Skip to main content
Log in

Oxime-functionalized cerium-based metal–organic framework for determination of two pesticides in water and biological samples by HPLC method

  • Original Research
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

Organophosphorous (OP) pesticides can cause many human diseases. In this study, the separation and determination of two organophosphorous pesticides (diazinon and methyl-parathion) in biological samples using solid-phase extraction method prior to their measurements by high‐performance liquid chromatography (HPLC) were investigated. Herein, a new functionalized cerium-based metal–organic framework (MOF) bearing oxime moiety, denoted here UiO-66(Ce)-MO, was synthesized through two-synthetic steps from the pristine UiO-66(Ce) and then applied as an efficient porous adsorbent for the extraction of pesticides from biological samples. Various techniques including Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and Brunauer–Emmett–Teller (BET) analysis were used for the description of adsorbent. The optimization of variables was performed by Box–Behnken design combined with response surface methodology. The factors’ effects including pH, eluent volume (EV), sample flow rate (SF) and eluent flow rate (EF) were also examined. The optimum conditions for both compounds were pH 5.5, eluent volume 0.6 mL, SF 2 mL min−1, and EF 0.2 mL min−1, leading to 97.1% and 96.0% removal of diazinon and methyl-parathion, respectively. Under the optimum conditions, the maximum adsorption capacity was obtained 454.5 mg g−1 for methyl-parathion and 476.2 mg g−1 for diazinon. The limit of detection (LOD) was found to be 0.04 μgL−1 for diazinon and 0.06 μgL−1 for methyl-parathion. Sensitivity analysis showed that pH plays a significant role on the efficiency of both organic pollutants. Remarkably, the results showed that this adsorbent outperforms the other UiO-66(Ce) samples and is suitable for separation and determination of these organic materials from water and biological real samples (blood plasma and urine).

Graphical abstract

A porous oxime-functionalized Ce-MOF, UiO-66(Ce)-MO, was synthesized and applied for efficient extraction and determination of trace amounts of methyl-parathion and diazinon from water and biological samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Scheme 2

Similar content being viewed by others

References

  1. Li, X., Gan, P., Peng, R., Huang, C., Yu, H.: Determination of 23 organophosphorous pesticides in surface water using SPME followed by GC-MS. J. Chromatogr. Sci. 48, 183–187 (2010)

    Article  CAS  PubMed  Google Scholar 

  2. Sheikhi, Z.N., Khajeh, M., Oveisi, A.R., Bohlooli, M.: Functionalization of an iron-porphyrinic metal–organic framework with Bovine serum albumin for effective removal of organophosphate insecticides. J. Mol. Liq. 343, 116974 (2021)

    Article  CAS  Google Scholar 

  3. Jonidi-Jafari, A., Shirzad-Siboni, M., Yang, J.-K., Naimi-Joubani, M., Farrokhi, M.: Photocatalytic degradation of diazinon with illuminated ZnO–TiO2 composite. J. Taiwan Inst. Chem. Eng. 50, 100–107 (2015)

    Article  CAS  Google Scholar 

  4. Shadmehr, J., Zeinali, S., Tohidi, M.: Synthesis of a chromium terephthalate metal organic framework and use as nanoporous adsorbent for removal of diazinon organophosphorus insecticide from aqueous media. J. Dispers. Sci. Technol. 40, 1423–1440 (2019)

    Article  CAS  Google Scholar 

  5. Shemer, H., Linden, K.G.: Degradation and by-product formation of diazinon in water during UV and UV/H2O2 treatment. J. Hazard. Mater. 136, 553–559 (2006)

    Article  CAS  PubMed  Google Scholar 

  6. Oruç, E.Ö., Usta, D.: Evaluation of oxidative stress responses and neurotoxicity potential of diazinon in different tissues of Cyprinus carpio. Environ. Toxicol. Pharmacol. 23, 48–55 (2007)

    Article  PubMed  Google Scholar 

  7. Mohammadi, P., Sheibani, H.: Evaluation, of the bimetallic photocatalytic performance of Resin–Au–Pd nanocomposite for degradation of parathion pesticide under visible light. Polyhedron 170, 132–137 (2019)

    Article  CAS  Google Scholar 

  8. Raju, I.M., et al.: Poly 3-Thenoic acid sensitized, Copper doped anatase/brookite TiO2 nanohybrids for enhanced photocatalytic degradation of an organophosphorus pesticide. J. Environ. Chem. Eng. 7, 103211 (2019)

    Article  Google Scholar 

  9. Abukhadra, M.R., El-Sherbeeny, A.M., El-Meligy, M.A., Luqman, M.: Insight into carbohydrate polymers (chitosan and 2- hydroxyethyl methacrylate/methyl methacrylate) intercalated bentonite-based nanocomposites as multifunctional and environmental adsorbents for methyl parathion pesticide. Int. J. Biol. Macromol. 167, 335–344 (2021)

    Article  CAS  PubMed  Google Scholar 

  10. Yekta, S., Sadeghi, M.: Adsorption and degradation of methyl parathion (MP), a toxic organophosphorus pesticide, using NaY/Mn0.5Zn0.5Fe2O4 nanocomposite. Res. Chem. Intermed. 44, 1865–1887 (2018)

    Article  CAS  Google Scholar 

  11. Zhang, J., Shi, B., Li, T., Wang, D.: Adsorption of methyl parathion on PAC from natural waters: the effect of NOM on adsorption capacity and kinetics. Adsorption 19, 91–99 (2013)

    Article  Google Scholar 

  12. Abukhadra, M.R., Adlii, A., El-Sherbeeny, A.M., Soliman, A.T., Abd Elgawad, A.E.E.: Promoting the decontamination of different types of water pollutants (Cd2+, safranin dye, and phosphate) using a novel structure of exfoliated bentonite admixed with cellulose nanofiber. J. Environ. Manage. 273, 111130 (2020)

    Article  CAS  PubMed  Google Scholar 

  13. Moussavi, G., Hosseini, H., Alahabadi, A.: The investigation of diazinon pesticide removal from contaminated water by adsorption onto NH4Cl-induced activated carbon. Chem. Eng. J. 214, 172–179 (2013)

    Article  CAS  Google Scholar 

  14. Barbosa, M.O., Ribeiro, R.S., Ribeiro, A.R.L., Pereira, M.F.R., Silva, A.M.T.: Carbon xerogels combined with nanotubes as solid-phase extraction sorbent to determine metaflumizone and seven other surface and drinking water micropollutants. Sci. Rep. 11, 13817 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, Q., Feng, Q., Hu, G., Gao, Z., Zhu, X., Epri, J.E.: Simultaneous determination of seven bisphenol analogues in surface water by solid-phase extraction and ultra-performance liquid chromatography-tandem mass spectrometry. Microchem. J. 175, 107098 (2022)

    Article  CAS  Google Scholar 

  16. Nazri, S., Khajeh, M., Oveisi, A.R., Luque, R., Rodríguez-Castellón, E., Ghaffari-Moghaddam, M.: Thiol-functionalized PCN-222 MOF for fast and selective extraction of gold ions from aqueous media. Sep. Purif. Technol. 259, 118197 (2021)

    Article  CAS  Google Scholar 

  17. Bazargan, M., Ghaemi, F., Amiri, A., Mirzaei, M.: Metal-organic framework-based sorbents in analytical sample preparation. Coord. Chem. Rev. 445, 214107 (2021)

    Article  CAS  Google Scholar 

  18. Dutta, A., Pan, Y., Liu, J.-Q., Kumar, A.: Multicomponent isoreticular metal-organic frameworks: principles, current status and challenges. Coord. Chem. Rev. 445, 214074 (2021)

    Article  CAS  Google Scholar 

  19. Islamoglu, T., Chen, Z., Wasson, M.C., Buru, C.T., Kirlikovali, K.O., Afrin, U., Mian, M.R., Farha, O.K.: Metal-organic frameworks against toxic chemicals. Chem. Rev. 120, 8130–8160 (2020)

    Article  CAS  PubMed  Google Scholar 

  20. Zhong, Y., Chen, C., Liu, S., Lu, C., Liu, D., Pan, Y., Sakiyama, H., Muddassir, M., Liu, J.: A new magnetic adsorbent of eggshell-zeolitic imidazolate framework for highly efficient removal of norfloxacin. Dalton Trans. 50, 18016–18026 (2021)

    Article  CAS  PubMed  Google Scholar 

  21. Zhao, Y., Wang, L., Fan, N.-N., Han, M.-L., Yang, G.-P., Ma, L.-F.: Porous Zn(II)-based metal-organic frameworks decorated with carboxylate groups exhibiting high gas adsorption and separation of organic dyes. Cryst. Growth Des. 18, 7114–7121 (2018)

    Article  CAS  Google Scholar 

  22. Zhou, S., Lu, L., Liu, D., Wang, J., Sakiyama, H., Muddassir, M., Nezamzadeh-Ejhieh, A., Liu, J.: Series of highly stable Cd(ii)-based MOFs as sensitive and selective sensors for detection of nitrofuran antibiotic. CrystEngComm 23, 8043–8052 (2021)

    Article  CAS  Google Scholar 

  23. Li, G., Wang, T., Zhou, S., Wang, J., Lv, H., Han, M., Singh, D.P., Kumar, A., Jin, J.: New highly luminescent 3D Tb(III)-MOF as selective sensor for antibiotics. Inorg. Chem. Commun. 130, 108756 (2021)

    Article  CAS  Google Scholar 

  24. Zhou, Z., Han, M.-L., Fu, H.-R., Ma, L.-F., Luo, F., Li, D.-S.: Engineering design toward exploring the functional group substitution in 1D channels of Zn–organic frameworks upon nitro explosives and antibiotics detection. Dalton Trans. 47, 5359–5365 (2018)

    Article  CAS  PubMed  Google Scholar 

  25. Li, H., Li, L., Lin, R.-B., Zhou, W., Zhang, Z., Xiang, S., Chen, B.: Porous metal-organic frameworks for gas storage and separation: Status and challenges. EnergyChem 1, 100006 (2019)

    Article  Google Scholar 

  26. Oudi, S., Oveisi, A.R., Daliran, S., Khajeh, M., Luque, R., Sen, U., García, H.: Straightforward synthesis of a porous chromium-based porphyrinic metal-organic framework for visible-light triggered selective aerobic oxidation of benzyl alcohol to benzaldehyde. Appl. Catal. A: Gen. 611, 117965 (2021)

    Article  CAS  Google Scholar 

  27. Daliran, S., Khajeh, M., Oveisi, A.R., García, H., Luque, R.: Porphyrin catecholate iron-based metal-organic framework for efficient visible light-promoted one-pot tandem C-C couplings. ACS Sustain. Chem. Eng. 10, 5315–5322 (2022)

    Article  CAS  Google Scholar 

  28. Bag, P.P., Wang, D., Chen, Z., Cao, R.: Outstanding drug loading capacity by water stable microporous MOF: a potential drug carrier. Chem. Commun. 52, 3669–3672 (2016)

    Article  CAS  Google Scholar 

  29. Son, F.A., Atilgan, A., Idrees, K.B., Islamoglu, T., Farha, O.K.: Solvent-assisted linker exchange enabled preparation of cerium-based metal–organic frameworks constructed from redox active linkers. Inorg. Chem. Front. 7, 984–990 (2020)

    Article  CAS  Google Scholar 

  30. Takaishi, S., DeMarco, E.J., Pellin, M.J., Farha, O.K., Hupp, J.T.: Solvent-assisted linker exchange (SALE) and post-assembly metallation in porphyrinic metal–organic framework materials. Chem. Sci. 4, 1509–1513 (2013)

    Article  CAS  Google Scholar 

  31. Bharathi, S., Wong, P.T., Desai, A., Lykhytska, O., Choe, V., Kim, H., Thomas, T.P., Baker, J.R., Choi, S.K.: Design and mechanistic investigation of oxime-conjugated PAMAM dendrimers as the catalytic scavenger of reactive organophosphate. J. Mater. Chem. B 2, 1068–1078 (2014)

    Article  CAS  PubMed  Google Scholar 

  32. Dhuguru, J., Zviagin, E., Skouta, R.: FDA-approved oximes and their significance in medicinal chemistry. Pharmaceuticals 15, 66 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vojvodić, V.B., Maksimović, M.: Absorption and excretion of pralidoxime in man after intramuscular injection of PAM-2CL and various cholinolytics. Eur. J. Clin. Pharmacol. 5, 58–61 (1972)

    Article  Google Scholar 

  34. Khajeh, M., Sarafraz-Yazdi, A., Moghadam, A.F.: Modeling of solid-phase tea waste extraction for the removal of manganese and cobalt from water samples by using PSO-artificial neural network and response surface methodology. Arab. J. Chem. 10, S1663–S1673 (2017)

    Article  CAS  Google Scholar 

  35. Wu, C., Liu, H., Liu, W., Wu, Q., Wang, C., Wang, Z.: Determination of organophosphorus pesticides in environmental water samples by dispersive liquid–liquid microextraction with solidification of floating organic droplet followed by high-performance liquid chromatography. Anal. Bioanal. Chem. 397, 2543–2549 (2010)

    Article  CAS  PubMed  Google Scholar 

  36. Elsayed, N.H., Alatawi, A., Monier, M.: Diacetylmonoxine modified chitosan derived ion-imprinted polymer for selective solid-phase extraction of nickel (II) ions. React. Funct. Polym. 151, 104570 (2020)

    Article  CAS  Google Scholar 

  37. Guo, Y., Yu, Q., Fang, H., Wang, H., Han, J., Ge, Q., Zhu, X.: Ce-UiO-66 derived CeO2 octahedron catalysts for efficient ketonization of propionic acid. Ind. & Eng. Chem. Res. 59, 17269–17278 (2020)

    Article  CAS  Google Scholar 

  38. Peng, X., Yang, G., Shi, Y., Zhou, Y., Zhang, M., Li, S.: Box-Behnken design based statistical modeling for the extraction and physicochemical properties of pectin from sunflower heads and the comparison with commercial low-methoxyl pectin. Sci. Rep. 10, 3595 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Salam, M.A., AbuKhadra, M.R., Mohamed, A.S.: Effective oxidation of methyl parathion pesticide in water over recycled glass based-MCM-41 decorated by green Co3O4 nanoparticles. Environ. Pollut. 259, 113874 (2020)

    Article  PubMed  Google Scholar 

  40. Abdelhameed, R.M., Taha, M., Abdel-Gawad, H., Emam, H.E.: Purification of soybean oil from diazinon insecticide by iron-based metal organic framework: effect of geometrical shape and simulation study. J. Mol. Struct. 1250, 131914 (2022)

    Article  CAS  Google Scholar 

  41. Farmany, A., Mortazavi, S.S., Mahdavi, H.: Ultrasond-assisted synthesis of Fe3O4/SiO2 core/shell with enhanced adsorption capacity for diazinon removal. J. Magn. Magn. Mater. 416, 75–80 (2016)

    Article  CAS  Google Scholar 

  42. Nikzad, S., Amooey, A.A., Alinejad-Mir, A.: High effective removal of diazinon from aqueous solutions using the magnetic tragacanth-montmorillonite nanocomposite: isotherm, kinetic, and mechanism study. Environ. Sci. Pollut. Res. 28, 20426–20439 (2021)

    Article  CAS  Google Scholar 

  43. Gupta, V.K., Gupta, B., Rastogi, A., Agarwal, S., Nayak, A.: Pesticides removal from waste water by activated carbon prepared from waste rubber tire. Water Res. 45, 4047–4055 (2011)

    Article  CAS  PubMed  Google Scholar 

  44. Beirami, S., Barzoki, H.R., Bahramifar, N.: Application of response surface methodology for optimization of trace amount of diazinon preconcentration in natural waters and biological samples by carbon mesoporous CMK-3. Biomed. Chromatogr. 31, e3874 (2017)

    Article  Google Scholar 

  45. Katsumata, H., Matsumoto, T., Kaneco, S., Suzuki, T., Ohta, K.: Preconcentration of diazinon using multiwalled carbon nanotubes as solid-phase extraction adsorbents. Microchem. J. 88, 82–86 (2008)

    Article  CAS  Google Scholar 

  46. Giordano, A., Richter, P., Ahumada, I.: Determination of pesticides in river water using rotating disk sorptive extraction and gas chromatography–mass spectrometry. Talanta 85, 2425–2429 (2011)

    Article  CAS  PubMed  Google Scholar 

  47. Zhou, Q., Bai, H., Xie, G., Xiao, J.: Trace determination of organophosphorus pesticides in environmental samples by temperature-controlled ionic liquid dispersive liquid-phase microextraction. J. Chromatogr. A 1188, 148–153 (2008)

    Article  CAS  PubMed  Google Scholar 

  48. Chambers, J.E., Dail, M.B., Meek, E.C.: Oxime-mediated reactivation of organophosphate-inhibited acetylcholinesterase with emphasis on centrally-active oximes. Neuropharmacology 175, 108201–108201 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the University of Zabol (Grant numbers: IR-UOZ-GR-9381; UOZ-GR-9718-36; UOZ-GR-9718-11, UOZ-GR-8175).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Khajeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 866 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalalzaei, F., Khajeh, M., Kargar-Shouroki, F. et al. Oxime-functionalized cerium-based metal–organic framework for determination of two pesticides in water and biological samples by HPLC method. J Nanostruct Chem 14, 95–112 (2024). https://doi.org/10.1007/s40097-022-00512-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-022-00512-2

Keywords

Navigation