Skip to main content

Advertisement

Log in

In situ-grown Co3O4 nanorods on carbon cloth for efficient electrocatalytic oxidation of urea

  • Original Research
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

Co3O4 nanorods were successfully synthesized by a facile two-step method and showed outstanding electrochemical performances in KOH and urea electrolyte. The Co3O4 nanorods showed high purity phase and covered the surface of carbon cloth. As the electrode materials for hydrogen generation, it only required the hydrogen evolution reaction (HER) overpotential of 0.46 V to deliver the current density of 40 mA/cm2 for HER and urea oxidation reaction potential (UOR vs RHE) of 1.62 V at 10 mA/cm2. Remarkably, the assembled electrolyzer with Co3O4/CC and Pt foil as two electrodes demonstrated low potentials and a stable long cycle life. Therefore, the study displays a promising direction to explore the practical and effective ways for hydrogen production by overall urea electrolysis.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhang, C., Xie, Y., Deng, H., Zhang, C., Su, J., Lin, J.: Nitrogen doped coal with high electrocatalytic activity for oxygen reduction reaction. Eng. Sci. 8, 39–45 (2019)

    Google Scholar 

  2. Pan, G., Kasmi, A.E., Tian, Z.: Low-temperature oxidation of 1,3,5-trimethylbenzene over copper oxide film catalyst using a new catalytic jet-stirredreactor. ES Energy Environ. 2, 58–65 (2018)

    Google Scholar 

  3. Yu, H., Yang, L., Cheng, D., Cao, D.: Zeolitic-imidazolate framework (ZIF)@ZnCo-ZIF core-shell template derived Co, N-doped carbon catalysts for oxygen reduction reaction. Eng. Sci. 3, 54–61 (2018)

    Google Scholar 

  4. Ma, Y., Zhuang, Z., Ma, M., Yang, Y., Li, W., Dong, M., Wu, S., Ding, T., Guo, Z.: Solid polyaniline dendrites consisting of high aspect ratio branches self-assembled using sodium lauryl sulfonate as soft templates: synthesis and electrochemical performance. Polymer 182, 121808 (2019)

    Google Scholar 

  5. Shi, X., Hong, J., Wang, C., Kong, S., Li, J., Pan, D., Lin, J., Jiang, Q., Guo, Z.: Preparation of Mg, N-co-doped lignin adsorbents for enhanced selectivity and high adsorption capacity of As (V) from wastewater. Particuology 58, 206–213 (2021)

    CAS  Google Scholar 

  6. Hong, J., Kang, L., Shi, X., Wei, R., Mai, X., Pan, D., Naik, N., Guo, Z.: Highly efficient removal of trace lead (II) from wastewater by 1,4-dicarboxybenzene modified Fe/Co metal organic nanosheets. J. Mater. Sci. Technol. 98, 212–218 (2022)

    Google Scholar 

  7. Dong, A., Dai, T., Ren, M., Zhao, X., Zhao, S., Yuan, Y., Chen, Q., Wang, N.: Functionalization and fabrication of soluble polymers of intrinsic microporosity for CO2 transformation and uranium extraction. Eng. Sci. 5, 56–65 (2018)

    Google Scholar 

  8. Wu, H., Li, Y., Liu, H., He, D.: High-pressure catalytic kinetics of CO2 rReforming of methane over highly stable NiCo/SBA-15 catalyst. ES Energy Environ. 3, 68–73 (2019)

    Google Scholar 

  9. Liu, L., Bernazzani, P., Chu, W., Luo, S.-Z., Wang, B., Guo, Z.: Polyelectrolyte assisted preparation of nanocatalysts for CO2 methanation. Eng. Sci. 2, 74–81 (2018)

    Google Scholar 

  10. Peng, P., Yu, A., Ren, J., Li, F.: Electrolytic carbons from CO2 and their applications. ES Energy Environ. 2, 9–20 (2018)

    Google Scholar 

  11. Gupta, V.K., Moradi, O., Tyagi, I., Agarwal, S., Sadegh, H., Shahryari-Ghoshekandi, R., Makhlouf, A.S.H., Goodarzi, M., Garshasbi, A.: Study on the removal of heavy metal ions from industry waste by carbon nanotubes: effect of the surface modification: a review. Critical Rev. Environmen. Sci. Technol. 46, 93–118 (2016)

    CAS  Google Scholar 

  12. Moradi, O., Aghaie, M., Zare, K., Monajjemi, M., Aghaie, H.: The study of adsorption characteristics Cu2+ and Pb2+ ions onto PHEMA and P(MMA-HEMA) surfaces from aqueous single solution. J. Hazardous Mater. 170, 673–679 (2009)

    CAS  Google Scholar 

  13. Liu, B., Jin, Y., Xie, G., Wang, Z., Wen, H., Ren, N., Xing, D.: Simultaneous photo catalysis of SiC/Fe3O4 nanoparticles and photo-fermentation of Rhodopseudomonas sp. Nov. Strain A7 for enhancing hydrogen production under visible light irradiation. ES Energy Environ. 1, 56–66 (2018)

    Google Scholar 

  14. Yang, P., Zhao, H., Yang, Y., Zhao, P., Zhao, X., Yang, L.: Fabrication of N, P-codoped Mo2C/carbon nanofibers via electrospinning as electrocatalyst for hydrogen evolution reaction. ES Mater. Manuf. 7, 34–39 (2020)

    CAS  Google Scholar 

  15. Wang, Y., Peng, G., Sharshir, S.W., Kandeal, A.W., Yang, N.: The weighted values of solar evaporation’s environment factors obtained by machine learning. ES Mater. Manuf. 14, 87–94 (2021). https://doi.org/10.30919/esmm5f436

    Article  CAS  Google Scholar 

  16. Rahane, G.K., Jathar, S.B., Rondiya, S.R., Jadhav, Y.A., Barma, S.V., Rokade, A., Cross, R.W., Nasane, M.P., Jadkar, V., Dzade, N.Y., Jadkar, S.R.: Photoelectrochemical investigation on the cadmium sulfide (CdS) thin films prepared using spin coating technique. ES Mater. Manuf. 11, 57–64 (2020)

    Google Scholar 

  17. Borate, H., Bhorde, A., Waghmare, A., Nair, S., Pandharkar, S., Punde, A., Shinde, P., Vairale, P., Jadkar, V., Waykar, R., Rondiya, S., Hase, Y., Aher, R., Patil, N., Prasad, M., Jadkar, S.: Single-step electrochemical deposition of CZTS thin films with enhanced photoactivity. ES Mater. Manuf. 11, 30–39 (2021)

    CAS  Google Scholar 

  18. Jathar, S.B., Rondiya, S.R., Bade, B.R., Nasane, M.P., Barma, S.V., Jadhav, Y.A., Rokade, A.V., Kore, K.B., Nilegave, D.S., Tandale, P.U., Jadkar, S.R., Funde, A.M.: Facile method for synthesis of CsPbBr 3 perovskite at room temperature for solar cell applications. ES Mater. Manuf. 12, 72–77 (2021)

    CAS  Google Scholar 

  19. Mana, M., Bhujbal, P.M.P.K., Pathan, H.M.: Fabrication and characterization of ZnS based photoelectrochemical solarcell. ES Energy Environ. 12, 77–85 (2021)

    Google Scholar 

  20. Liu, G., Yao, G., Xu, J., Yan, X.: Spatial decoupling of light absorption and scattering centers in plasmon-assisted bubble column evaporator for solar steam generation. ES Energy Environ. 9, 41–49 (2020)

    CAS  Google Scholar 

  21. Satpute, S.D., Jagtap, J.S., Bhujbal, P.K., Sonar, S.M., Baviskar, P.K., Jadker, S.R., Pathan, H.M.: Mercurochrome sensitized ZnO/In2O3 photoanode for dye-sensitized solar cell. ES Energy Environ. 9, 89–94 (2020)

    CAS  Google Scholar 

  22. Waghmare, M.A., Beedri, N.I., Ubale, A.U., Patha, H.M.: Fabrication and characterization of Rose Bengal sensitized binary TiO2-ZrO2 oxides photo-electrode based dye-sensitized solar cell. Eng. Sci. 6, 36–43 (2019)

    Google Scholar 

  23. Xie, Y., Yang, Y., Liu, Y., Wang, S., Guo, X., Wang, H., Cao, D.: Paraffin/polyethylene/graphite composite phase change materials with enhanced thermal conductivity and leakage-proof. Adv. Comp. Hybrid Mater. (2021). https://doi.org/10.1007/s42114-021-00249-6

    Article  Google Scholar 

  24. Hu, X., Wu, H., Lu, X., Liu, S., Qu, J.: Improving thermal conductivity of ethylene propylene diene monomer/paraffin/expanded graphite shape-stabilized phase change materials with great thermal management potential via green steam explosion. Adv. Compos. Hybrid Mater. (2021). https://doi.org/10.1007/s42114-021-00300-6

    Article  Google Scholar 

  25. Huang, J., Luo, Y., Weng, M., Yu, J., Sun, L., Zeng, H., Liu, Y., Zeng, W., Min, Y., Guo, Z.: Advances and applications of phase change materials (PCMs) and PCMs-based technologies. ES Mater. Manuf. 13, 23–39 (2021)

    CAS  Google Scholar 

  26. Zhou, Y., Wu, S., Ma, Y., Zhang, H., Zeng, X., Wu, F., Liu, F., Ryu, J.E., Guo, Z.: Recent advances in organic/composite phase change materials for energy storage. ES Energy Environ. 9, 28–40 (2020)

    CAS  Google Scholar 

  27. Shi, J., Huang, X., Guo, H., Shan, X., Xu, Z., Zhao, X., Sun, Z., Aftab, W., Qu, C., Yao, R., Zou, R.: Experimental investigation and numerical validation on the energy-saving performance of a passive phase change material floor for a real scale building. ES Energy Environ. 8, 21–28 (2020)

    CAS  Google Scholar 

  28. Lu, X., Liu, H., Murugadoss, V., Seok, I., Huang, J., Ryu, J.E., Guo, Z.: Polyethylene glycol/carbon black shape-stable phase change composites for peak load regulating of electric power system and corresponding thermal energy storage. Eng. Sci. 9, 24–35 (2020)

    Google Scholar 

  29. Liao, W., Kumar, A., Khayat, K., Ma, H.: Multifunctional lightweight aggregate containing phase change material and water for damage mitigation of concrete. ES Mater. Manuf. 6, 49–61 (2019)

    Google Scholar 

  30. Xiao, L., Qi, H., Qu, K., Shi, C., Cheng, Y., Sun, Z., Yuan, B., Huang, Z., Pan, D., Guo, Z.: Layer-by-layer assembled free-standing and flexible nanocellulose/porous Co3O4 polyhedron hybrid film as supercapacitor electrodes. Adv. Compos. Hybrid Mater. 4, 306–316 (2021)

    CAS  Google Scholar 

  31. Patil, S.S., Bhat, T.S., Teli, A.M., Beknalkar, S.A., Dhavale, S.B., Faras, M.M., Karanjkar, M.M., Patil, P.S.: Hybrid solid state supercapacitors (HSSC’s) for high energy & power density: an overview. Eng. Sci. 12, 38–51 (2020)

    CAS  Google Scholar 

  32. Ma, Y., Ma, M., Yin, X., Shao, Q., Lu, N., Feng, Y., Lu, Y., Wujcik, E.K., Mai, X., Wang, C., Guo, Z.: Tuning polyaniline nanostructures via end group substitutions and their morphology dependent electrochemical performances. Polymer 156, 128–135 (2018)

    CAS  Google Scholar 

  33. Ma, Y., Hou, C., Zhang, H., Qiao, M., Chen, Y., Zhang, H., Zhang, Q., Guo, Z.: Morphology-dependent electrochemical supercapacitors in multi-dimensional polyaniline nanostructures. J. Mater. Chem. A 5, 14041–14052 (2017)

    CAS  Google Scholar 

  34. Liu, L., Wang, C., He, Z., Das, R., Dong, B., Xie, X., Guo, Z.: An overview of amphoteric ion exchange membranes for vanadium redox flow batteries. J. Mater. Sci. Technol. 69, 212–227 (2021)

    Google Scholar 

  35. Sawant, J.P., Shaikh, S.F., Kale, R.B., Pathan, H.M.: Chemical bath deposition of CuInS2 thin films and synthesis of CuInS2 nanocrystals: a review. Eng. Sci. 12, 1–12 (2020)

    CAS  Google Scholar 

  36. Dong, A., Zhu, Y., Ren, M., Sun, X., Murugadoss, V., Yuan, Y., Wen, J., Wang, X., Chen, Q., Guo, Z., Wang, N.: Remarkably enhanced CO2 uptake and uranium extraction by functionalization of cyano-bearing conjugated porous polycarbazoles. Eng. Sci. 6, 44–52 (2019)

    Google Scholar 

  37. Fu, Y., Pei, X., Dai, Y., Mo, D., Lyu, S.: Three-dimensional graphene-like carbon prepared from CO2 as anode material for high-performance lithium-ion batteries. ES Energy Environ. 4, 66–73 (2019)

    Google Scholar 

  38. Barma, S.V., Rondiya, S.R., Jadhav, Y.A., Jathar, S.B., Rahane, G.K., Rokade, A., Cross, R.W., Nasane, M.P., Jadkar, V., Dzade, N.Y.S.S., Jadkar, E.R.: Structural, optoelectronic, and photoelectrochemical investigation of CdSe, nanocrystals prepared by hot injection method. ES Mater. Manuf. 11, 50–56 (2021)

    CAS  Google Scholar 

  39. Liu, H., Mao, Y.: Graphene oxide-based nanomaterials for uranium adsorptive uptake. ES Mater. Manuf. 13, 3–22 (2021)

    CAS  Google Scholar 

  40. Wang, J., Xu, F., Jin, H., Chen, Y., Wang, Y.: Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications. Adv. Mater. 29, 1605838 (2017)

    Google Scholar 

  41. Desai, J., Baviskar, P., Hui, K., Pathan, H.M.: Environment Quadrivalently doped hematite thin films for solar water splitting. ES Energy Environ. 2, 21–30 (2018)

    Google Scholar 

  42. Singh, N., Jana, S., Singh, G.P., Dey, R.K.: Graphene-supported TiO2: study of promotion of charge carrier in photocatalytic water splitting and methylene blue dye degradation. Adv. Compos. Hybrid Mater. 3, 127–140 (2020)

    CAS  Google Scholar 

  43. Li, D., Sun, J., Ma, R., Wei, J.: High-efficient and low-cost H2 production by solar-driven photo-thermo-reforming of methanol with CuO catalyst. ES Energy Environ. 9, 82–88 (2020)

    Google Scholar 

  44. Yu, H., Xu, C., Li, Y., Jin, F., Ye, F., Li, X.: Performance enhancement of CuO/ZnO by deposition on the metal-organic framework of Cu-BTC for methanol steam reforming reaction. ES Energy Environ. 8, 65–77 (2020)

    CAS  Google Scholar 

  45. Wei, L., Lozano, K., Mao, Y.: Microwave popped Co(II)-graphene oxide hybrid: bifunctional catalyst for hydrogen evolution reaction and hydrogen storage. Eng. Sci. 3, 62–66 (2018)

    Google Scholar 

  46. Zhang, L., Yin, J., Wei, K., Li, B., Jiao, T., Chen, Y., Zhou, J., Peng, Q.: Fabrication of hierarchical SrTiO3@MoS2 heterostructure nanofibers as efficient and low-cost electrocatalysts for hydrogen-evolution reactions. Nanotechnology 31, 205604 (2020)

    CAS  PubMed  Google Scholar 

  47. Caia, Z., Wanga, P., Yanga, J., Wanga, X.J.E.E.: Environment update on recent designing strategies of transition metal-based layered double hydroxides bifunctional electrocatalysts. ES Energy Environ. 5, 22–36 (2019)

    Google Scholar 

  48. Wang, Y., Liu, Y., Wang, C., Liu, H., Zhang, J., Lin, J., Fan, J., Ding, T., Ryu, J.E., Guo, Z.J.E.S.: Significantly enhanced ultrathin NiCo-based MOF nanosheet electrodes hybrided with Ti3C2Tx MXene for high performance asymmetric supercapacitor. Eng. Sci. 9, 50–59 (2020)

    Google Scholar 

  49. Cai, J., Xu, W., Liu, Y., Zhu, Z., Liu, G., Ding, W., Wang, G., Wang, H., Luo, Y.J.E.S.: Robust construction of flexible bacterial cellulose@ Ni (OH)2 paper: toward high capacitance and sensitive H2O2 detection. Eng. Sci. 5, 21–29 (2019)

    Google Scholar 

  50. Su, T.M., Shao, Q., Qin, Z.Z., Guo, Z.H., Wu, Z.L.: Role of interfaces in two-dimensional photocatalyst for water splitting. Acs Cat. 8, 2253–2276 (2018)

    CAS  Google Scholar 

  51. Shen, J.L.H., Kong, J.: Steel mesh reinforced Ni(OH)2 nanosheets with enhanced oxygen evolution reaction performance. ES Mater. Manuf. 14, 79–86 (2021)

    Google Scholar 

  52. Desai, J.D., Baviskar, P.K., Hui, K.N., Pathan, H.M.: Quadrivalently doped hematite thin films for solar water splitting. ES Energy Environ. 2, 21–30 (2018)

    Google Scholar 

  53. Caia, Z., Wanga, P., Yanga, J., Wanga, X.: Update on recent designing strategies of transition metal-based layered double hydroxides bifunctional electrocatalysts. ES Energy Environ. 5, 22–36 (2019)

    Google Scholar 

  54. Song, J., Wei, C., Huang, Z.-F., Liu, C., Zeng, L., Wang, X., Xu, Z.J.: A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 49, 2196–2214 (2020)

    CAS  PubMed  Google Scholar 

  55. Zhang, W., Cui, L., Liu, J.: Recent advances in cobalt-based electrocatalysts for hydrogen and oxygen evolution reactions. J. Alloys Compd. 821, 153542 (2020)

    CAS  Google Scholar 

  56. Zhou, Q., Zhang, Z., Cai, J., Liu, B., Zhang, Y., Gong, X., Sui, X., Yu, A., Zhao, L., Wang, Z., Chen, Z.: Template-guided synthesis of Co nanoparticles embedded in hollow nitrogen doped carbon tubes as a highly efficient catalyst for rechargeable Zn-air batteries. Nano Energy 71, 104592 (2020)

    CAS  Google Scholar 

  57. Vairale, P., Sharma, V., Bade, B., Waghmare, A., Shinde, P., Punde, A., Doiphode, V., Aher, R., Pandharkar, S., Nair, S., Jadkar, V.: Melanin sensitized nanostructured ZnO photoanodes for efficient photoelectrochemical splitting of water: synthesis and characterization. Eng. Sci. 11, 76–84 (2020)

    CAS  Google Scholar 

  58. Li, G., Dang, C., Hou, Y., Dang, F., Fan, Y., Guo, Z.: Experimental and theoretical characteristic of single atom Co-N-C catalyst for Li-O2 batteries. Eng. Sci. 10, 85–94 (2020)

    Google Scholar 

  59. Aladeemy, S.A., Al-Mayouf, A.M., Amer, M.S., Alotaibi, N.H., Weller, M.T., Ghanem, M.A.: Structure and electrochemical activity of nickel aluminium fluoride nanosheets during urea electro-oxidation in an alkaline solution. Rsc Adv. 11, 3190–3201 (2021)

    CAS  Google Scholar 

  60. Babar, P., Patil, K., Lee, D.M., Karade, V., Gour, K., Pawar, S., Kim, J.H.: Cost-effective and efficient water and urea oxidation catalysis using nickel-iron oxyhydroxide nanosheets synthesized by an ultrafast method. J. Colloid Interface Sci. 584, 760–769 (2021)

    CAS  PubMed  Google Scholar 

  61. Bellardita, M., Garcia-Lopez, E.I., Marci, G., Krivtsov, I., Garcia, J.R., Palmisano, L.: Selective photocatalytic oxidation of aromatic alcohols in water by using P-doped g-C3N4. Appl. Cat. B 220, 222–233 (2018)

    CAS  Google Scholar 

  62. Liu, Q., Xie, L., Qu, F., Liu, Z., Du, G., Asiri, A.M., Sun, X.: A porous Ni3N nanosheet array as a high-performance non-noble-metal catalyst for urea-assisted electrochemical hydrogen production. Inorganic Chem. Front. 4, 1120–1124 (2017)

    CAS  Google Scholar 

  63. Senthilkumar, N., Kumar, G.G., Manthiram, A.: 3D hierarchical core-shell nanostructured arrays on carbon fibers as catalysts for direct urea fuel cells. Adv. Energy Mater. 8, 1702207 (2018)

    Google Scholar 

  64. Tong, Y., Chen, P., Zhang, M., Zhou, T., Zhang, L., Chu, W., Wu, C., Xie, Y.: Oxygen vacancies confined in nickel molybdenum oxide porous nanosheets for promoted electrocatalytic urea oxidation. Acs Cat. 8, 1–7 (2018)

    Google Scholar 

  65. Zhu, D., Guo, C., Liu, J., Wang, L., Dub, Y., Qiao, S.-Z.: Two-dimensional metal-organic frameworks with high oxidation states for efficient electrocatalytic urea oxidation. Che. Commun. 53, 10906–10909 (2017)

    CAS  Google Scholar 

  66. Song, M., Zhang, Z., Li, Q., Jin, W., Wu, Z., Fu, G., Liu, X.: Ni-foam supported Co(OH)F and Co-P nanoarrays for energy-efficient hydrogen production via urea electrolysis. J. Mater. Chem. A 7, 3697–3703 (2019)

    CAS  Google Scholar 

  67. Yan, K.-L., Chi, J.-Q., Xie, J.-Y., Dong, B., Liu, Z.-Z., Gao, W.-K., Lin, J.-H., Chai, Y.-M., Liu, C.-G.: Mesoporous Ag-doped Co3O4 nanowire arrays supported on FTO as efficient electrocatalysts for oxygen evolution reaction in acidic media. Ren. Energy 119, 54–61 (2018)

    CAS  Google Scholar 

  68. Liu, J., Wang, J., Zhang, B., Ruan, Y., Wan, H., Ji, X., Xu, K., Zha, D., Miao, L., Jiang, J.: Mutually beneficial Co3O4@MoS2 heterostructures as a highly efficient bifunctional catalyst for electrochemical overall water splitting. J. Mater. Chem. A 6, 2067–2072 (2018)

    CAS  Google Scholar 

  69. Liu, X., Liu, W., Ko, M., Park, M., Kim, M.G., Oh, P., Chae, S., Park, S., Casimir, A., Wu, G., Cho, J.: Metal (Ni, Co)-metal oxides/graphene nanocomposites as multifunctional electrocatalysts. Adv. Funct. Mater. 25, 5799–5808 (2015)

    CAS  Google Scholar 

  70. Hou, C., Wang, B., Murugadoss, V., Vupputuri, S., Chao, Y., Guo, Z., Wang, C., Du, W.: Recent advances in Co3O4 as anode materials for high-performance lithium-ion batteries. Eng. Sci. 11, 19–30 (2020)

    CAS  Google Scholar 

  71. Deokate, R.J.: Chemically deposited NiCo2O4 thin films for electrochemical study. ES Mater. Manuf. 11, 16–19 (2020)

    Google Scholar 

  72. Dey, S., Dhal, G.C., Mohan, D., Prasad, R.: Advances in transition metal oxide catalysts for carbon monoxide oxidation: a review. Adv. Compos. Hybrid Mater. 2, 626–656 (2019)

    CAS  Google Scholar 

  73. Jain, B., Hashmi, A., Sanwaria, S., Singh, A.K., Susan, M.A.B.H., Singh, A.: Zinc oxide nanoparticle incorporated on graphene oxide: an efficient and stable photocatalyst for water treatment through the Fenton process. Adv. Compos. Hybrid Mater. 3, 231–242 (2020)

    CAS  Google Scholar 

  74. Jain, B., Singh, A.K., Hashmi, A., Susan, M.A.B.H., Lellouche, J.-P.: Surfactant-assisted cerium oxide and its catalytic activity towards Fenton process for non-degradable dye. Adv. Compos. Hybrid Mater. 3, 430–441 (2020)

    CAS  Google Scholar 

  75. Gu, Y., Pan, Z., Zhang, H., Zhu, J., Yuan, B., Pan, D., Wu, C., Dong, B., Guo, Z.: Synthesis of high performance diesel oxidation catalyst using novel mesoporous AlLaZrTiOx mixed oxides by a modified sol-gel method. Adv. Compos. Hybrid Mater. 3, 583–593 (2020)

    CAS  Google Scholar 

  76. Danish, M., Qamar, M., Suliman, M.H., Muneer, M.: Photoelectrochemical and photocatalytic properties of Fe@ZnSQDs/TiO2 nanocomposites for degradation of different chromophoric organic pollutants in aqueous suspension. Adv. Compos. Hybrid Mater. 3, 570–582 (2020)

    CAS  Google Scholar 

  77. Yu, D., Tian, Z., Waqas, M., Jin, Z., Kasmi, A.E., Tian, D., Kouotou, P.M.: Toluene abatement by non-thermal plasma coupled with thin film of Cu-Co binary oxide coated on stainless steel mesh. ES Energy Environ. 5, 75–84 (2019)

    Google Scholar 

  78. Dong, Q., Wang, X., Liu, H., Ryu, H., Zhao, J., Li, B., Lei, Y.: Heterogeneous iridium oxide/gold nanocluster for non-enzymatic glucose sensing and pH probing. Eng. Sci. 8, 46–53 (2019)

    Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Grant No. 51701022), the Natural Science Foundation of Hu’nan Province (Grant No. 2018JJ3528, 2021JJ30708), Foundation of Hu’nan Educational Committee (18A149), Postgraduate Scientific Research Innovation project of Hu’nan Province (CX20200903), the International Collaboration Program, CSUST, No. 2018IC28) and the Creative Program from College of Materials Science and Engineering, CSUST.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jincheng Fan, Yong Ma, Zisheng Chao or Zhanhu Guo.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, and there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled, “In situ grown Co3O4 nanorods on carbon cloth for efficient electrocatalytic oxidation of urea”.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 286 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Fan, J., Li, S. et al. In situ-grown Co3O4 nanorods on carbon cloth for efficient electrocatalytic oxidation of urea. J Nanostruct Chem 11, 735–749 (2021). https://doi.org/10.1007/s40097-021-00441-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-021-00441-6

Keywords

Navigation