for intercellular communication in neurodegenerative disorders. Cell Tissue Res 352(1):33–47

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Terman A, Brunk UT (2005) Is aging the price for memory? Biogerontology 6(3):205–210

    Article  PubMed  Google Scholar 

  92. Sorrentino SA, Bahlmann FH, Besler C et al (2007) Oxidant stress impairs in vivo reendothelialization capacity of endothelial progenitor cells from patients with type 2 diabetes mellitus: restoration by the peroxisome proliferator-activated receptor-gamma agonist rosiglitazone. Circulation 116(2):163–173

    Article  CAS  PubMed  Google Scholar 

  93. Wang X, Takagawa J, Lam VC et al (2011) Donor myocardial infarction impairs the therapeutic potential of bone marrow cells by an interleukin-1-mediated inflammatory response. Sci Transl Med 3(100):100ra190

    Article  Google Scholar 

  94. Loffredo FS, Steinhauser ML, Jay SM et al (2013) Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell 153(4):828–839

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. • Cesselli D, Beltrami AP, D’Aurizio F et al (2011) Effects of age and heart failure on human cardiac stem cell function. Am J Pathol 179(1):349–366. Study showing that age and pathology increase the rate of cardiac stem cell senescence and dysfunction.

  96. Urbanek K, Torella D, Sheikh F et al (2005) Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proc Natl Acad Sci USA 102(24):8692–8697

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. •• Avolio E, Gianfranceschi G, Cesselli D et al (2014) Ex vivo molecular rejuvenation improves the therapeutic activity of senescent human cardiac stem cells in a mouse model of myocardial infarction. Stem Cells 32(9):2373–2385. Study showing that the pharmacologic attenuation of stem cell senescence may enhance the reparative properties of cardiac progenitor cells.

  98. Janzen V, Forkert R, Fleming HE et al (2006) Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature 443(7110):421–426

    CAS  PubMed  Google Scholar 

  99. Cosgrove BD, Gilbert PM, Porpiglia E et al (2014) Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nat Med 20(3):255–264

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Vecellio M, Spallotta F, Nanni S et al (2014) The histone acetylase activator pentadecylidenemalonate 1b rescues proliferation and differentiation in the human cardiac mesenchymal cells of type 2 diabetic patients. Diabetes 63(6):2132–2147

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Paolo Beltrami.

Additional information

This article is part of the Topical Collection on Tissue Engineering and Regeneration.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gianfranceschi, G., Gri, G., Cesselli, D. et al. Stem Cell Senescence as the Memory of Past Injuries. Curr Pathobiol Rep 3, 17–26 (2015). https://doi.org/10.1007/s40139-015-0071-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40139-015-0071-5

Keywords

Navigation