Skip to main content

Advertisement

Log in

Applying polyvinyl alcohol to the preparation of various nanoparticles

  • Review
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Background

Providing nanoscale monodisperse particles in nanoparticle-based drug delivery systems (DDSs) is an important issue in particle synthesis. To prepare uniform, controlled nanoparticles, the addition of stabilizer to the preparing process may be considered. Polyvinyl alcohol (PVA) is a suitable nonionic stabilizer in the body, providing stable colloidal dispersion through stereostatic stabilization.

Area covered

In this paper, the characteristics and role of PVA used as a stabilizer in the preparation of various nanoparticles, such as polymer nanoparticles, metal nanoparticles, and lipid nanoparticles, were reviewed. In addition, the prospect of nanoparticle-based DDSs containing PVA was discussed through studies related to in vivo safety.

Expert opinion

The information provided in this paper will aid in the preparation of nanoparticles using PVA, as this review summarizes the molar mass, degree of hydrolysis, and concentration of PVA used for colloidal stabilization. It also describes the nanoscale particle size and experimental results obtained by the application of PVA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allémann E, Leroux JC, Gurny R, Doelker E (1993) In vitro extended-release properties of drug-loaded poly (D, L-lactic acid) nanoparticles produced by a salting-out procedure. Pharm Res 10:1732–1737

    Article  PubMed  Google Scholar 

  • Ansari MJ, Anwer MK, Jamil S, Al SR, Ali BE et al (2016) Enhanced oral bioavailability of insulin-loaded solid lipid nanoparticles: pharmacokinetic bioavailability of insulin-loaded solid lipid nanoparticles in diabetic rats. Drug Deliv 23:1972–1979

    CAS  PubMed  Google Scholar 

  • Aslam M, Kalyar MA, Raza ZA (2018) Polyvinyl alcohol: a review of research status and use of polyvinyl alcohol based nanocomposites. Polym Eng Sci 58:2119–2132

    Article  CAS  Google Scholar 

  • Babaei AZ, Faridi MR, Negahdari B, Tavoosidana G (2018) ‘Reversed Turkevich’ method for tuning the size of gold nanoparticles: evaluation the effect of concentration and temperature. Nanomed Res J 3:190–196

    Google Scholar 

  • Balakrishanan MH, Rajan M (2016) Size-controlled synthesis of biodegradable nanocarriers for targeted and controlled cancer drug delivery using salting out cation. Bull Mat Sci 39:69–77

    Article  CAS  Google Scholar 

  • Beck BM, Rytting E, Lebhardt T, Wang X, Kissel T (2010) Preparation of nanoparticles by solvent displacement for drug delivery: a shift in the “ouzo region” upon drug loading. Eur J Pharm Sci 41:244–253

    Article  Google Scholar 

  • Begines B, Ortiz T, Pérez AM, Martínez G, Merinero M et al (2020) Polymeric nanoparticles for drug delivery: recent developments and future prospects. Nanomaterials 10:1403–1441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben HN (2016) Poly(vinyl alcohol): review of its promising applications and insights into biodegradation. RSC Adv 6:39823–39832

    Article  Google Scholar 

  • Bohrey S, Chourasiya V, Pandey A (2016) Polymeric nanoparticles containing diazepam: preparation, optimization, characterization, in-vitro drug release and release kinetic study. Nano Converg 3:3–10

    Article  PubMed  PubMed Central  Google Scholar 

  • Budhian A, Siegel SJ, Winey KI (2007) Haloperidol-loaded PLGA nanoparticles: systematic study of particle size and drug content. Int J Pharm 336:367–375

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Wang T, Lu M, Zhu L, Wang Y et al (2014) Preparation and evaluation of tilmicosin-loaded hydrogenated castor oil nanoparticle suspensions of different particle sizes. Int J Nanomed 9:2655–2664

    Google Scholar 

  • Choi SW, Kwon HY, Kim WS, Kim JH (2002) Thermodynamic parameters on poly(d, l-lactide-co-glycolide) particle size in emulsification–diffusion process. Colloid Surf A Physicochem Eng Asp 201:283–289

    Article  CAS  Google Scholar 

  • Choi SJ, Lee JK, Jeong J, Choy JH (2013) Toxicity evaluation of inorganic nanoparticles: considerations and challenges. Mol Cell Toxicol 9:205–210

    Article  CAS  Google Scholar 

  • Crucho CIC, Barros MT (2017) Polymeric nanoparticles: a study on the preparation variables and characterization methods. Mater Sci Eng C-Mater Biol Appl 80:771–784

    Article  CAS  PubMed  Google Scholar 

  • Dalyan O, Öztürk ÖF, Pişkin M (2021) Toxicity of polyvinyl alcohols in medicinal chemistry. MANAS J Eng 9:129–135

    Article  Google Scholar 

  • Das S, Chaudhury A (2011) Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech 12:62–76

    Article  CAS  PubMed  Google Scholar 

  • Date AA, Patravale VB (2004) Current strategies for engineering drug nanoparticles. Curr Opin Colloid Interface Sci 9:222–235

    Article  CAS  Google Scholar 

  • De MLB, Varanda LC, Sigoli FA, Mazali IO (2019) Co-precipitation synthesis of (Zn-Mn)-co-doped magnetite nanoparticles and their application in magnetic hyperthermia. J Alloy Compd 779:698–705

    Article  Google Scholar 

  • Demerlis CC, Schoneker DR (2003) Review of the oral toxicity of polyvinyl alcohol (PVA). Food Chem Toxicol 41:319–326

    Article  CAS  PubMed  Google Scholar 

  • Desgouilles S, Vauthier C, Bazile D, Vacus J, Grossiord JL et al (2003) The design of nanoparticles obtained by solvent evaporation: a comprehensive study. Langmuir 19:9504–9510

    Article  CAS  Google Scholar 

  • Downing JR, Diaz AS, Chaney LE, Tsai D, Hui J et al (2023) Centrifuge-free separation of solution-exfoliated 2D nanosheets via cross-flow filtration. Adv Mater 35:2212042–2212055

    Article  CAS  Google Scholar 

  • Durán LM, Enguix GA, Fernández AM, Martín BL (2013) Statistical analysis of solid lipid nanoparticles produced by high-pressure homogenization: a practical prediction approach. J Nanopart Res 15:1443–1457

    Article  Google Scholar 

  • Ebadi M, Bullo S, Buskara K, Hussein MZ, Fakurazi S et al (2020) Release of a liver anticancer drug, sorafenib from its PVA/LDH- and PEG/LDH-coated iron oxide nanoparticles for drug delivery applications. Sci Rep 10:21521–21540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebadi M, Buskaran K, Bullo S, Hussein MZ, Fakurazi S et al (2021) Drug delivery system based on magnetic iron oxide nanoparticles coated with (polyvinyl alcohol-zinc/aluminium-layered double hydroxide-sorafenib). Alex Eng J 60:733–747

    Article  Google Scholar 

  • Ebrahimi HA, Javadzadeh Y, Hamidi M, Jalali MB (2015) Repaglinide-loaded solid lipid nanoparticles: effect of using different surfactants/stabilizers on physicochemical properties of nanoparticles. Daru 23:46–57

    Article  PubMed  PubMed Central  Google Scholar 

  • Finch C (1992) Appendix 2 health and toxicity regulations relating to polyvinyl alcohol. polyvinyl alcohol developments. Wiley, Aylesbury, pp 763–765

    Google Scholar 

  • Freitas C, Müller RH (1999) Correlation between long-term stability of solid lipid nanoparticles (SLN™) and crystallinity of the lipid phase. Eur J Pharm Biopharm 47:125–132

    Article  CAS  PubMed  Google Scholar 

  • Ganesan P, Narayanasamy D (2017) Lipid nanoparticles: different preparation techniques, characterization, hurdles, and strategies for the production of solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery. Sustain Chem Pharm 6:37–56

    Article  Google Scholar 

  • Gaumet M, Vargas A, Gurny R, Delie F (2008) Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm 69:1–9

    Article  CAS  PubMed  Google Scholar 

  • Hallensleben ML, Fuss R, Mummy F (2000) Polyvinyl compounds, others – Ullmann’s encyclopedia of industrial chemistry. Wiley, Weinheim

    Google Scholar 

  • Han F, Li S, Yin R, Liu H, Xu L (2008) Effect of surfactants on the formation and characterization of a new type of colloidal drug delivery system: nanostructured lipid carriers. Colloid Surf A Physicochem Eng Asp 315:210–216

    Article  CAS  Google Scholar 

  • Higazy IM, Mahmoud AA, Ghorab MM, Ammar HO (2021) Development and evaluation of polyvinyl alcohol stabilized polylactide-co-caprolactone-based nanoparticles for brain delivery. J Drug Deliv Sci Technol 61:102274–102285

    Article  CAS  Google Scholar 

  • Hornig S, Heinze T, Becer CR, Schubert US (2009) Synthetic polymeric nanoparticles by nanoprecipitation. J Mater Chem 19:3838–3840

    Article  CAS  Google Scholar 

  • Hu FQ, Hong Y, Yuan H (2004) Preparation and characterization of solid lipid nanoparticles containing peptide. Int J Pharm 273:29–35

    Article  CAS  PubMed  Google Scholar 

  • Hueper W (1939) Organic lesions produced by polyvinyl alcohol in rats and rabbits. Arch Pathol Lab Med 28:510–531

    CAS  Google Scholar 

  • Husein MM, Nassar NN (2008) Nanoparticle preparation using the single microemulsions scheme. Curr Nanosci 4:370–380

    Article  CAS  Google Scholar 

  • Iqbal M, Zafar N, Fessi H, Elaissari A (2015) Double emulsion solvent evaporation techniques used for drug encapsulation. Int J Pharm 496:173–190

    Article  CAS  PubMed  Google Scholar 

  • Jain R, Dandekar P, Loretz B, Melero A, Stauner T et al (2011) Enhanced cellular delivery of idarubicin by surface modification of propyl starch nanoparticles employing pteroic acid conjugated polyvinyl alcohol. Int J Pharm 420:147–155

    Article  CAS  PubMed  Google Scholar 

  • Jenjob R, Phakkeeree T, Seidi F, Theerasilp M, Crespy D (2019) Emulsion techniques for the production of pharmacological nanoparticles. Macromol Biosci 19:1900063–1900076

    Article  Google Scholar 

  • Jung T, Breitenbach A, Kissel T (2000) Sulfobutylated poly(vinyl alcohol)-graft-poly(lactide-co-glycolide)s facilitate the preparation of small negatively charged biodegradable nanospheres. J Control Release 67:157–169

    Article  CAS  PubMed  Google Scholar 

  • Kayal S, Ramanujan RV (2010) Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery. Mater Sci Eng C Mater Biol Appl 30:484–490

    Article  CAS  Google Scholar 

  • Khairnar SV, Pagare P, Thakre A, Nambiar AR, Junnuthula V et al (2022) Review on the scale-up methods for the preparation of solid lipid nanoparticles. Pharmaceutics 14:1886–1908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovačević AB, Müller RH, Savić SD, Vuleta GM, Keck CM (2014) Solid lipid nanoparticles (SLN) stabilized with polyhydroxy surfactants: preparation, characterization and physical stability investigation. Colloid Surf A Physicochem Eng Asp 444:15–25

    Article  Google Scholar 

  • Kwon HY, Lee JY, Choi SW, Jang Y, Kim JH (2001) Preparation of PLGA nanoparticles containing estrogen by emulsification–diffusion method. Colloid Surf A Physicochem Eng Asp 182:123–130

    Article  CAS  Google Scholar 

  • Lebouille J, Stepanyan R, Slot JJM, Stuart MAC, Tuinier R (2014) Nanoprecipitation of polymers in a bad solvent. Colloid Surf A Physicochem Eng Asp 460:225–235

    Article  CAS  Google Scholar 

  • Liu D, Yang F, Xiong F, Gu N (2016) The smart drug delivery system and its clinical potential. Theranostics 6:1306–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Yang G, Zou D, Hui Y, Nigam K et al (2020a) Formulation of nanoparticles using mixing-induced nanoprecipitation for drug delivery. Ind Eng Chem Res 59:4134–4149

    Article  CAS  Google Scholar 

  • Liu Z, Lanier OL, Chauhan A (2020b) Poly (vinyl alcohol) assisted synthesis and anti-solvent precipitation of gold nanoparticles. Nanomaterials 10:2359–2376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu AH, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244

    Article  CAS  Google Scholar 

  • Mandel K, Hutter F, Gellermann C, Sextl G (2011) Synthesis and stabilisation of superparamagnetic iron oxide nanoparticle dispersions. Colloid Surf A-Physicochem Eng Asp 390:173–178

    Article  CAS  Google Scholar 

  • Mehnert W, Mäder K (2012) Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 64:83–101

    Article  Google Scholar 

  • Mendoza MN, Quintanar D, Allémann E (2012) The impact of the salting-out technique on the preparation of colloidal particulate systems for pharmaceutical applications. Recent Pat Drug Deliv Formul 6:236–249

    Article  Google Scholar 

  • Moinard CD, Chevalier Y, Briançon S, Beney L, Fessi H (2008) Mechanism of nanocapsules formation by the emulsion–diffusion process. J Colloid Interface Sci 317:458–468

    Article  Google Scholar 

  • Moore TL, Rodriguez LL, Hirsch V, Balog S, Urban D et al (2015) Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem Soc Rev 44:6287–6305

    Article  CAS  PubMed  Google Scholar 

  • Mora HCE, Garrigues O, Fessi H, Elaissari A (2012) Nanocapsules prepared via nanoprecipitation and emulsification–diffusion methods: comparative study. Eur J Pharm Biopharm 80:235–239

    Article  Google Scholar 

  • Müller RH, Mäder K, Gohla S (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery–a review of the state of the art. Eur J Pharm Biopharm 50:161–177

    Article  PubMed  Google Scholar 

  • Muppalaneni S (2013) Polyvinyl alcohol in medicine and pharmacy: a perspective. J Dev Drugs 2:1000112–1000117

    Article  Google Scholar 

  • Murakami H, Kobayashi M, Takeuchi H, Kawashima Y (1999) Preparation of poly(d, l-lactide-co-glycolide) nanoparticles by modified spontaneous emulsification solvent diffusion method. Int J Pharm 187:143–152

    Article  CAS  PubMed  Google Scholar 

  • Musielak E, Feliczak GA, Nowak I (2022) Synthesis and potential applications of lipid nanoparticles in medicine. Materials 15:682–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nabi MM, Vatanara A, Najafabadi AR, Rouini MR, Ramezani V et al (2013) The effective encapsulation of a hydrophobic lipid-insoluble drug in solid lipid nanoparticles using a modified double emulsion solvent evaporation method. Colloid Surf B-Biointerfaces 112:408–414

    Article  Google Scholar 

  • Nadeem M, Ahmad M, Akhtar MS, Shaari A, Riaz S et al (2016) Magnetic properties of polyvinyl alcohol and doxorubicine loaded iron oxide nanoparticles for anticancer drug delivery applications. PLoS ONE 11:e0158084

    Article  PubMed  PubMed Central  Google Scholar 

  • Nawaz A, Hümmelgen IA (2019) Poly(vinyl alcohol) gate dielectric in organic field-effect transistors. J Mater Sci Mater Electron 30:5299–5326

    Article  CAS  Google Scholar 

  • Othman R, Vladisavljević GT, Shahmohamadi H, Nagy ZK, Holdich R (2016) Formation of size-tuneable biodegradable polymeric nanoparticles by solvent displacement method using micro-engineered membranes fabricated by laser drilling and electroforming. Chem Eng J 304:703–713

    Article  CAS  Google Scholar 

  • Parhi R, Suresh P (2010) Production of solid lipid nanoparticles-drug loading and release mechanism. J Chem Pharm Res 2:211–227

    CAS  Google Scholar 

  • Park MH, Jun HS, Jeon JW, Park JK, Lee BJ et al (2018) Preparation and characterization of bee venom-loaded PLGA particles for sustained release. Pharm Dev Technol 23:857–864

    Article  CAS  PubMed  Google Scholar 

  • Pinon SE, Nava AMG, Lechuga BD (2012) Pharmaceutical polymeric nanoparticles prepared by the double emulsion- solvent evaporation technique. Recent Pat Drug Deliv Formul 6:224–235

    Article  Google Scholar 

  • Pooja D, Tunki L, Kulhari H, Reddy BB, Sistla R (2016) Optimization of solid lipid nanoparticles prepared by a single emulsification-solvent evaporation method. Data Brief 6:15–19

    Article  PubMed  Google Scholar 

  • Quintanar GD, Allémann E, Fessi H, Doelker E (1998) Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers. Drug Dev Ind Pharm 24:1113–1128

    Article  Google Scholar 

  • Rafiei P, Haddadi A (2019) A robust systematic design: optimization and preparation of polymeric nanoparticles of PLGA for docetaxel intravenous delivery. Mater Sci Eng C-Mater Biol Appl 104:e109950

    Article  Google Scholar 

  • Rao JP, Geckeler KE (2011) Polymer nanoparticles: Preparation techniques and size-control parameters. Prog Polym Sci 36:887–913

    Article  CAS  Google Scholar 

  • Razzaq A, Naz SS, Qureshi IZ, Rehman FU, Qaisar S (2022) Synthesis of PVA capped naproxen conjugated MgO nanoparticles and its bioactivity screening. J Drug Deliv Sci Technol 73:103429–103447

    Article  CAS  Google Scholar 

  • Rezaei M, Mirkazemi SM, Alamolhoda S (2021) The role of PVA surfactant on magnetic properties of MnFe2O4 nanoparticles synthesized by sol-gel hydrothermal method. J Supercond Nov Magn 34:1397–1408

    Article  CAS  Google Scholar 

  • Rivas CJM, Tarhini M, Badri W, Miladi K, Greige GH et al (2017) Nanoprecipitation process: From encapsulation to drug delivery. Int J Pharm 532:66–81

    Article  Google Scholar 

  • Riviere J, Coppoc G, Carlton W, Hinsman E (1980) Polyvinyl alcohol toxicosis as a model of glomerulonephritis in Beagle dogs. Am J Vet Res 41:502–505

    CAS  PubMed  Google Scholar 

  • Rosca ID, Watari F, Uo M (2004) Microparticle formation and its mechanism in single and double emulsion solvent evaporation. J Control Release 99:271–280

    Article  CAS  PubMed  Google Scholar 

  • Rosenblatt KM, Bunjes H (2009) Poly(vinyl alcohol) as emulsifier stabilizes solid triglyceride drug carrier nanoparticles in the α-modification. Mol Pharm 6:105–120

    Article  CAS  PubMed  Google Scholar 

  • Rowe RC, Sheskey PJ, Quinn ME (2009) Handbook of pharmaceutical excipients. Pharmaceutical Press, London, pp 564–565

    Google Scholar 

  • Roy PS, Bhattacharya SK (2013) Size-controlled synthesis and characterization of polyvinyl alcohol-coated platinum nanoparticles: role of particle size and capping polymer on the electrocatalytic activity. Catal Sci Technol 3:1314–1323

    Article  CAS  Google Scholar 

  • Salatin S, Barar J, Barzegar JM, Adibkia K, Kiafar F et al (2017) Development of a nanoprecipitation method for the entrapment of a very water soluble drug into Eudragit RL nanoparticles. Res Pharm Sci 12:1–14

    Article  PubMed  PubMed Central  Google Scholar 

  • Schulz F, Homolka T, Bastús NG, Puntes V, Weller H et al (2014) Little adjustments significantly improve the Turkevich synthesis of gold nanoparticles. Langmuir 30:10779–10784

    Article  CAS  PubMed  Google Scholar 

  • Scioli MS, Muraca G, Di IM, Couyoupetrou M, Pesce G et al (2021) Preparation, physicochemical and biopharmaceutical characterization of oxcarbazepine-loaded nanostructured lipid carriers as potential antiepileptic devices. J Drug Deliv Sci Technol 63:102470–102478

    Article  Google Scholar 

  • Shah RM, Malherbe F, Eldridge D, Palombo EA, Harding IH (2014) Physicochemical characterization of solid lipid nanoparticles (SLNs) prepared by a novel microemulsion technique. J Colloid Interface Sci 428:286–294

    Article  CAS  PubMed  Google Scholar 

  • Sharma D, Sharma J, Arya RK, Ahuja S, Agnihotri S (2018) Surfactant enhanced drying of waterbased poly(vinyl alcohol) coatings. Prog Org Coat 125:443–452

    Article  CAS  Google Scholar 

  • Shen L, Laibinis PE, Hatton TA (1999) Bilayer surfactant stabilized magnetic fluids: synthesis and interactions at interfaces. Langmuir 15:447–453

    Article  CAS  Google Scholar 

  • Singh R, Lillard JW (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86:215–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinha VR, Srivastava S, Goel H, Jindal V (2010) Solid lipid nanoparticles (SLN’S)-trends and implications in drug targeting. Int J Adv Pharm Sci 1:212–238

    CAS  Google Scholar 

  • Sivadasan D, Madavan B, Penmatsa SD, Bathini ST (2012) Formulation and characterization of solid lipid nanoparticles of rifampicin. Erciyes Med J 35:1–5

    Article  Google Scholar 

  • Sivaraman SK, Kumar S, Santhanam V (2011) Monodisperse sub-10nm gold nanoparticles by reversing the order of addition in Turkevich method – The role of chloroauric acid. J Colloid Interface Sci 361:543–547

    Article  CAS  PubMed  Google Scholar 

  • Song CX, Labhasetwar V, Murphy H, Qu X, Humphrey WR et al (1997) Formulation and characterization of biodegradable nanoparticles for intravascular local drug delivery. J Control Release 43:197–212

    Article  Google Scholar 

  • Sovan LP, Jana U, Manna PK, Mohanta GP, Manavalan R (2011) Nanoparticle: an overview of preparation and characterization. J Appl Pharm Sci 1:228–234

    Google Scholar 

  • Tang X, Alavi S (2011) Recent advances in starch, polyvinyl alcohol based polymer blends, nanocomposites and their biodegradability. Carbohydr Polym 85:7–16

    Article  CAS  Google Scholar 

  • Vinchhi P, Patel JK, Patel MM (2021) Emerging technologies for nanoparticle manufacturing. Springer, Berlin

    Google Scholar 

  • Vivek R, Thangam R, Nipunbabu V, Rejeeth C, Sivasubramanian S et al (2014) Multifunctional HER2-antibody conjugated polymeric nanocarrier-based drug delivery system for multi-drug-resistant breast cancer therapy. ACS Appl Mater Interfaces 6:6469–6480

    Article  CAS  PubMed  Google Scholar 

  • Wang LJ, Yin YC, Yin SW, Yang XQ, Shi WJ et al (2013) Development of novel zein-sodium caseinate nanoparticle (ZP)-stabilized emulsion films for improved water barrier properties via emulsion/solvent evaporation. J Agric Food Chem 61:11089–11097

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Li P, Truong DTT, Zhang J, Kong L (2016) Manufacturing techniques and surface engineering of polymer based nanoparticles for targeted drug delivery to cancer. Nanomaterials 6:26–44

    Article  PubMed  PubMed Central  Google Scholar 

  • Weiss J, Decker EA, Mcclements DJ, Kristbergsson K, Helgason T et al (2008) Solid lipid nanoparticles as delivery systems for bioactive food components. Food Biophys 3:146–154

    Article  Google Scholar 

  • Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H (2012) Nanoparticles as drug delivery systems. Pharmacol Rep 64:1020–1037

    Article  CAS  PubMed  Google Scholar 

  • Wiśniewska M, Ostolska I, Szewczuk KK, Chibowski S, Terpiłowski K et al (2015) Investigation of the polyvinyl alcohol stabilization mechanism and adsorption properties on the surface of ternary mixed nanooxide AST 50 (Al2O3–SiO2–TiO2). J Nanopart Res 17:12–26

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu L, Zhang J, Watanabe W (2011) Physical and chemical stability of drug nanoparticles. Adv Drug Deliv Rev 63:456–469

    Article  CAS  PubMed  Google Scholar 

  • Wuithschick M, Birnbaum A, Witte S, Sztucki M, Vainio U et al (2015) Turkevich in new robes: key questions answered for the most common gold nanoparticle synthesis. ACS Nano 9:7052–7071

    Article  CAS  PubMed  Google Scholar 

  • Xia HM, Seah YP, Liu YC, Wang W, Toh AGG et al (2015) Anti-solvent precipitation of solid lipid nanoparticles using a microfluidic oscillator mixer. Microfluid Nanofluid 19:283–290

    Article  CAS  Google Scholar 

  • Xu L, Wang X, Liu Y, Yang G, Falconer RJ et al (2022) Lipid nanoparticles for drug delivery. Adv NanoBiomed Res 2:2100109–2100126

    Article  CAS  Google Scholar 

  • Yadav N, Khatak S, Sara US (2013) Solid lipid nanoparticles-a review. Int J Appl Pharm 5:8–18

    CAS  Google Scholar 

  • Yih TC, Al FM (2006) Engineered nanoparticles as precise drug delivery systems. J Cell Biochem 97:1184–1190

    Article  CAS  PubMed  Google Scholar 

  • Zamani KMR, Stadler BJH (2020) A guideline for effectively synthesizing and characterizing magnetic nanoparticles for advancing nanobiotechnology: a review. Sensors 20:2554–2591

    Article  Google Scholar 

  • Zambaux MF, Bonneaux F, Gref R, Maincent P, Dellacherie E et al (1998) Influence of experimental parameters on the characteristics of poly(lactic acid) nanoparticles prepared by a double emulsion method. J Control Release 50:31–40

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Grijpma DW, Feijen J (2006) Poly(trimethylene carbonate) and monomethoxy poly(ethylene glycol)-block-poly(trimethylene carbonate) nanoparticles for the controlled release of dexamethasone. J Control Release 111:263–270

    Article  CAS  PubMed  Google Scholar 

  • Zhang A, Meng K, Liu Y, Pan Y, Qu W et al (2020) Absorption, distribution, metabolism, and excretion of nanocarriers in vivo and their influences. Adv Colloid Interface Sci 284:e102261

    Article  Google Scholar 

  • Zielińska A, Carreiró F, Oliveira AM, Neves A, Pires B et al (2020) Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules 25:3731–3751

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Basic Science Research Program (2019R1A2C10786102) through the National Research Foundation of Korea (NRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheong-Weon Cho.

Ethics declarations

Conflict of interest

All authors (B.M. Song, and C.W. Cho) declare that they have no conflict of interest.

Research involving human and animal rights

This article does not contain any studies with human and animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, B., Cho, CW. Applying polyvinyl alcohol to the preparation of various nanoparticles. J. Pharm. Investig. 54, 249–266 (2024). https://doi.org/10.1007/s40005-023-00649-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-023-00649-4

Keywords

Navigation