Skip to main content

Advertisement

Log in

Recent developments in chemodrug-loaded nanomedicines and their application in combination cancer immunotherapy

  • Review
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Background

In recent studies of cancer therapies, chemodrugs have attracted interest, acting not only as traditional chemotherapeutic agents but also as anticancer immune-activating agents. Specific types of chemodrugs have been demonstrated to exhibit superior anticancer efficacy to others through directly exerting toxic effects on cancer cells and indirectly by inducing immunogenic cell death (ICD) to recruit immune cells to kill them. However, chemodrug-based ICD has not yet achieved satisfactory therapeutic outcomes because of various limitations, including the poor tumor delivery efficiency of chemodrugs, the strong resistance of tumor tissues to chemodrugs, and the immunosuppressive tumor microenvironment.

Area covered

This review briefly introduces ICD-inducing chemodrugs and their properties, and then explains the advantages of nanomedicine in ICD-inducing chemodrug delivery. Further, studies on chemodrug-loaded nanomedicine-based combined immunotherapy are discussed, with a focus on the cooperative effect of ICD induction with other co-administered immunotherapeutic modalities.

Expert opinion

It is possible to obtain better pharmacokinetic properties and tumor accumulation efficiency when using chemodrug-loaded nanomedicines compared with free chemodrugs, resulting in stronger ICD-inducing effects. The tumor-targeting efficiency of nanomedicines can be further improved by their modification with active targeting or tumor stimuli-responsive moieties while diminishing their undesirable biodistribution. Nanomedicines also facilitate the simultaneous delivery of ICD-inducing chemodrugs and other immunotherapeutic agents; these act synergistically to enhance the efficacy of ICD-based combined immunotherapy, even against highly drug-resistant and immunosuppressive tumors. Nanomedicine is expected to provide a promising approach to overcoming the challenges of ICD-inducing chemodrug-based combination cancer immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Reproduced with permission from Wang et al. (2022)

Fig. 4

Reproduced with permission from Choi et al. (2021)

Fig. 5

Reproduced with permission from Moon et al. (2022)

Fig. 6

Similar content being viewed by others

References

  • Aaes TL, Kaczmarek A, Delvaeye T, De Craene B, De Koker S, Heyndrickx L, Delrue I, Taminau J, Wiernicki B, De Groote P (2016) Vaccination with necroptotic cancer cells induces efficient anti-tumor immunity. Cell Rep 15:274–287

    Article  CAS  PubMed  Google Scholar 

  • Adkins I, Fucikova J, Garg AD, Agostinis P, Spisek R (2014) Physical modalities inducing immunogenic tumor cell death for cancer immunotherapy. Oncoimmunology 3:e968434

    Article  PubMed  Google Scholar 

  • Agata Y, Kawasaki A, Nishimura H, Ishida Y, Tsubata T, Yagita H, Honjo T (1996) Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol 8:765–772

    Article  CAS  PubMed  Google Scholar 

  • Ahmed A, Tait SWG (2020) Targeting immunogenic cell death in cancer. Mol Oncol 14:2994–3006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alzeibak R, Mishchenko TA, Shilyagina NY, Balalaeva IV, Vedunova MV, Krysko DV (2021) Targeting immunogenic cancer cell death by photodynamic therapy: past, present and future. J Immunother Cancer 9:e001926

    Article  PubMed  PubMed Central  Google Scholar 

  • Arina A, Corrales L, Bronte V (2016) Seminars in immunology. Elsevier, pp 54–63

    Google Scholar 

  • Asadzadeh Z, Safarzadeh E, Safaei S, Baradaran A, Mohammadi A, Hajiasgharzadeh K, Derakhshani A, Argentiero A, Silvestris N, Baradaran B (2020) Current approaches for combination therapy of cancer: the role of immunogenic cell death. Cancers (basel) 12:1047

    Article  CAS  PubMed  Google Scholar 

  • Banerjee I, De M, Dey G, Bharti R, Chattopadhyay S, Ali N, Chakrabarti P, Reis RL, Kundu SC, Mandal M (2019) A peptide-modified solid lipid nanoparticle formulation of paclitaxel modulates immunity and outperforms dacarbazine in a murine melanoma model. Biomater Sci 7:1161–1178

    Article  CAS  PubMed  Google Scholar 

  • Banstola A, Poudel K, Kim JO, Jeong J-H, Yook S (2021) Recent progress in stimuli-responsive nanosystems for inducing immunogenic cell death. J Control Release 337:505–520

    Article  CAS  PubMed  Google Scholar 

  • Baumann F, Preiss R (2001) Cyclophosphamide and related anticancer drugs. J Chromatogr B Biomed Sci Appl 764:173–192

    Article  CAS  PubMed  Google Scholar 

  • Bell CW, Jiang W, Reich Iii CF, Pisetsky DS (2006) The extracellular release of HMGB1 during apoptotic cell death. Am J Physiol Cell Physiol 291:C1318–C1325

    Article  CAS  PubMed  Google Scholar 

  • Bernabeu E, Cagel M, Lagomarsino E, Moretton M, Chiappetta DA (2017) Paclitaxel: what has been done and the challenges remain ahead. Int J Pharm 526:474–495

    Article  CAS  PubMed  Google Scholar 

  • Bezu L, Gomes-Da-Silva LC, Dewitte H, Breckpot K, Fucikova J, Spisek R, Galluzzi L, Kepp O, Kroemer G (2015) Combinatorial strategies for the induction of immunogenic cell death. Front Immunol 6:187

    PubMed  PubMed Central  Google Scholar 

  • Bilotta MT, Petillo S, Santoni A, Cippitelli M (2020) Liver X receptors: regulators of cholesterol metabolism, inflammation, autoimmunity, and cancer. Front Immunol 11:584303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boccadoro M, Morgan G, Cavenagh J (2005) Preclinical evaluation of the proteasome inhibitor bortezomib in cancer therapy. Cancer Cell Int 5:1–9

    Article  Google Scholar 

  • Borroni EM, Grizzi F (2021) Cancer Immunoediting and beyond in 2021. Int J Mol Sci 22:13275

    Article  PubMed  PubMed Central  Google Scholar 

  • Bubna AK (2015) Vorinostat—an overview. Indian J Dermatol 60:419

    Article  PubMed  PubMed Central  Google Scholar 

  • Bugaut H, Bruchard M, Berger H, Derangère V, Odoul L, Euvrard R, Ladoire S, Chalmin F, Végran F, Rébé C (2013) Bleomycin exerts ambivalent antitumor immune effect by triggering both immunogenic cell death and proliferation of regulatory T cells. PLoS ONE 8:e65181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cacan E, Ozmen ZC (2020) Regulation of Fas in response to bortezomib and epirubicin in colorectal cancer cells. J Chemother 32:193–201

    Article  CAS  PubMed  Google Scholar 

  • Cai Y, Gao K, Peng B, Xu Z, Peng J, Li J, Chen X, Zeng S, Hu K, Yan Y (2021) Alantolactone: a natural plant extract as a potential therapeutic agent for cancer. Front Pharmacol 12:781033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cajigas IJ, Will T, Schuman EM (2010) Protein homeostasis and synaptic plasticity. EMBO J 29:2746–2752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casares N, Pequignot MO, Tesniere A, Ghiringhelli F, Roux S, Chaput N, Schmitt E, Hamai A, Hervas-Stubbs S, Obeid M (2005) Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J Exp Med 202:1691–1701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castellino F, Boucher PE, Eichelberg K, Mayhew M, Rothman JE, Houghton AN, Germain RN (2000) Receptor-mediated uptake of antigen/heat shock protein complexes results in major histocompatibility complex class I antigen presentation via two distinct processing pathways. J Exp Med 191:1957–1964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cella M, Sallusto F, Lanzavecchia A (1997) Origin, maturation and antigen presenting function of dendritic cells. Curr Opin Immunol 9:10–16

    Article  CAS  PubMed  Google Scholar 

  • Chaney SG, Campbell SL, Bassett E, Wu Y (2005) Recognition and processing of cisplatin-and oxaliplatin-DNA adducts. Crit Rev Oncol Hematol 53:3–11

    Article  PubMed  Google Scholar 

  • Chang I-C, Huang Y-J, Chiang T-I, Yeh C-W, Hsu L-S (2010) Shikonin induces apoptosis through reactive oxygen species/extracellular signal-regulated kinase pathway in osteosarcoma cells. Biol Pharm Bull 33:816–824

    Article  CAS  PubMed  Google Scholar 

  • Chang C-L, Hsu Y-T, Wu C-C, Yang Y-C, Wang C, Wu T-C, Hung C-F (2012) Immune mechanism of the antitumor effects generated by bortezomib. J Immunol 189:3209–3220

    Article  CAS  PubMed  Google Scholar 

  • Chen H-M, Wang P-H, Chen S-S, Wen C-C, Chen Y-H, Yang W-C, Yang N-S (2012) Shikonin induces immunogenic cell death in tumor cells and enhances dendritic cell-based cancer vaccine. Cancer Immunol Immunother 61:1989–2002

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Wang T, Du J, Li Y, Wang X, Zhou Y, Yu X, Fan W, Zhu Q, Tong X (2018) The critical role of PTEN/PI3K/AKT signaling pathway in shikonin-induced apoptosis and proliferation inhibition of chronic myeloid leukemia. Cell Physiol Biochem 47:981–993

    Article  CAS  PubMed  Google Scholar 

  • Chidambaram M, Manavalan R, Kathiresan K (2011) Nanotherapeutics to overcome conventional cancer chemotherapy limitations. J Pharm Pharm Sci 14:67–77

    Article  PubMed  Google Scholar 

  • Chirumbolo S (2013) Quercetin in cancer prevention and therapy. Integr Cancer Ther 12:97–102

    Article  CAS  PubMed  Google Scholar 

  • Choi Y, Yoon HY, Kim J, Yang S, Lee J, Choi JW, Moon Y, Kim J, Lim S, Shim MK (2020) Doxorubicin-loaded PLGA nanoparticles for cancer therapy: molecular weight effect of PLGA in doxorubicin release for controlling immunogenic cell death. Pharmaceutics 12:1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi J, Shim MK, Yang S, Hwang HS, Cho H, Kim J, Yun WS, Moon Y, Kim J, Yoon HY, Kim K (2021) Visible-light-triggered prodrug nanoparticles combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapy. ACS Nano 15:12086–12098

    Article  CAS  PubMed  Google Scholar 

  • Cook AM, Lesterhuis WJ, Nowak AK, Lake RA (2016) Chemotherapy and immunotherapy: mapping the road ahead. Curr Opin Immunol 39:23–29

    Article  CAS  PubMed  Google Scholar 

  • Corrado M, Pearce EL (2022) Targeting memory T cell metabolism to improve immunity. J Clin Investig. https://doi.org/10.1172/JCI148546

    Article  PubMed  PubMed Central  Google Scholar 

  • Croci DO, Zacarías Fluck MF, Rico MJ, Matar P, Rabinovich GA, Scharovsky OG (2007) Dynamic cross-talk between tumor and immune cells in orchestrating the immunosuppressive network at the tumor microenvironment. Cancer Immunol Immunother 56:1687–1700

    Article  PubMed  Google Scholar 

  • D’arcy MS (2019) Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int 43:582–592

    Article  PubMed  Google Scholar 

  • Davies AM, Lara PN Jr, Mack PC, Gandara DR (2007) Incorporating bortezomib into the treatment of lung cancer. Clin Cancer Res 13:4647s–4651s

    Article  CAS  Google Scholar 

  • De Jonge ME, Huitema AD, Rodenhuis S, Beijnen JH (2005) Clinical pharmacokinetics of cyclophosphamide. Clin Pharmacokinet 44:1135–1164

    Article  PubMed  Google Scholar 

  • Diao Y, Ma X, Min W, Lin S, Kang H, Dai Z, Wang X, Zhao Y (2016) Dasatinib promotes paclitaxel-induced necroptosis in lung adenocarcinoma with phosphorylated caspase-8 by c-Src. Cancer Lett 379:12–23

    Article  CAS  PubMed  Google Scholar 

  • Diederich M (2019) Natural compound inducers of immunogenic cell death. Arch Pharmacal Res 42:629–645

    Article  CAS  Google Scholar 

  • Diederich M, Muller F, Cerella C (2017) Cardiac glycosides: From molecular targets to immunogenic cell death. Biochem Pharmacol 125:1–11

    Article  CAS  PubMed  Google Scholar 

  • Dong H, Zhu G, Tamada K, Chen L (1999) B7–H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 5:1365–1369

    Article  CAS  PubMed  Google Scholar 

  • Dostanic-Larson I, Lorenz JN, Van Huysse JW, Neumann JC, Moseley AE, Lingrel JB (2006) Physiological role of the α1-and α2-isoforms of the Na+-K+-ATPase and biological significance of their cardiac glycoside binding site. Am J Physiol—Regul Integr Compar Physiol 290:R524–R528

    Article  CAS  Google Scholar 

  • Du B, Waxman DJ (2020) Medium dose intermittent cyclophosphamide induces immunogenic cell death and cancer cell autonomous type I interferon production in glioma models. Cancer Lett 470:170–180

    Article  CAS  PubMed  Google Scholar 

  • Du J, Lane LA, Nie S (2015) Stimuli-responsive nanoparticles for targeting the tumor microenvironment. J Control Release 219:205–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisenbarth S (2019) Dendritic cell subsets in T cell programming: location dictates function. Nat Rev Immunol 19:89–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eloy JO, De Souza MC, Petrilli R, Barcellos JPA, Lee RJ, Marchetti JM (2014) Liposomes as carriers of hydrophilic small molecule drugs: strategies to enhance encapsulation and delivery. Colloids Surf, B 123:345–363

    Article  CAS  Google Scholar 

  • Emadi A, Jones RJ, Brodsky RA (2009) Cyclophosphamide and cancer: golden anniversary. Nat Rev Clin Oncol 6:638–647

    Article  CAS  PubMed  Google Scholar 

  • Evdonin A, Medvedeva N (2009) The extracellular heat shock protein 70 and its functions. Tsitologiia 51:130–137

    CAS  PubMed  Google Scholar 

  • Fallarino F, Grohmann U, You S, Mcgrath BC, Cavener DR, Vacca C, Orabona C, Bianchi R, Belladonna ML, Volpi C, Santamaria P, Fioretti MC, Puccetti P (2006) The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells. J Immunol 176:6752–6761

    Article  CAS  PubMed  Google Scholar 

  • Feng B, Zhou F, Hou B, Wang D, Wang T, Fu Y, Ma Y, Yu H, Li Y (2018) Binary cooperative prodrug nanoparticles improve immunotherapy by synergistically modulating immune tumor microenvironment. Adv Mater 30:e1803001

    Article  PubMed  Google Scholar 

  • Fox E, Oliver T, Rowe M, Thomas S, Zakharia Y, Gilman PB, Muller AJ, Prendergast GC (2018) Indoximod: an immunometabolic adjuvant that empowers T cell activity in cancer. Front Oncol 8:370

    Article  PubMed  PubMed Central  Google Scholar 

  • Frank D, Vince JE (2019) Pyroptosis versus necroptosis: similarities, differences, and crosstalk. Cell Death Differ 26:99–114

    Article  PubMed  Google Scholar 

  • Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, Fitz LJ, Malenkovich N, Okazaki T, Byrne MC, Horton HF, Fouser L, Carter L, Ling V, Bowman MR, Carreno BM, Collins M, Wood CR, Honjo T (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192:1027–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fucikova J, Moserova I, Urbanova L, Bezu L, Kepp O, Cremer I, Salek C, Strnad P, Kroemer G, Galluzzi L (2015) Prognostic and predictive value of DAMPs and DAMP-associated processes in cancer. Front Immunol 6:402

    Article  PubMed  PubMed Central  Google Scholar 

  • Fucikova J, Spisek R, Kroemer G, Galluzzi L (2021) Calreticulin and cancer. Cell Res 31:5–16

    Article  CAS  PubMed  Google Scholar 

  • Gaitanis A, Staal S (2010) Liposomal doxorubicin and nab-paclitaxel: nanoparticle cancer chemotherapy in current clinical use. Cancer nanotechnology methods and protocols. Humana Press, pp 385–392

    Chapter  Google Scholar 

  • Galluzzi L, Buqué A, Kepp O, Zitvogel L, Kroemer G (2017) Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol 17:97–111

    Article  CAS  PubMed  Google Scholar 

  • Galon J, Bruni D (2019) Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov 18:197–218

    Article  CAS  PubMed  Google Scholar 

  • Garg AD, Agostinis P (2017) Cell death and immunity in cancer: from danger signals to mimicry of pathogen defense responses. Immunol Rev 280:126–148

    Article  CAS  PubMed  Google Scholar 

  • Garg AD, Nowis D, Golab J, Vandenabeele P, Krysko DV, Agostinis P (2010) Immunogenic cell death, DAMPs and anticancer therapeutics: an emerging amalgamation. Biochim Biophys Acta 1805:53–71

    CAS  PubMed  Google Scholar 

  • Garg AD, Dudek AM, Agostinis P (2013) Cancer immunogenicity, danger signals, and DAMPs: what, when, and how? BioFactors 39:355–367

    Article  CAS  PubMed  Google Scholar 

  • Garg AD, Dudek-Peric AM, Romano E, Agostinis P (2015) Immunogenic cell death. Int J Dev Biol 59:131–140

    Article  CAS  PubMed  Google Scholar 

  • Garg A, Romano E, Rufo N, Agostinis P (2016) Immunogenic versus tolerogenic phagocytosis during anticancer therapy: mechanisms and clinical translation. Cell Death Differ 23:938–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gebremeskel S, Johnston B (2015) Concepts and mechanisms underlying chemotherapy induced immunogenic cell death: impact on clinical studies and considerations for combined therapies. Oncotarget 6:41600

    Article  PubMed  PubMed Central  Google Scholar 

  • Gong H, Guo P, Zhai Y, Zhou J, Uppal H, Jarzynka MJ, Song W-C, Cheng S-Y, Xie W (2007) Estrogen deprivation and inhibition of breast cancer growth in vivo through activation of the orphan nuclear receptor liver X receptor. Mol Endocrinol 21:1781–1790

    Article  CAS  PubMed  Google Scholar 

  • Grant S, Easley C, Kirkpatrick P (2007) Vorinostat. Nat Rev Drug Discov 6:21–22

    Article  CAS  PubMed  Google Scholar 

  • Guan J, Wu Y, Liu X, Wang H, Ye N, Li Z, Xiao C, Zhang Z, Li Z, Yang X (2021) A novel prodrug and its nanoformulation suppress cancer stem cells by inducing immunogenic cell death and inhibiting indoleamine 2, 3-dioxygenase. Biomaterials 279:121180

    Article  CAS  PubMed  Google Scholar 

  • Gulla A, Morelli E, Samur MK, Botta C, Hideshima T, Bianchi G, Fulciniti M, Malvestiti S, Prabhala R, Talluri S (2020) Bortezomib induces anti-multiple myeloma immune response mediated by cgas/sting pathway activation, type I interferon secretion, and immunogenic cell death: clinical application. Blood 136:7–8

    Article  Google Scholar 

  • Guo D, Reinitz F, Youssef M, Hong C, Nathanson D, Akhavan D, Kuga D, Amzajerdi AN, Soto H, Zhu S (2011) An LXR agonist promotes glioblastoma cell death through inhibition of an EGFR/AKT/SREBP-1/LDLR–dependent pathway. Cancer Discov 1:442–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo J, Zou Y, Huang L (2023) Nano delivery of chemotherapeutic ICD inducers for tumor immunotherapy. Small Methods 7:2201307

    Article  CAS  Google Scholar 

  • Gupta B, Kim JO (2021) Recent progress in cancer immunotherapy approaches based on nanoparticle delivery devices. J Pharm Investig 51:399–412

    Article  Google Scholar 

  • Gupta G, Borglum K, Chen H (2021) Immunogenic cell death: a step ahead of autophagy in cancer therapy. J Cancer Immunol 3:47

    Google Scholar 

  • Han W, Li L, Qiu S, Lu Q, Pan Q, Gu Y, Luo J, Hu X (2007) Shikonin circumvents cancer drug resistance by induction of a necroptotic death. Mol Cancer Ther 6:1641–1649

    Article  CAS  PubMed  Google Scholar 

  • Harrington CF, Le Pla RC, Jones GD, Thomas AL, Farmer PB (2010) Determination of cisplatin 1, 2-intrastrand guanine− guanine dna adducts in human leukocytes by high-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry. Chem Res Toxicol 23:1313–1321

    Article  CAS  PubMed  Google Scholar 

  • Hashemzadeh N, Adibkia K, Barar J (2019) Indoleamine 2, 3-dioxygenase inhibitors in immunochemotherapy of breast cancer: challenges and opportunities. Bioimpacts 9:1–3

    Article  CAS  PubMed  Google Scholar 

  • He T, Wang L, Gou S, Lu L, Liu G, Wang K, Yang Y, Duan Q, Geng W, Zhao P, Luo Z, Cai K (2023) Enhanced immunogenic cell death and antigen presentation via engineered bifidobacterium bifidum to boost chemo-immunotherapy. ACS Nano 17:9953–9971

    Article  CAS  PubMed  Google Scholar 

  • Hecht SM (2000) Bleomycin: new perspectives on the mechanism of action. J Nat Prod 63:158–168

    Article  CAS  PubMed  Google Scholar 

  • Hernandez C, Huebener P, Schwabe RF (2016) Damage-associated molecular patterns in cancer: a double-edged sword. Oncogene 35:5931–5941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hipkens J, Struck R, Gurtoo H (1981) Role of aldehyde dehydrogenase in the metabolism-dependent biological activity of cyclophosphamide. Can Res 41:3571–3583

    CAS  Google Scholar 

  • Hodge JW, Garnett CT, Farsaci B, Palena C, Tsang KY, Ferrone S, Gameiro SR (2013) Chemotherapy-induced immunogenic modulation of tumor cells enhances killing by cytotoxic T lymphocytes and is distinct from immunogenic cell death. Int J Cancer 133:624–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG (2013) Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 13:714–726

    Article  CAS  PubMed  Google Scholar 

  • Hou J, Greten TF, Xia Q (2017) Immunosuppressive cell death in cancer. Nat Rev Immunol 17:401–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N, Sarkar S (2014) Drug resistance in cancer: an overview. Cancers 6:1769–1792

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu C, Lei T, Wang Y, Cao J, Yang X, Qin L, Liu R, Zhou Y, Tong F, Umeshappa CS, Gao H (2020) Phagocyte-membrane-coated and laser-responsive nanoparticles control primary and metastatic cancer by inducing anti-tumor immunity. Biomaterials 255:120159

    Article  CAS  PubMed  Google Scholar 

  • Huang F-Y, Lei J, Sun Y, Yan F, Chen B, Zhang L, Lu Z, Cao R, Lin Y-Y, Wang C-C (2018) Induction of enhanced immunogenic cell death through ultrasound-controlled release of doxorubicin by liposome-microbubble complexes. Oncoimmunology 7:e1446720

    Article  PubMed  PubMed Central  Google Scholar 

  • Inoue S, Setoyama Y, Odaka A (2014) Doxorubicin treatment induces tumor cell death followed by immunomodulation in a murine neuroblastoma model. Exp Ther Med 7:703–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jabr-Milane LS, Van Vlerken LE, Yadav S, Amiji MM (2008) Multi-functional nanocarriers to overcome tumor drug resistance. Cancer Treat Rev 34:592–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jawad B, Poudel L, Podgornik R, Steinmetz NF, Ching W-Y (2019) Molecular mechanism and binding free energy of doxorubicin intercalation in DNA. Phys Chem Chem Phys 21:3877–3893

    Article  CAS  PubMed  Google Scholar 

  • Jenkins RW, Barbie DA, Flaherty KT (2018) Mechanisms of resistance to immune checkpoint inhibitors. Br J Cancer 118:9–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin F, Qi J, Liu D, You Y, Shu G, Du Y, Wang J, Xu X, Ying X, Ji J, Du Y (2021) Cancer-cell-biomimetic upconversion nanoparticles combining chemo-photodynamic therapy and CD73 blockade for metastatic triple-negative breast cancer. J Control Release 337:90–104

    Article  CAS  PubMed  Google Scholar 

  • Johnson TS, Mcgaha T, Munn DH (2017) Chemo-immunotherapy: role of indoleamine 2, 3-dioxygenase in defining immunogenic versus tolerogenic cell death in the tumor microenvironment. Tumor Immune Microenviron Cancer Progression Cancer Therap 1036:91–104

    Article  CAS  Google Scholar 

  • Ju X, Huang P, Chen M, Wang Q (2017) Liver X receptors as potential targets for cancer therapeutics. Oncol Lett 14:7676–7680

    PubMed  PubMed Central  Google Scholar 

  • Jurgens B, Hainz U, Fuchs D, Felzmann T, Heitger A (2009) Interferon-gamma-triggered indoleamine 2,3-dioxygenase competence in human monocyte-derived dendritic cells induces regulatory activity in allogeneic T cells. Blood 114:3235–3243

    Article  PubMed  Google Scholar 

  • Kadam CY, Abhang SA (2016) Apoptosis markers in breast cancer therapy. Adv Clin Chem 74:143–193

    Article  CAS  PubMed  Google Scholar 

  • Kane LP, Andres PG, Howland KC, Abbas AK, Weiss A (2001) Akt provides the CD28 costimulatory signal for up-regulation of IL-2 and IFN-gamma but not TH2 cytokines. Nat Immunol 2:37–44

    Article  CAS  PubMed  Google Scholar 

  • Kang R, Zhang Q, Zeh Iii HJ, Lotze MT, Tang D (2013) HMGB1 in cancer: good, bad, or both? Clin Cancer Res 19:4046–4057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, Fan X-G, Yan Z (2014) HMGB1 in health and disease. Mol Aspects Med 40:1–116

    Article  CAS  PubMed  Google Scholar 

  • Kepp O, Menger L, Vacchelli E, Locher C, Adjemian S, Yamazaki T, Martins I, Sukkurwala AQ, Michaud M, Senovilla L (2013) Crosstalk between ER stress and immunogenic cell death. Cytokine Growth Factor Rev 24:311–318

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Kim SA, Han J, Kim IS (2021) Rho-kinase as a target for cancer therapy and its immunotherapeutic potential. Int J Mol Sci 22:12916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kroemer G, Galluzzi L, Kepp O, Zitvogel L (2013) Immunogenic cell death in cancer therapy. Annu Rev Immunol 31:51–72

    Article  CAS  PubMed  Google Scholar 

  • Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P (2012) Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer 12:860–875

    Article  CAS  PubMed  Google Scholar 

  • Krysko O, Løve Aaes T, Bachert C, Vandenabeele P, Krysko D (2013) Many faces of DAMPs in cancer therapy. Cell Death Dis 4:e631–e631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lan Y, Liang Q, Sun Y, Cao A, Liu L, Yu S, Zhou L, Liu J, Zhu R, Liu Y (2020) Codelivered chemotherapeutic doxorubicin via a dual-functional immunostimulatory polymeric prodrug for breast cancer immunochemotherapy. ACS Appl Mater Interfaces 12:31904–31921

    Article  CAS  PubMed  Google Scholar 

  • Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, Chernova I, Iwai Y, Long AJ, Brown JA, Nunes R, Greenfield EA, Bourque K, Boussiotis VA, Carter LL, Carreno BM, Malenkovich N, Nishimura H, Okazaki T, Honjo T, Sharpe AH, Freeman GJ (2001) PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2:261–268

    Article  CAS  PubMed  Google Scholar 

  • Lau TS, Chan LKY, Man GCW, Wong CH, Lee JHS, Yim SF, Cheung TH, Mcneish IA, Kwong J (2020) Paclitaxel induces immunogenic cell death in ovarian cancer via TLR4/IKK2/SNARE-dependent exocytosis. Cancer Immunol Res 8:1099–1111

    Article  CAS  PubMed  Google Scholar 

  • Le Naour J, Galluzzi L, Zitvogel L, Kroemer G, Vacchelli E (2020) Trial watch: IDO inhibitors in cancer therapy. Oncoimmunology 9:1777625

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee MS, Dees EC, Wang AZ (2017) Nanoparticle-delivered chemotherapy: old drugs in new packages. Oncology (williston Park) 31:198–208

    PubMed  Google Scholar 

  • Li C, Sun H, Wei W, Liu Q, Wang Y, Zhang Y, Lian F, Liu F, Li C, Ying K (2020a) Mitoxantrone triggers immunogenic prostate cancer cell death via p53-dependent PERK expression. Cell Oncol 43:1099–1116

    Article  CAS  Google Scholar 

  • Li J, Zhao M, Sun M, Wu S, Zhang H, Dai Y, Wang D (2020b) Multifunctional nanoparticles boost cancer immunotherapy based on modulating the immunosuppressive tumor microenvironment. ACS Appl Mater Interfaces 12:50734–50747

    Article  CAS  PubMed  Google Scholar 

  • Li T, Pan S, Gao S, Xiang W, Sun C, Cao W, Xu H (2020c) Diselenide-pemetrexed assemblies for combined cancer immuno-, radio-, and chemotherapies. Angew Chem Int Ed Engl 59:2700–2704

    Article  CAS  PubMed  Google Scholar 

  • Li J, Zhou S, Yu J, Cai W, Yang Y, Kuang X, Liu H, He Z, Wang Y (2021a) Low dose shikonin and anthracyclines coloaded liposomes induce robust immunogenetic cell death for synergistic chemo-immunotherapy. J Control Release 335:306–319

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Liu J, Fan H, Shi L, Deng Y, Zhao L, Xiang M, Xu Y, Jiang X, Wang G, Wang L, Wang Z (2021b) IDO-inhibitor potentiated immunogenic chemotherapy abolishes primary tumor growth and eradicates metastatic lesions by targeting distinct compartments within tumor microenvironment. Biomaterials 269:120388

    Article  CAS  PubMed  Google Scholar 

  • Li X, Zheng J, Chen S, Meng F-D, Ning J, Sun S-L (2021c) Oleandrin, a cardiac glycoside, induces immunogenic cell death via the PERK/elF2α/ATF4/CHOP pathway in breast cancer. Cell Death Dis 12:314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Liu X, Zhang X, Pan W, Li N, Tang B (2021d) Immunogenic cell death inducers for enhanced cancer immunotherapy. Chem Commun 57:12087–12097

    Article  CAS  Google Scholar 

  • Li Z, Lai X, Fu S, Ren L, Cai H, Zhang H, Gu Z, Ma X, Luo K (2022) Immunogenic cell death activates the tumor immune microenvironment to boost the immunotherapy efficiency. Adv Sci (weinh) 9:e2201734

    Article  PubMed  Google Scholar 

  • Li W, Jiang Y, Lu J (2023) Nanotechnology-enabled immunogenic cell death for improved cancer immunotherapy. Int J Pharm 634:122655

    Article  CAS  PubMed  Google Scholar 

  • Liang JL, Luo GF, Chen WH, Zhang XZ (2021) Recent advances in engineered materials for immunotherapy-involved combination cancer therapy. Adv Mater 33:e2007630

    Article  PubMed  Google Scholar 

  • Liu Y, Liang X, Yin X, Lv J, Tang K, Ma J, Ji T, Zhang H, Dong W, Jin X, Chen D, Li Y, Zhang S, Xie HQ, Zhao B, Zhao T, Lu J, Hu ZW, Cao X, Qin FX, Huang B (2017) Blockade of IDO-kynurenine-AhR metabolic circuitry abrogates IFN-gamma-induced immunologic dormancy of tumor-repopulating cells. Nat Commun 8:15207

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Liang X, Dong W, Fang Y, Lv J, Zhang T, Fiskesund R, Xie J, Liu J, Yin X, Jin X, Chen D, Tang K, Ma J, Zhang H, Yu J, Yan J, Liang H, Mo S, Cheng F, Zhou Y, Zhang H, Wang J, Li J, Chen Y, Cui B, Hu ZW, Cao X, Xiao-Feng Qin F, Huang B (2018) Tumor-repopulating cells induce PD-1 expression in CD8(+) T cells by transferring kynurenine and AhR activation. Cancer Cell 33(480–494):e487

    Google Scholar 

  • Liu R, An Y, Jia W, Wang Y, Wu Y, Zhen Y, Cao J, Gao H (2020) Macrophage-mimic shape changeable nanomedicine retained in tumor for multimodal therapy of breast cancer. J Control Release 321:589–601

    Article  CAS  PubMed  Google Scholar 

  • Lu YC, Weng WC, Lee H (2015) Functional roles of calreticulin in cancer biology. BioMed Res Int 2015:526524

    Article  PubMed  PubMed Central  Google Scholar 

  • Lundqvist A, Su S, Rao S, Childs R (2010) Cutting edge: bortezomib-treated tumors sensitized to NK cell apoptosis paradoxically acquire resistance to antigen-specific T cells. J Immunol 184:1139–1142

    Article  CAS  PubMed  Google Scholar 

  • Marinello J, Delcuratolo M, Capranico G (2018) Anthracyclines as topoisomerase II poisons: from early studies to new perspectives. Int J Mol Sci 19:3480

    Article  PubMed  PubMed Central  Google Scholar 

  • Melcher A, Todryk S, Hardwick N, Ford M, Jacobson M, Vile RG (1998) Tumor immunogenicity is determined by the mechanism of cell death via induction of heat shock protein expression. Nat Med 4:581–587

    Article  CAS  PubMed  Google Scholar 

  • Meng Q, Ding B, Ma PA, Lin J (2023) Interrelation between programmed cell death and immunogenic cell death: take antitumor nanodrug as an example. Small Methods 7:2201406

    Article  CAS  Google Scholar 

  • Menger L, Vacchelli E, Adjemian S, Martins I, Ma Y, Shen S, Yamazaki T, Sukkurwala AQ, Michaud M, Mignot G (2012) Cardiac glycosides exert anticancer effects by inducing immunogenic cell death. Sci Transl Med 4:143ra199

    Article  Google Scholar 

  • Mezrich JD, Fechner JH, Zhang X, Johnson BP, Burlingham WJ, Bradfield CA (2010) An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J Immunol 185:3190–3198

    Article  CAS  PubMed  Google Scholar 

  • Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P, Shen S, Kepp O, Scoazec M, Mignot G (2011) Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334:1573–1577

    Article  CAS  PubMed  Google Scholar 

  • Minute L, Teijeira A, Sanchez-Paulete AR, Ochoa MC, Alvarez M, Otano I, Etxeberrria I, Bolaños E, Azpilikueta A, Garasa S (2020) Cellular cytotoxicity is a form of immunogenic cell death. J Immunother Cancer 8:e000325

    Article  PubMed  PubMed Central  Google Scholar 

  • Moon Y, Shim MK, Choi J, Yang S, Kim J, Yun WS, Cho H, Park JY, Kim Y, Seong JK, Kim K (2022) Anti-PD-L1 peptide-conjugated prodrug nanoparticles for targeted cancer immunotherapy combining PD-L1 blockade with immunogenic cell death. Theranostics 12:1999–2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller AJ, Duhadaway JB, Donover PS, Sutanto-Ward E, Prendergast GC (2005) Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nat Med 11:312–319

    Article  CAS  PubMed  Google Scholar 

  • Munn DH, Mellor AL (2016) IDO in the tumor microenvironment: inflammation, counter-regulation, and tolerance. Trends Immunol 37:193–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nandi D, Tahiliani P, Kumar A, Chandu D (2006) The ubiquitin-proteasome system. J Biosci 31:137–155

    Article  CAS  PubMed  Google Scholar 

  • Ni F, Huang X, Chen Z, Qian W, Tong X (2018) Shikonin exerts antitumor activity in Burkitt’s lymphoma by inhibiting C-MYC and PI3K/AKT/mTOR pathway and acts synergistically with doxorubicin. Sci Rep 8:3317

    Article  PubMed  PubMed Central  Google Scholar 

  • Nishino M, Ramaiya NH, Hatabu H, Hodi FS (2017) Monitoring immune-checkpoint blockade: response evaluation and biomarker development. Nat Rev Clin Oncol 14:655–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini J-L, Castedo M, Mignot G, Panaretakis T, Casares N (2007) Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 13:54–61

    Article  CAS  PubMed  Google Scholar 

  • Orabona C, Puccetti P, Vacca C, Bicciato S, Luchini A, Fallarino F, Bianchi R, Velardi E, Perruccio K, Velardi A, Bronte V, Fioretti MC, Grohmann U (2006) Toward the identification of a tolerogenic signature in IDO-competent dendritic cells. Blood 107:2846–2854

    Article  CAS  PubMed  Google Scholar 

  • Pages F, Ragueneau M, Rottapel R, Truneh A, Nunes J, Imbert J, Olive D (1994) Binding of phosphatidylinositol-3-OH kinase to CD28 is required for T-cell signalling. Nature 369:327–329

    Article  CAS  PubMed  Google Scholar 

  • Palanivelu L, Liu C-H, Lin L-T (2023) Immunogenic cell death: the cornerstone of oncolytic viro-immunotherapy. Front Immunol 13:1038226

    Article  PubMed  PubMed Central  Google Scholar 

  • Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pazdur R, Kudelka AP, Kavanagh JJ, Cohen PR, Raber MN (1993) The taxoids: paclitaxel (Taxol®) and docetaxel (Taxotere®). Cancer Treat Rev 19:351–386

    Article  CAS  PubMed  Google Scholar 

  • Pernis AB, Ricker E, Weng CH, Rozo C, Yi W (2016) Rho kinases in autoimmune diseases. Annu Rev Med 67:355–374

    Article  CAS  PubMed  Google Scholar 

  • Petruccelli LA, Dupéré-Richer D, Pettersson F, Retrouvey H, Skoulikas S, Miller WH Jr (2011) Vorinostat induces reactive oxygen species and DNA damage in acute myeloid leukemia cells. PLoS ONE 6:e20987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petschauer JS, Madden AJ, Kirschbrown WP, Song G, Zamboni WC (2015) The effects of nanoparticle drug loading on the pharmacokinetics of anticancer agents. Nanomedicine 10:447–463

    Article  CAS  PubMed  Google Scholar 

  • Pitt JM, Kroemer G, Zitvogel L (2017) Immunogenic and non-immunogenic cell death in the tumor microenvironment. Tumor Immune Microenviron Cancer Progression Cancer Therap 1036:65–79

    Article  CAS  Google Scholar 

  • Pommier Y (2006) Topoisomerase I inhibitors: camptothecins and beyond. Nat Rev Cancer 6:789–802

    Article  CAS  PubMed  Google Scholar 

  • Pommier A, Alves G, Viennois E, Bernard S, Communal Y, Sion B, Marceau G, Damon C, Mouzat K, Caira F (2010) Liver X Receptor activation downregulates AKT survival signaling in lipid rafts and induces apoptosis of prostate cancer cells. Oncogene 29:2712–2723

    Article  CAS  PubMed  Google Scholar 

  • Qiu X, Qu Y, Guo B, Zheng H, Meng F, Zhong Z (2022) Micellar paclitaxel boosts ICD and chemo-immunotherapy of metastatic triple negative breast cancer. J Control Release 341:498–510

    Article  CAS  PubMed  Google Scholar 

  • Quintana FJ, Murugaiyan G, Farez MF, Mitsdoerffer M, Tukpah AM, Burns EJ, Weiner HL (2010) An endogenous aryl hydrocarbon receptor ligand acts on dendritic cells and T cells to suppress experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 107:20768–20773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radogna F, Diederich M (2018) Stress-induced cellular responses in immunogenic cell death: Implications for cancer immunotherapy. Biochem Pharmacol 153:12–23

    Article  CAS  PubMed  Google Scholar 

  • Raju GSR, Pavitra E, Varaprasad GL, Bandaru SS, Nagaraju GP, Farran B, Huh YS, Han Y-K (2022) Nanoparticles mediated tumor microenvironment modulation: current advances and applications. J Nanobiotechnol 20:274

    Article  Google Scholar 

  • Ramachandran C, Samy TA, Huang XL, Yuan ZK, Krishan A (1993) Doxorubicin-induced DNA breaks, topoisomerase II activity and gene expression in human melanoma cells. Biochem Pharmacol 45:1367–1371

    Article  CAS  PubMed  Google Scholar 

  • Rapoport BL, Anderson R (2019) Realizing the clinical potential of immunogenic cell death in cancer chemotherapy and radiotherapy. Int J Mol Sci 20:959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raza F, Zafar H, Khan MW, Ullah A, Khan AU, Baseer A, Fareed R, Sohail M (2022) Recent advances in the targeted delivery of paclitaxel nanomedicine for cancer therapy. Mater Adv 3:2268–2290

    Article  CAS  Google Scholar 

  • Richon VM, Garcia-Vargas J, Hardwick JS (2009) Development of vorinostat: current applications and future perspectives for cancer therapy. Cancer Lett 280:201–210

    Article  CAS  PubMed  Google Scholar 

  • Roberts DM, Gallapatthy G, Dunuwille A, Chan BS (2016) Pharmacological treatment of cardiac glycoside poisoning. Br J Clin Pharmacol 81:488–495

    Article  CAS  PubMed  Google Scholar 

  • Ross SH, Cantrell DA (2018) Signaling and Function of Interleukin-2 in T Lymphocytes. Annu Rev Immunol 36:411–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy A, Sarker S, Upadhyay P, Pal A, Adhikary A, Jana K, Ray M (2018) Methylglyoxal at metronomic doses sensitizes breast cancer cells to doxorubicin and cisplatin causing synergistic induction of programmed cell death and inhibition of stemness. Biochem Pharmacol 156:322–339

    Article  CAS  PubMed  Google Scholar 

  • Sahu BP, Baishya R, Hatiboruah JL, Laloo D, Biswas N (2022) A comprehensive review on different approaches for tumor targeting using nanocarriers and recent developments with special focus on multifunctional approaches. J Pharm Investig 52:539–585

    Article  Google Scholar 

  • Santofimia-Castano P, Iovanna J (2021) Combating pancreatic cancer chemoresistance by triggering multiple cell death pathways. Pancreatology 21:522–529

    Article  CAS  PubMed  Google Scholar 

  • Schatzmann H (1965) The role of Na+ and K+ in the ouabain-inhibition of the Na++ K+-activated membrane adenosine triphosphatase. Biochim Biophys Acta 94:89–96

    Article  CAS  PubMed  Google Scholar 

  • Schcolnik-Cabrera A, Oldak B, Juárez M, Cruz-Rivera M, Flisser A, Mendlovic F (2019) Calreticulin in phagocytosis and cancer: opposite roles in immune response outcomes. Apoptosis 24:245–255

    Article  CAS  PubMed  Google Scholar 

  • Schiavoni G, Sistigu A, Valentini M, Mattei F, Sestili P, Spadaro F, Sanchez M, Lorenzi S, D’urso MT, Belardelli F (2011) Cyclophosphamide synergizes with type I interferons through systemic dendritic cell reactivation and induction of immunogenic tumor apoptosis. Cancer Res 71:768–778

    Article  CAS  PubMed  Google Scholar 

  • Schulman IG (2017) Liver X receptors link lipid metabolism and inflammation. FEBS Lett 591:2978–2991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serrano-Del Valle A, Anel A, Naval J, Marzo I (2019) Immunogenic cell death and immunotherapy of multiple myeloma. Front Cell Dev Biol 7:50

    Article  PubMed  PubMed Central  Google Scholar 

  • Shao K, Singha S, Clemente-Casares X, Tsai S, Yang Y, Santamaria P (2015) Nanoparticle-based immunotherapy for cancer. ACS Nano 9:16–30

    Article  CAS  PubMed  Google Scholar 

  • Shin S, Lee J, Han J, Li F, Ling D, Park W (2022) Tumor microenvironment modulating functional nanoparticles for effective cancer treatments. Tissue Eng Regen Med 19:1–15

    Google Scholar 

  • Showalter A, Limaye A, Oyer JL, Igarashi R, Kittipatarin C, Copik AJ, Khaled AR (2017) Cytokines in immunogenic cell death: applications for cancer immunotherapy. Cytokine 97:123–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sirova M, Kabesova M, Kovar L, Etrych T, Strohalm J, Ulbrich K, Rihova B (2013) HPMA copolymer-bound doxorubicin induces immunogenic tumor cell death. Curr Med Chem 20:4815–4826

    Article  CAS  PubMed  Google Scholar 

  • Solari JIG, Filippi-Chiela E, Pilar ES, Nunes V, Gonzalez EA, Figueiro F, Andrade CF, Klamt F (2020) Damage-associated molecular patterns (DAMPs) related to immunogenic cell death are differentially triggered by clinically relevant chemotherapeutics in lung adenocarcinoma cells. BMC Cancer 20:474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song S, Shim MK, Yang S, Lee J, Yun WS, Cho H, Moon Y, Min JY, Han EH, Yoon HY, Kim K (2023) All-in-one glycol chitosan nanoparticles for co-delivery of doxorubicin and anti-PD-L1 peptide in cancer immunotherapy. Bioact Mater 28:358–375

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sonnemann J, Greßmann S, Becker S, Wittig S, Schmudde M, Beck JF (2010) The histone deacetylase inhibitor vorinostat induces calreticulin exposure in childhood brain tumour cells in vitro. Cancer Chemother Pharmacol 66:611–616

    Article  CAS  PubMed  Google Scholar 

  • Spranger S, Spaapen RM, Zha Y, Williams J, Meng Y, Ha TT, Gajewski TF (2013) Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci Transl Med 5:200ra116

    Article  PubMed  PubMed Central  Google Scholar 

  • Sprooten J, Laureano RS, Vanmeerbeek I, Govaerts J, Naulaerts S, Borras DM, Kinget L, Fucíková J, Špíšek R, Jelínková LP (2023) Trial watch: chemotherapy-induced immunogenic cell death in oncology. Oncoimmunology 12:2219591

    Article  PubMed  PubMed Central  Google Scholar 

  • Stubbe J, Kozarich JW (1987) Mechanisms of bleomycin-induced DNA degradation. Chem Rev 87:1107–1136

    Article  CAS  Google Scholar 

  • Su Y-L, Hu S-H (2018) Functional nanoparticles for tumor penetration of therapeutics. Pharmaceutics 10:193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun B, Hyun H, Li L-T, Wang AZ (2020) Harnessing nanomedicine to overcome the immunosuppressive tumor microenvironment. Acta Pharmacol Sin 41:970–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun D, Zhang J, Wang L, Yu Z, Odriscoll CM, Guo J (2021) Nanodelivery of immunogenic cell death-inducers for cancer immunotherapy. Drug Discov Today 26:651–662

    Article  CAS  PubMed  Google Scholar 

  • Syukri A, Hatta M, Amir M, Rohman MS, Mappangara I, Kaelan C, Wahyuni S, Bukhari A, Junita AR, Primaguna MR (2022) Doxorubicin induced immune abnormalities and inflammatory responses via HMGB1, HIF1-α and VEGF pathway in progressive of cardiovascular damage. Ann Med Surg 76:103501

    Article  Google Scholar 

  • Tang D, Kepp O, Kroemer G (2021) Ferroptosis becomes immunogenic: implications for anticancer treatments. OncoImmunology 10:1862949

    Article  Google Scholar 

  • Taruno A (2018) ATP release channels. Int J Mol Sci 19:808

    Article  PubMed  PubMed Central  Google Scholar 

  • Thierry B (2009) Drug nanocarriers and functional nanoparticles: applications in cancer therapy. Curr Drug Deliv 6:391–403

    Article  CAS  PubMed  Google Scholar 

  • Timm R, Kaiser R, Lötsch J, Heider U, Sezer O, Weisz K, Montemurro M, Roots I, Cascorbi I (2005) Association of cyclophosphamide pharmacokinetics to polymorphic cytochrome P450 2C19. Pharmacogenomics J 5:365–373

    Article  CAS  PubMed  Google Scholar 

  • Topalian Suzanne L, Drake Charles G, Pardoll Drew M (2015) Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27:450–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torchilin V (2011) Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev 63:131–135

    Article  CAS  PubMed  Google Scholar 

  • Trauzold A, Schmiedel S, Roder C, Tams C, Christgen M, Oestern S, Arlt A, Westphal S, Kapischke M, Ungefroren H, Kalthoff H (2003) Multiple and synergistic deregulations of apoptosis-controlling genes in pancreatic carcinoma cells. Br J Cancer 89:1714–1721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Twentyman PR (1983) Bleomycin—mode of action with particular reference to the cell cycle. Pharmacol Ther 23:417–441

    Article  CAS  PubMed  Google Scholar 

  • Uno S, Endo K, Jeong Y, Kawana K, Miyachi H, Hashimoto Y, Makishima M (2009) Suppression of β-catenin signaling by liver X receptor ligands. Biochem Pharmacol 77:186–195

    Article  CAS  PubMed  Google Scholar 

  • Uyttenhove C, Pilotte L, Theate I, Stroobant V, Colau D, Parmentier N, Boon T, Van Den Eynde BJ (2003) Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med 9:1269–1274

    Article  CAS  PubMed  Google Scholar 

  • Vacchelli E, Aranda F, Eggermont A, Galon J, Sautès-Fridman C, Cremer I, Zitvogel L, Kroemer G, Galluzzi L (2014) Trial Watch. OncoImmunology 3:e27878

    Article  PubMed  PubMed Central  Google Scholar 

  • Vakkila J, Lotze MT (2004) Inflammation and necrosis promote tumour growth. Nat Rev Immunol 4:641–648

    Article  CAS  PubMed  Google Scholar 

  • Van Egmond M, Vidarsson G, Bakema JE (2015) Cross-talk between pathogen recognizing Toll-like receptors and immunoglobulin Fc receptors in immunity. Immunol Rev 268:311–327

    Article  PubMed  Google Scholar 

  • Van Schaik TA, Chen K-S, Shah K (2021) Therapy-induced tumor cell death: friend or foe of immunotherapy? Front Oncol 11:678562

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanmeerbeek I, Sprooten J, De Ruysscher D, Tejpar S, Vandenberghe P, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L (2020) Trial watch: chemotherapy-induced immunogenic cell death in immuno-oncology. Oncoimmunology 9:1703449

    Article  PubMed  PubMed Central  Google Scholar 

  • Verma NK, Wong BHS, Poh ZS, Udayakumar A, Verma R, Goh RKJ, Duggan SP, Shelat VG, Chandy KG, Grigoropoulos NF (2022) Obstacles for T-lymphocytes in the tumour microenvironment: Therapeutic challenges, advances and opportunities beyond immune checkpoint. EBioMedicine 83:104216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vitiello GA, Miller G (2020) Targeting the interleukin-17 immune axis for cancer immunotherapy. J Exp Med. https://doi.org/10.1084/jem.20190456

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Ju X, Wang J, Fan Y, Ren M, Zhang H (2018a) Immunogenic cell death in anticancer chemotherapy and its impact on clinical studies. Cancer Lett 438:17–23

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Ren M, Feng F, Chen K, Ju X (2018b) Treatment of colon cancer with liver X receptor agonists induces immunogenic cell death. Mol Carcinog 57:903–910

    Article  CAS  PubMed  Google Scholar 

  • Wang Y-J, Fletcher R, Yu J, Zhang L (2018c) Immunogenic effects of chemotherapy-induced tumor cell death. Genes & Diseases 5:194–203

    Article  CAS  Google Scholar 

  • Wang Z, Li W, Park J, Gonzalez KM, Scott AJ, Lu J (2022) Camptothesome elicits immunogenic cell death to boost colorectal cancer immune checkpoint blockade. J Control Release 349:929–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wassermann K, Markovits J, Jaxel C, Capranico G, Kohn KW, Pommier Y (1990) Effects of morpholinyl doxorubicins, doxorubicin, and actinomycin D on mammalian DNA topoisomerases I and II. Mol Pharmacol 38:38–45

    CAS  PubMed  Google Scholar 

  • Wei SC, Duffy CR, Allison JP (2018) Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov 8:1069–1086

    Article  PubMed  Google Scholar 

  • West AC, Mattarollo SR, Shortt J, Cluse LA, Christiansen AJ, Smyth MJ, Johnstone RW (2013) An intact immune system is required for the anticancer activities of histone deacetylase inhibitors. Can Res 73:7265–7276

    Article  CAS  Google Scholar 

  • Wong HL, Bendayan R, Rauth AM, Li Y, Wu XY (2007) Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv Drug Deliv Rev 59:491–504

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Tang C, Yin C (2017) Co-delivery of doxorubicin and interleukin-2 via chitosan based nanoparticles for enhanced antitumor efficacy. Acta Biomater 47:81–90

    Article  CAS  PubMed  Google Scholar 

  • Wu D, Fan Y, Yan H, Li D, Zhao Z, Chen X, Yang X, Liu X (2021) Oxidation-sensitive polymeric nanocarrier-mediated cascade PDT chemotherapy for synergistic cancer therapy and potentiated checkpoint blockade immunotherapy. Chem Eng J 404:126481

    Article  CAS  Google Scholar 

  • Xiao Y, Yao W, Lin M, Huang W, Li B, Peng B, Ma Q, Zhou X, Liang M (2022) Icaritin-loaded PLGA nanoparticles activate immunogenic cell death and facilitate tumor recruitment in mice with gastric cancer. Drug Delivery 29:1712–1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing L, Gong JH, Wang Y, Zhu Y, Huang ZJ, Zhao J, Li F, Wang JH, Wen H, Jiang HL (2019) Hypoxia alleviation-triggered enhanced photodynamic therapy in combination with IDO inhibitor for preferable cancer therapy. Biomaterials 206:170–182

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Yu Y, Sun Y, Kong L, Yang C, Hu M, Yang T, Zhang J, Hu Q, Zhang Z (2019) Transformable nanoparticle-enabled synergistic elicitation and promotion of immunogenic cell death for triple-negative breast cancer immunotherapy. Adv Func Mater 29:1905213

    Article  CAS  Google Scholar 

  • Yan Y, Yu J, Gao Y, Kumar G, Guo M, Zhao Y, Fang Q, Zhang H, Yu J, Jiang Y, Zhang HT, Ma CG (2019) Therapeutic potentials of the Rho kinase inhibitor Fasudil in experimental autoimmune encephalomyelitis and the related mechanisms. Metab Brain Dis 34:377–384

    Article  CAS  PubMed  Google Scholar 

  • Yan W, Lang T, Qi X, Li Y (2020) Engineering immunogenic cell death with nanosized drug delivery systems improving cancer immunotherapy. Curr Opin Biotechnol 66:36–43

    Article  CAS  PubMed  Google Scholar 

  • Yang NS, Lin TJ (2016) Molecular basis of shikonin-induced immunogenic cell death: insights for developing cancer therapeutics. Receptors Clin Investig. https://doi.org/10.14800/rci.1234

    Article  Google Scholar 

  • Yang H, Wang H, Czura CJ, Tracey KJ (2005) The cytokine activity of HMGB1. J Leukoc Biol 78:1–8

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Zhou P, Huang H, Chen D, Ma N, Cui QC, Shen S, Dong W, Zhang X, Lian W (2009) Shikonin exerts antitumor activity via proteasome inhibition and cell death induction in vitro and in vivo. Int J Cancer 124:2450–2459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Ma Y, Chen G, Zhou H, Yamazaki T, Klein C, Pietrocola F, Vacchelli E, Souquere S, Sauvat A (2016) Contribution of RIP3 and MLKL to immunogenic cell death signaling in cancer chemotherapy. Oncoimmunology 5:e1149673

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang W, Zhu G, Wang S, Yu G, Yang Z, Lin L, Zhou Z, Liu Y, Dai Y, Zhang F, Shen Z, Liu Y, He Z, Lau J, Niu G, Kiesewetter DO, Hu S, Chen X (2019) In situ dendritic cell vaccine for effective cancer immunotherapy. ACS Nano 13:3083–3094

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Shim MK, Kim WJ, Choi J, Nam GH, Kim J, Kim J, Moon Y, Kim HY, Park J, Park Y, Kim IS, Ryu JH, Kim K (2021a) Cancer-activated doxorubicin prodrug nanoparticles induce preferential immune response with minimal doxorubicin-related toxicity. Biomaterials 272:120791

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Sun I-C, Hwang HS, Shim MK, Yoon HY, Kim K (2021b) Rediscovery of nanoparticle-based therapeutics: boosting immunogenic cell death for potential application in cancer immunotherapy. J Mater Chem B 9:3983–4001

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Chen F, Xu N, Yao Q, Wang R, Xie X, Zhang F, He Y, Shao D, Dong WF, Fan J, Sun W, Peng X (2022) Red-light-triggered self-destructive mesoporous silica nanoparticles for cascade-amplifying chemo-photodynamic therapy favoring antitumor immune responses. Biomaterials 281:121368

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Teves SS, Kemp CJ, Henikoff S (2014) Doxorubicin, DNA torsion, and chromatin dynamics. Biochim Biophys Acta 1845:84–89

    CAS  PubMed  Google Scholar 

  • Yee PP, Li W (2021) Tumor necrosis: a synergistic consequence of metabolic stress and inflammation. BioEssays 43:2100029

    Article  CAS  Google Scholar 

  • Yin S-Y, Efferth T, Jian F-Y, Chen Y-H, Liu C-I, Wang AH, Chen Y-R, Hsiao P-W, Yang N-S (2016) Immunogenicity of mammary tumor cells can be induced by shikonin via direct binding-interference with hnRNPA1. Oncotarget 7:43629

    Article  PubMed  PubMed Central  Google Scholar 

  • Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, Hashimoto-Tane A, Azuma M, Saito T (2012) Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med 209:1201–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu W, He X, Yang Z, Yang X, Xiao W, Liu R, Xie R, Qin L, Gao H (2019) Sequentially responsive biomimetic nanoparticles with optimal size in combination with checkpoint blockade for cascade synergetic treatment of breast cancer and lung metastasis. Biomaterials 217:119309

    Article  CAS  PubMed  Google Scholar 

  • Yu Z, Guo J, Hu M, Gao Y, Huang L (2020) Icaritin exacerbates mitophagy and synergizes with doxorubicin to induce immunogenic cell death in hepatocellular carcinoma. ACS Nano 14:4816–4828

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Wu S, Zhang L, Xu S, Dai C, Gan S, Xie G, Feng G, Tang BZ (2022) Cationization to boost both type I and type II ROS generation for photodynamic therapy. Biomaterials 280:121255

    Article  CAS  PubMed  Google Scholar 

  • Yue Y-X, Zhang Z, Wang Z-H, Ma R, Chen M-M, Ding F, Li H-B, Li J-J, Shi L, Liu Y (2022) Promoting tumor accumulation of anticancer drugs by hierarchical carrying of exogenous and endogenous vehicles. Small Structures 3:2200067

    Article  CAS  Google Scholar 

  • Zang X, Song J, Yi X, Piyu J (2022) Polymeric indoximod based prodrug nanoparticles with doxorubicin entrapment for inducing immunogenic cell death and improving the immunotherapy of breast cancer. J Mater Chem B 10:2019–2027

    Article  CAS  PubMed  Google Scholar 

  • Zhai Q, Chen Y, Xu J, Huang Y, Sun J, Liu Y, Zhang X, Li S, Tang S (2017) Lymphoma immunochemotherapy: targeted delivery of doxorubicin via a dual functional nanocarrier. Mol Pharm 14:3888–3895

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Shen L, Li X, Song W, Liu Y, Huang L (2019) Nanoformulated codelivery of quercetin and alantolactone promotes an antitumor response through synergistic immunogenic cell death for microsatellite-stable colorectal cancer. ACS Nano 13:12511–12524

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Liu H, Gong M, Yang M, Yang Z, Xie Y, Cai L (2021a) Biomimetic gold nanocages for overcoming chemoresistance of osteosarcoma by ferroptosis and immunogenic cell death. Mater Des 210:110087

    Article  CAS  Google Scholar 

  • Zhang C, Song J, Lou L, Qi X, Zhao L, Fan B, Sun G, Lv Z, Fan Z, Jiao B (2021b) Doxorubicin-loaded nanoparticle coated with endothelial cells-derived exosomes for immunogenic chemotherapy of glioblastoma. Bioeng Transl Med 6:e10203

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Jia H, Liu Z, Guo J, Li Y, Li R, Zhu G, Li J, Li M, Li X, Wang S, Dang C, Zhao T (2021c) D-MT prompts the anti-tumor effect of oxaliplatin by inhibiting IDO expression in a mouse model of colon cancer. Int Immunopharmacol 101:108203

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Yang K, Zhao R, Ji T, Wang X, Yang X, Zhang Y, Cheng K, Liu S, Hao J (2016) Inducing enhanced immunogenic cell death with nanocarrier-based drug delivery systems for pancreatic cancer therapy. Biomaterials 102:187–197

    Article  CAS  PubMed  Google Scholar 

  • Zhao S, Tang Y, Wang R, Najafi M (2022) Mechanisms of cancer cell death induction by paclitaxel: an updated review. Apoptosis 27:647–667

    Article  CAS  PubMed  Google Scholar 

  • Zheng C, Zheng L, Yoo JK, Guo H, Zhang Y, Guo X, Kang B, Hu R, Huang JY, Zhang Q, Liu Z, Dong M, Hu X, Ouyang W, Peng J, Zhang Z (2017) Landscape of infiltrating t cells in liver cancer revealed by single-cell sequencing. Cell 169:1342–1356

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Liu L, Shi Z, Du G, Chen J (2009) ATP in current biotechnology: regulation, applications and perspectives. Biotechnol Adv 27:94–101

    Article  PubMed  Google Scholar 

  • Zhu Q, Sun F, Li T, Zhou M, Ye J, Ji A, Wang H, Ding C, Chen H, Xu Z, Yu H (2021) Engineering oxaliplatin prodrug nanoparticles for second near-infrared fluorescence imaging-guided immunotherapy of colorectal cancer. Small 17:e2007882

    Article  PubMed  Google Scholar 

  • Zitvogel L, Kroemer G (2021) Bortezomib induces immunogenic cell death in multiple myeloma. Blood Cancer Discovery 2:405–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from the National Research Foundation (NRF) of Korea funded by the Ministry of Science (NRF-2022M3H4A1Ă7401).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seong Ik Jeon or Kwangmeyung Kim.

Ethics declarations

Conflict of interest

N. Shim, H. Cho, S. I. Jeon, and K. Kim declares that they have no conflict of interest.

Statement of human and animal rights

This article does not contain any studies with human and animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shim, N., Cho, H., Jeon, S.I. et al. Recent developments in chemodrug-loaded nanomedicines and their application in combination cancer immunotherapy. J. Pharm. Investig. 54, 13–36 (2024). https://doi.org/10.1007/s40005-023-00646-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-023-00646-7

Keywords

Navigation