Skip to main content
Log in

Development of Micro-plasma Arc Welding System for Different Thickness Dissimilar Austenitic Stainless Steels

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

With the miniaturization of the components, micro-fabrication has gained significant attention for the application in micro-devices. The current work aims to weld dissimilar austenitic stainless steels with different thickness (average ~ 700 µm) by downscaling the traditional arc-based joining process. Micro-plasma arc welding (µ-PAW) with less than 15 A current is used to fabricate the weld joints at different heat input, which can be reviewed as a substitute for laser and electron beam welding process in terms of cost-effectiveness. The welding fixture employed to hold the small workpiece contributes significantly to achieve the complete establishment of the µ-PAW process. A low amount of heat input leads to reduced dendritic and secondary dendritic arm spacing, which increases the joint efficiency up to ~ 115%. A high value of heat input changes the mode of failure from ductile to mixed mode due to micro/macro-voids’ existence, decreases the corrosion resistance due to chromium depletion from 25 to 17 wt.%, and increases the number and size of the pores. A finite element-based computational model is also employed to presume the geometrical dimensions of the weld joint that agree well with the experimentally determined values with a maximum error of 9%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H. Pasek-Siurek, Plasma welding: processes and equipment. Weld. Int. 28(9), 672–678 (2014)

    Article  Google Scholar 

  2. S.R. Kumar, A.K. Singh, S. Sandeep, P. Aravind, Investigation on microstructural behavior and mechanical properties of plasma arc welded dissimilar butt joint of austenitic- ferritic stainless steels. Mater. Today Proc. 5(2), 8008–8015 (2018)

    Article  Google Scholar 

  3. S. Dwibedi, N.K. Jain, S. Pathak, Investigations on joining of stainless steel tailored blanks by µ-PTA process. Mate. Manuf. Process. 33(16), 1851–1863 (2018)

    Article  Google Scholar 

  4. S. Dwibedi, S. Bag, Assessment by destructive and non-destructive approach to characterize 90/10 cupronickel weldments. Mater. Today Proc. 33, 5014–5018 (2020)

    Article  Google Scholar 

  5. A. K. Raghav, R. V. Vignesh, K. P. Kalyan, and M. Govindaraju, Friction Welding of Cast Iron and Phosphor Bronze. J Inst Eng India Ser C 1–8 (2020)

  6. G. Casalino, A. Angelastro, P. Perulli, C. Casavola, V. Moramarco, Study on the fiber laser/TIG weldability of AISI 304 and AISI 410 dissimilar weld. J. Manuf. Process. 35, 216–225 (2018)

    Article  Google Scholar 

  7. N. Jahanzeb, J.-H. Shin, J. Singh, Y.-U. Heo, S.-H. Choi, Effect of microstructure on the hardness heterogeneity of dissimilar metal joints between 316L stainless steel and SS400 steel. Mater. Sci. Eng. A 700, 338–350 (2017)

    Article  Google Scholar 

  8. R. Chaudhari, A. Ingle, Experimental investigation of dissimilar metal weld of SA335 P11 and SA312 TP304 formed by gas tungsten arc welding (GTAW). Trans. Indian Inst. Met. 72(5), 1145–1152 (2019)

    Article  Google Scholar 

  9. H. Vashishtha, R.V. Taiwade, S. Sharma, A.P. Patil, Effect of welding processes on microstructural and mechanical properties of dissimilar weldments between conventional austenitic and high nitrogen austenitic stainless steels. J. Manuf. Process. 25, 49–59 (2017)

    Article  Google Scholar 

  10. W. Chuaiphan, L. Srijaroenpramong, Optimization of gas tungsten arc welding parameters for the dissimilar welding between AISI 304 and AISI 201 stainless steels. Def. Technol. 15(2), 170–178 (2019)

    Article  Google Scholar 

  11. N.V. Shinde, M.T. Telsang, Effect of alternate supply of shielding gases of tungsten inert gas welding on mechanical properties of austenitic stainless steel. J. Inst. Eng. India Ser. C 97(3), 299–307 (2016)

    Article  Google Scholar 

  12. M. Türker, A.T. Ertürk, E. Karakulak, E.A. Güven, Effects of different heat treatments on microstructure, toughness and wear behavior of GX 10CrNiMoNb 18–10 cast austenitic stainless steel. Trans. Indian Inst. Met. 71(4), 1033–1040 (2018)

    Article  Google Scholar 

  13. G. Shit, M.V. Kuppusamy, S. Ningshen, Corrosion resistance behavior of GTAW welded AISI type 304L stainless steel. Trans. Indian Inst. Met. 72, 2981 (2019)

    Article  Google Scholar 

  14. P. Vasantharaja, M. Vasudevan, V. Maduraimuthu, Effect of arc welding processes on the weld attributes of type 316LN stainless steel weld joint. Trans. Indian Inst. Met. 71(1), 127–137 (2018)

    Article  Google Scholar 

  15. H.M. Soltani, M. Tayebi, Comparative study of AISI 304L to AISI 316L stainless steels joints by TIG and Nd:YAG laser welding. J. Alloys Compd. 767, 112–121 (2018)

    Article  Google Scholar 

  16. R. Singh, R.S. Slathia, Effect of cryogenic treatment on sensitization of 304 stainless steel in TIG welding. J. Inst. Eng. India Ser. C 97(2), 127–130 (2016)

    Article  Google Scholar 

  17. H.-Y. Huang, Research on the activating flux gas tungsten arc welding and plasma arc welding for stainless steel. Met. Mater. Int. 16(5), 819–825 (2010)

    Article  Google Scholar 

  18. S. Kumar, A.S. Shahi, Effect of heat input on the microstructure and mechanical properties of gas tungsten arc welded AISI 304 stainless steel joints. Mater. Des. 32(6), 3617–3623 (2011)

    Article  Google Scholar 

  19. A. Pascu, E.M. Stanciu, I. Voiculescu, M.H. Ţierean, I.C. Roată, J.L. Ocaña, Chemical and mechanical characterization of AISI 304 and AISI 1010 laser welding. Mater. Manuf. Process. 31(3), 311–318 (2016)

    Article  Google Scholar 

  20. M. Tümer, R. Yılmaz, Characterization of microstructure, chemical composition, and toughness of a multipass welded joint of austenitic stainless steel AISI316L. Int. J. Adv. Manuf. Technol. 87(9–12), 2567–2579 (2016)

    Article  Google Scholar 

  21. A. Bhattacharya, R. Kumar, Dissimilar joining between austenitic and duplex stainless steel in double-shielded GMAW: a comparative study. Mater. Manuf. Process. 31(3), 300–310 (2016)

    Article  Google Scholar 

  22. S. Dwibedi, N.K. Jain, Investigation on autogenous joining of stainless steel sheets of different thickness using micro plasma transferred arc (μ-PTA) process, M.Tech Thesis, Discipline of Mechanical Engineering, IIT Indore (2016) http://dspace.iiti.ac.in:8080/xmlui/handle/123456789/329

  23. D. Saha, S. Pal, Microstructure and work hardening behavior of micro-plasma arc welded AISI 316L sheet joint. J. Mater. Eng. Perform. 28(5), 2588–2599 (2019)

    Article  Google Scholar 

  24. S. Dwibedi, S. Bag, D. K. Lodhi, A. Kalita, Joining of different thickness dissimilar materials SS 316L/SS 310 By μ-PAW Process, in Advances in Additive Manufacturing and Joining (Springer, 2020), pp. 569–578

  25. G. Madhusudhan Reddy, T. Mohandas, A. Sambasiva Rao, V.V. Satyanarayana, Influence of welding processes on microstructure and mechanical properties of dissimilar austenitic-ferritic stainless steel welds. Mater. Manuf. Process. 20(2), 147–173 (2005)

    Article  Google Scholar 

  26. M. Yousefi, M.H. Farghadin, A. Farzadi, Investigate the causes of cracks in welded 310 stainless steel used in the Flare tip. Eng. Fail. Anal. 53, 138–147 (2015)

    Article  Google Scholar 

  27. T.P.S. Gil, U.K. Mudali, V. Seetharaman, Effect of heat input and microstructure on pitting corrosion in AISI 316L submerged arc weids. Corros. Sci. 44(8), 6 (1988)

    Google Scholar 

  28. S.K. Samanta, S.K. Mitra, T.K. Pal, Microstructure and oxidation characteristics of laser and GTAW weldments in austenitic stainless steels. J. Mater. Eng. Perform. 17(6), 908–914 (2008)

    Article  Google Scholar 

  29. R. Neissi, M. Shamanian, M. Hajihashemi, The effect of constant and pulsed current gas tungsten arc welding on joint properties of 2205 duplex stainless steel to 316L austenitic stainless steel. J. Mater. Eng. Perform. 25(5), 2017–2028 (2016)

    Article  Google Scholar 

  30. W.G. Jiru, M.R. Sankar, U.S. Dixit, Laser surface alloying of aluminum for improving acid corrosion resistance. J. Inst. Eng. India Ser. C 100(3), 481–492 (2019)

    Article  Google Scholar 

  31. T. Saikia, M. Baruah, S. Bag, On the effect of heat input in plasma microwelding of maraging steel. Proc. IMechE Part B J. Eng. Manuf. 233(3), 807–822 (2019)

    Article  Google Scholar 

  32. R. Jain, S.K. Pal, S.B. Singh, Finite element simulation of temperature and strain distribution during friction stir welding of AA2024 aluminum alloy. J. Inst. Eng. India Ser. C 98(1), 37–43 (2017)

    Article  Google Scholar 

  33. U.S. Dixit, S. Bag, Special theme: modelling of manufacturing processes. J. Inst. Eng. India Ser. C 98(1), 3–4 (2017)

    Article  Google Scholar 

  34. B. Kumar, D. Kebede, S. Bag, Microstructure evolution in thin sheet laser welding of titanium alloy. Int. J. Mechatron Manuf. Syst. 11(2–3), 203–229 (2018)

    Google Scholar 

  35. M. Baruah, S. Bag, Influence of heat input in microwelding of titanium alloy by micro plasma arc. J. Mater. Process. Technol. 231, 100–112 (2016)

    Article  Google Scholar 

  36. M.K. Saha, R. Hazra, A. Mondal, S. Das, Effect of heat input on geometry of austenitic stainless steel weld bead on low carbon steel. J. Inst. Eng. India Ser. C 100(4), 607–615 (2019)

    Article  Google Scholar 

  37. S. Tikader, P. Biswas, A.B. Puri, A study on tooling and its effect on heat generation and mechanical properties of welded joints in friction stir welding. J. Inst. Eng. India Ser. C 99(2), 139–150 (2018)

    Article  Google Scholar 

  38. K. Saida, Y. Nishijima, H. Ogiwara, K. Nishimoto, Prediction of solidification cracking in laser welds of type 310 stainless steels. Weld. Int. 29(8), 577–586 (2015)

    Article  Google Scholar 

  39. P. Jiang, C. Wang, Q. Zhou, X. Shao, L. Shu, X. Li, Optimization of laser welding process parameters of stainless steel 316L using FEM, Kriging and NSGA-II. Adv. Eng. Softw. 99, 147–160 (2016)

    Article  Google Scholar 

  40. B. Kumar, S. Bag, Phase transformation effect in distortion and residual stress of thin-sheet laser welded Ti-alloy. Opt. Lasers Eng. 122, 209–224 (2019)

    Article  Google Scholar 

  41. W. Jiang, K. Yahiaoui, Influence of cooling rate on predicted weld residual stress buildup in a thick-walled piping intersection. J. Pressure Vessel Technol. 132(2), 021205-(1–8) (2010)

  42. E. Ranjbarnodeh, Y.G. Anzabi, H. Sabet, Finite element modeling of the effect of welding parameters on solidification cracking of austenitic stainless steel 310. Metall. Mater. Eng. 22(4), 237–250 (2016)

    Article  Google Scholar 

  43. M. Ragavendran, M. Vasudevan, Laser and hybrid laser welding of type 316L (N) austenitic stainless steel plates. Mater. Manuf. Process. 35(8), 922–934 (2020)

    Article  Google Scholar 

  44. S. Yan, Y. Shi, J. Liu, C. Ni, Effect of laser mode on microstructure and corrosion resistance of 316L stainless steel weld joint. Opt. Laser Technol. 113, 428–436 (2019)

    Article  Google Scholar 

  45. K. Devendranath Ramkumar, P. Maruthi Mohan Reddy, B. Raja Arjun, A. Choudhary, A. Srivastava, N. Arivazhagan, Effect of filler metals on the weldability and mechanical properties of multi-pass PCGTA weldments of AISI 316L. J. Mater. Eng. Perform. 24(4), 1602–1613 (2015)

    Article  Google Scholar 

  46. M.A. Valiente Bermejo, A Mathematical model to predict δ- ferrite content in austenitic stainless steel weld metals. Weld. World 56(9–10), 48–68 (2012)

    Article  Google Scholar 

  47. J. Kastner, C. Heinzl, X-Ray Tomography, in Handbook of Advanced Non-Destructive Evaluation, ed. by N. Ida, N. Meyendorf (Springer International Publishing, 2018), pp. 1–72

  48. J. Kar, D. Chakrabarti, S.K. Roy, G.G. Roy, Beam oscillation, porosity formation and fatigue properties of electron beam welded Ti-6Al-4V alloy. J. Mater. Process. Technol. 266, 165–172 (2019)

    Article  Google Scholar 

  49. L. Chen, Y.N. Hu, E.G. He, S.C. Wu, Y.N. Fu, Microstructural and failure mechanism of laser welded 2A97 Al–Li alloys via synchrotron 3D tomography. Int. J. Lightweight Mater. Manuf. 1(3), 169–178 (2018)

    Google Scholar 

Download references

Acknowledgements

The present investigation is a result of research carried out at IIT Guwahati, India. The authors gratefully acknowledge the experimental facility provided by the Department of Mechanical Engineering, Central Workshop, and Central Instruments Facility (CIF) of IIT Guwahati. The authors also gratefully acknowledge the experimental facility provided by Central Research Facility (CRF) of VSSUT, Burla, Odisha, India for the use of scanning electron microscope (SEM) and Central Research Facility (CRF) of IIT Kharagpur, India, for the use of X-ray computed tomography (XCT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swarup Bag.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dwibedi, S., Bag, S. Development of Micro-plasma Arc Welding System for Different Thickness Dissimilar Austenitic Stainless Steels. J. Inst. Eng. India Ser. C 102, 657–671 (2021). https://doi.org/10.1007/s40032-021-00696-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-021-00696-6

Keywords

Navigation