Skip to main content

Advertisement

Log in

Recent advances in Alzheimer’s disease pathogenesis and therapeutics from an immune perspective

  • Review
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Background

The prevalence of Alzheimer’s disease, the most common type of dementia, is continuously increasing. Many recent reports have indicated that immune-related mechanisms play a vital role in Alzheimer’s disease pathogenesis, such that the imbalance between the immune response and central nervous system leads to neuroinflammation.

Area covered

The inflammatory response in Alzheimer’s disease is a “double-edged sword”. Neuroinflammation protects neuronal cells in the initial stages of Alzheimer’s disease, while sustained inflammation promotes neurodegeneration. Alterations in the peripheral immune system, such as increased inflammation, lead to the activation of the central immune response, which in turn causes neuroinflammation and neuronal damage. Additionally, an imbalance between pro- and anti-inflammatory cytokines, which are secreted by the central and peripheral immune systems, induces complex immune responses and contributes to Alzheimer’s disease pathogenesis. In this review, we aimed to summarize our current knowledge of the role of the immune system in Alzheimer’s disease pathology. We performed an in-depth investigation on the contribution of each immune system component to Alzheimer’s disease progression at different disease stages. More importantly, we discuss novel immune-related therapeutic strategies for Alzheimer’s disease treatment currently being investigated via clinical trials.

Expert opinion

The scrutinized observations of immune responses in different brain regions at various stages of Alzheimer’s disease might help identify potential treatment strategies for Alzheimer’s disease. The modulation of immune components in the brain by targeting cytokines and other factors, which compromise immune response and neuroinflammation, is recommended as a promising alternative for Alzheimer’s disease treatment. Clinical trials are currently investigating the efficacies of numerous vaccines and monoclonal antibodies targeting amyloid beta peptide and tau protein for Alzheimer’s disease treatment. Moreover, aducanumab and lecanemab were approved by the Food and Drug Administration as monoclonal antibody-based drugs for Alzheimer’s disease treatment in 2021 and 2023, respectively. However, these drugs are effective only against mild symptoms due to the irreversible neuronal damage found in patients with Alzheimer’s disease progression. In addition, side effects including amyloid-related imaging abnormalities (such as vasogenic edema, microhemorrhages, and hemosiderosis) were reported in patients undergoing Alzheimer’s disease treatment using monoclonal antibodies. Thus, the future development of therapeutic agents for Alzheimer’s disease requires more sophisticated and multi-plunged approaches considering various biomarkers and immune landscapes characterizing the different stages of Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albert M, Mairet-Coello G, Danis C, Lieger S, Caillierez R et al (2019) Prevention of tau seeding and propagation by immunotherapy with a central tau epitope antibody. Brain 142:1736–1750

    Article  PubMed  PubMed Central  Google Scholar 

  • Alvarez XA, Franco A, Fernández-Novoa L, Cacabelos R (1996) Blood levels of histamine, IL-1 beta, and TNF-alpha in patients with mild to moderate Alzheimer disease. Mol Chem Neuropathol 29:237–252

    Article  CAS  PubMed  Google Scholar 

  • Andersson CR, Falsig J, Stavenhagen JB, Christensen S, Kartberg F et al (2019) Antibody-mediated clearance of tau in primary mouse microglial cultures requires Fcγ-receptor binding and functional lysosomes. Sci Rep 9:4658

    Article  PubMed  PubMed Central  Google Scholar 

  • Avila J, Pérez M, Lim F, Gómez-Ramos A, Hernández F et al (2004) Tau in neurodegenerative diseases: tau phosphorylation and assembly. Neurotox Res 6:477–482

    Article  CAS  PubMed  Google Scholar 

  • Banks WA, Terrell B, Farr SA, Robinson SM, Nonaka N et al (2002) Passage of amyloid beta protein antibody across the blood-brain barrier in a mouse model of Alzheimer’s disease. Peptides 23:2223–2226

    Article  CAS  PubMed  Google Scholar 

  • Bell BJ, Malvankar MM, Tallon C, Slusher BS (2020) Sowing the seeds of discovery: tau-propagation models of Alzheimer’s disease. ACS Chem Neurosci 11:3499–3509

    Article  CAS  PubMed  Google Scholar 

  • Bettcher BM, Tansey MG, Dorothée G, Heneka MT (2021) Peripheral and central immune system crosstalk in Alzheimer disease—a research prospectus. Nat Rev Neurol 17:689–701

    Article  PubMed  PubMed Central  Google Scholar 

  • Bharadwaj PR, Dubey AK, Masters CL, Martins RN, Macreadie IG (2009) Abeta aggregation and possible implications in Alzheimer’s disease pathogenesis. J Cell Mol Med 13:412–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bitan G, Kirkitadze MD, Lomakin A, Vollers SS, Benedek GB et al (2003) Amyloid beta-protein (abeta) assembly: Abeta 40 and Abeta 42 oligomerize through distinct pathways. Proc Natl Acad Sci USA 100:330–335

    Article  CAS  PubMed  Google Scholar 

  • Black MM, Slaughter T, Moshiach S, Obrocka M, Fischer I (1996) Tau is enriched on dynamic microtubules in the distal region of growing axons. J Neurosci 16:3601–3619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouvier DS, Jones EV, Quesseveur G, Davoli MA, Ferreira A T et al (2016) High resolution dissection of reactive glial nets in Alzheimer’s Disease. Sci Rep 6:24544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradshaw EM, Chibnik LB, Keenan BT, Ottoboni L, Raj T et al (2013) CD33 Alzheimer’s disease locus: altered monocyte function and amyloid biology. Nat Neurosci 16:848–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brigas HC, Ribeiro M, Coelho JE, Gomes R, Gomez-Murcia V et al (2021) IL-17 triggers the onset of cognitive and synaptic deficits in early stages of Alzheimer’s disease. Cell Rep 36:109574

    Article  CAS  PubMed  Google Scholar 

  • Browne TC, Mcquillan K, Mcmanus RM, O’reilly JA, Mills KH et al (2013) IFN-γ production by amyloid β-specific Th1 cells promotes microglial activation and increases plaque burden in a mouse model of Alzheimer’s disease. J Immunol 190:2241–2251

    Article  CAS  PubMed  Google Scholar 

  • Busche MA, Hyman BT (2020) Synergy between amyloid-β and tau in Alzheimer’s disease. Nat Neurosci 23:1183–1193

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarty P, Jansen-West K, Beccard A, Ceballos-Diaz C, Levites Y et al (2010) Massive gliosis induced by interleukin-6 suppresses Abeta deposition in vivo: evidence against inflammation as a driving force for amyloid deposition. Faseb J 24:548–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chauhan P, Sheng WS, Hu S, Prasad S, Lokensgard JR (2021) Differential cytokine-induced responses of polarized Microglia. Brain Sci 11:1482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen JM, Jiang GX, Li QW, Zhou ZM, Cheng Q (2014) Increased serum levels of Interleukin-18, -23 and -17 in chinese patients with Alzheimer’s disease. Dement Geriatr Cogn Disord 38:321–329

    Article  CAS  PubMed  Google Scholar 

  • Chen GF, Xu TH, Yan Y, Zhou YR, Jiang Y et al (2017) Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol Sin 38:1205–1235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen SH, Tian DY, Shen YY, Cheng Y, Fan DY et al (2020) Amyloid-beta uptake by blood monocytes is reduced with ageing and Alzheimer’s disease. Transl Psychiatry 10:423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chun H, Lee CJ (2018) Reactive astrocytes in Alzheimer’s disease: a double-edged sword. Neurosci Res 126:44–52

    Article  CAS  PubMed  Google Scholar 

  • Culjak M, Perkovic MN, Uzun S, Strac DS, Erjavec GN et al (2020) The association between TNF-alpha, IL-1 alpha and IL-10 with Alzheimer’s disease. Curr Alzheimer Res 17:972–984

    Article  CAS  PubMed  Google Scholar 

  • Dionisio-Santos DA, Olschowka JA, O’banion MK (2019) Exploiting microglial and peripheral immune cell crosstalk to treat Alzheimer’s disease. J Neuroinflamm 16:74

    Article  Google Scholar 

  • Du Y, Dodel R, Hampel H, Buerger K, Lin S et al (2001) Reduced levels of amyloid beta-peptide antibody in Alzheimer disease. Neurology 57:801–805

    Article  CAS  PubMed  Google Scholar 

  • Dursun E, Gezen-Ak D, Hanağası H, Bilgiç B, Lohmann E et al (2015) The interleukin 1 alpha, interleukin 1 beta, interleukin 6 and alpha-2-macroglobulin serum levels in patients with early or late onset Alzheimer’s disease, mild cognitive impairment or Parkinson’s disease. J Neuroimmunol 283:50–57

    Article  CAS  PubMed  Google Scholar 

  • Falcon B, Cavallini A, Angers R, Glover S, Murray TK et al (2015) Conformation determines the seeding potencies of native and recombinant tau aggregates. J Biol Chem 290:1049–1065

    Article  CAS  PubMed  Google Scholar 

  • Fan Z, Brooks DJ, Okello A, Edison P (2017) An early and late peak in microglial activation in Alzheimer’s disease trajectory. Brain 140:792–803

    PubMed  PubMed Central  Google Scholar 

  • Fiala M, Liu PT, Espinosa-Jeffrey A, Rosenthal MJ, Bernard G et al (2007) Innate immunity and transcription of MGAT-III and toll-like receptors in Alzheimer’s disease patients are improved by bisdemethoxycurcumin. Proc Natl Acad Sci USA 104:12849–12854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filippi M, Cecchetti G, Spinelli EG, Vezzulli P, Falini A et al (2022) Amyloid-related imaging abnormalities and β-Amyloid-targeting antibodies: a systematic review. JAMA Neurol 79:291–304

    Article  PubMed  Google Scholar 

  • Forlenza OV, Diniz BS, Talib LL, Mendonça VA, Ojopi EB et al (2009) Increased serum IL-1beta level in Alzheimer’s disease and mild cognitive impairment. Dement Geriatr Cogn Disord 28:507–512

    Article  CAS  PubMed  Google Scholar 

  • Fu H, Liu B, Li L, Lemere CA (2020) Microglia do not take up soluble amyloid-beta peptides, but partially degrade them by secreting insulin-degrading enzyme. Neuroscience 443:30–43

    Article  CAS  PubMed  Google Scholar 

  • Gamba P, Staurenghi E, Testa G, Giannelli S, Sottero B et al (2019) A crosstalk between brain cholesterol oxidation and glucose metabolism in Alzheimer’s disease. Front NeuroSci 13:556

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaskin F, Finley J, Fang Q, Xu S, Fu SM (1993) Human antibodies reactive with beta-amyloid protein in Alzheimer’s disease. J Exp Med 177:1181–1186

    Article  CAS  PubMed  Google Scholar 

  • Gate D, Saligrama N, Leventhal O, Yang AC, Unger MS et al (2020) Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer’s disease. Nature 577:399–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gendron TF, Petrucelli L (2009) The role of tau in neurodegeneration. Mol Neurodegener 4:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghosh S, Wu MD, Shaftel SS, Kyrkanides S, Laferla FM et al (2013) Sustained interleukin-1β overexpression exacerbates Tau pathology despite reduced amyloid burden in an Alzheimer’s mouse model. J Neurosci 33:5053–5064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu C, Wu L, Li X (2013) IL-17 family: cytokines, receptors and signaling. Cytokine 64:477–485

    Article  CAS  PubMed  Google Scholar 

  • Guan R, Wen X, Liang Y, Xu D, He B et al (2019) Trends in Alzheimer’s disease research based upon machine learning analysis of PubMed abstracts. Int J Biol Sci 15:2065–2074

    Article  PubMed  PubMed Central  Google Scholar 

  • Hampel H, Haslinger A, Scheloske M, Padberg F, Fischer P et al (2005) Pattern of interleukin-6 receptor complex immunoreactivity between cortical regions of rapid autopsy normal and Alzheimer’s disease brain. Eur Arch Psychiatry Clin Neurosci 255:269–278

    Article  PubMed  Google Scholar 

  • Hennessy E, Gormley S, Lopez-Rodriguez AB, Murray C, Murray C et al (2017) Systemic TNF-α produces acute cognitive dysfunction and exaggerated sickness behavior when superimposed upon progressive neurodegeneration. Brain Behav Immun 59:233–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hickman DT, López-Deber MP, Ndao DM, Silva AB, Nand D et al (2011) Sequence-independent control of peptide conformation in liposomal vaccines for targeting protein misfolding diseases. J Biol Chem 286:13966–13976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honke N, Lowin T, Opgenoorth B, Shaabani N, Lautwein A et al (2022) Endogenously produced catecholamines improve the regulatory function of TLR9-activated B cells. PLoS Biol 20:e3001513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou Z, Chen D, Ryder BD, Joachimiak LA (2021) Biophysical properties of a tau seed. Sci Rep 11:13602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang LT, Zhang CP, Wang YB, Wang JH (2022) Association of peripheral blood cell profile with Alzheimer’s disease: a meta-analysis. Front Aging Neurosci 14:888946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Italiani P, Puxeddu I, Napoletano S, Scala E, Melillo D et al (2018) Circulating levels of IL-1 family cytokines and receptors in Alzheimer’s disease: new markers of disease progression? J Neuroinflamm 15:342

    Article  CAS  Google Scholar 

  • Janelidze S, Mattsson N, Stomrud E, Lindberg O, Palmqvist S et al (2018) CSF biomarkers of neuroinflammation and cerebrovascular dysfunction in early Alzheimer disease. Neurology 91:e867–e877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janelidze S, Palmqvist S, Leuzy A, Stomrud E, Verberk IMW et al (2022) Detecting amyloid positivity in early Alzheimer’s disease using combinations of plasma Aβ42/Aβ40 and p-tau. Alzheimers Dement 18:283–293

    Article  CAS  PubMed  Google Scholar 

  • Janelsins MC, Mastrangelo MA, Park KM, Sudol KL, Narrow WC et al (2008) Chronic neuron-specific tumor necrosis factor-alpha expression enhances the local inflammatory environment ultimately leading to neuronal death in 3xTg-AD mice. Am J Pathol 173:1768–1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ju H, Park KW, Kim I-D, Cave JW, Cho S (2022) Phagocytosis converts infiltrated monocytes to microglia-like phenotype in experimental brain ischemia. J Neuroinflamm 19:190

    Article  CAS  Google Scholar 

  • Kadavath H, Hofele RV, Biernat J, Kumar S, Tepper K et al (2015) Tau stabilizes microtubules by binding at the interface between tubulin heterodimers. Proc Natl Acad Sci USA 112:7501–7506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasus-Jacobi A, Washburn JL, Laurence RB, Pereira HA (2022) Selecting multitarget peptides for Alzheimer’s Disease. Biomolecules 12:1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khemka VK, Ganguly A, Bagchi D, Ghosh A, Bir A et al (2014) Raised serum proinflammatory cytokines in Alzheimer’s disease with depression. Aging Dis 5:170–176

    PubMed  PubMed Central  Google Scholar 

  • Kitazawa M, Cheng D, Tsukamoto MR, Koike MA, Wes PD et al (2011) Blocking IL-1 signaling rescues cognition, attenuates tau pathology, and restores neuronal β-catenin pathway function in an Alzheimer’s disease model. J Immunol 187:6539–6549

    Article  CAS  PubMed  Google Scholar 

  • Krafft G, Hefti F, Goure W, Jerecic J, Iverson K et al (2013) O2-06-03: ACU-193: a candidate therapeutic antibody that selectively targets soluble beta-amyloid oligomers. Alzheimer’s Dement 9:P326–P326

    Article  Google Scholar 

  • Kummer MP, Ising C, Kummer C, Sarlus H, Griep A et al (2021) Microglial PD-1 stimulation by astrocytic PD-L1 suppresses neuroinflammation and Alzheimer’s disease pathology. Embo j 40:e108662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacosta AM, Pascual-Lucas M, Pesini P, Casabona D, Pérez-Grijalba V et al (2018) Safety, tolerability and immunogenicity of an active anti-Aβ(40) vaccine (ABvac40) in patients with Alzheimer’s disease: a randomised, double-blind, placebo-controlled, phase I trial. Alzheimers Res Ther 10:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Larocca TJ, Cavalier AN, Roberts CM, Lemieux MR, Link CD (2021) Amyloid beta acts synergistically as a pro-inflammatory cytokine. Neurobiol Dis 159:105493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laurent C, Dorothée G, Hunot S, Martin E, Monnet Y et al (2017) Hippocampal T cell infiltration promotes neuroinflammation and cognitive decline in a mouse model of tauopathy. Brain 140:184–200

    Article  PubMed  Google Scholar 

  • Lemere CA (2013) Immunotherapy for Alzheimer’s disease: hoops and hurdles. Mol Neurodegener 8:36

    Article  PubMed  PubMed Central  Google Scholar 

  • Lloret A, Badia MC, Giraldo E, Ermak G, Alonso MD et al (2011) Amyloid-β toxicity and tau hyperphosphorylation are linked via RCAN1 in Alzheimer’s disease. J Alzheimers Dis 27:701–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Logovinsky V, Satlin A, Lai R, Swanson C, Kaplow J et al (2016) Safety and tolerability of BAN2401–a clinical study in Alzheimer’s disease with a protofibril selective Aβ antibody. Alzheimers Res Ther 8:14

    Article  PubMed  PubMed Central  Google Scholar 

  • Lombardi VR, García M, Rey L, Cacabelos R (1999) Characterization of cytokine production, screening of lymphocyte subset patterns and in vitro apoptosis in healthy and Alzheimer’s disease (AD) individuals. J Neuroimmunol 97:163–171

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Rodriguez AB, Hennessy E, Murray CL, Nazmi A, Delaney HJ et al (2021) Acute systemic inflammation exacerbates neuroinflammation in Alzheimer’s disease: IL-1β drives amplified responses in primed astrocytes and neuronal network dysfunction. Alzheimers Dement 17:1735–1755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopresti P, Szuchet S, Papasozomenos SC, Zinkowski RP, Binder LI (1995) Functional implications for the microtubule-associated protein tau: localization in oligodendrocytes. Proc Natl Acad Sci USA 92:10369–10373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowe SL, Willis BA, Hawdon A, Natanegara F, Chua L et al (2021) Donanemab (LY3002813) dose-escalation study in Alzheimer’s disease. Alzheimers Dement 7:e12112

    Article  Google Scholar 

  • Lyra E, Silva NM, Gonçalves RA, Pascoal TA, Lima-Filho RaS, Resende EDPF et al (2021) Pro-inflammatory interleukin-6 signaling links cognitive impairments and peripheral metabolic alterations in Alzheimer’s disease. Transl Psychiatry 11:251

    Article  Google Scholar 

  • Malm TM, Koistinaho M, Pärepalo M, Vatanen T, Ooka A et al (2005) Bone-marrow-derived cells contribute to the recruitment of microglial cells in response to beta-amyloid deposition in APP/PS1 double transgenic Alzheimer mice. Neurobiol Dis 18:134–142

    Article  CAS  PubMed  Google Scholar 

  • Manda-Handzlik A, Demkow U (2019) The brain entangled: the contribution of neutrophil extracellular traps to the diseases of the central nervous system. Cells 8:1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marsh SE, Abud EM, Lakatos A, Karimzadeh A, Yeung ST et al (2016) The adaptive immune system restrains Alzheimer’s disease pathogenesis by modulating microglial function. Proc Natl Acad Sci USA 113:E1316-1325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathys H, Adaikkan C, Gao F, Young JZ, Manet E et al (2017) Temporal tracking of microglia activation in neurodegeneration at single-cell resolution. Cell Rep 21:366–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miscia S, Ciccocioppo F, Lanuti P, Velluto L, Bascelli A et al (2009) Abeta(1–42) stimulated T cells express P-PKC-delta and P-PKC-zeta in Alzheimer disease. Neurobiol Aging 30:394–406

    Article  CAS  PubMed  Google Scholar 

  • Mittal K, Eremenko E, Berner O, Elyahu Y, Strominger I et al (2019) CD4 T cells induce a subset of MHCII-Expressing microglia that attenuates Alzheimer pathology. iScience 16:298–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muhs A, Hickman DT, Pihlgren M, Chuard N, Giriens V et al (2007) Liposomal vaccines with conformation-specific amyloid peptide antigens define immune response and efficacy in APP transgenic mice. Proc Natl Acad Sci U S A 104:9810–9815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munawara U, Catanzaro M, Xu W, Tan C, Hirokawa K et al (2021) Hyperactivation of monocytes and macrophages in MCI patients contributes to the progression of Alzheimer’s disease. Immun Ageing 18:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musiek ES, Holtzman DM (2015) Three dimensions of the amyloid hypothesis: time, space and ‘wingmen’. Nat Neurosci 18:800–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng A, Tam WW, Zhang MW, Ho CS, Husain SF et al (2018) IL-1β, IL-6, TNF- α and CRP in elderly patients with depression or Alzheimer’s disease: systematic review and meta-analysis. Sci Rep 8:12050

    Article  PubMed  PubMed Central  Google Scholar 

  • Niewoehner J, Bohrmann B, Collin L, Urich E, Sade H et al (2014) Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron 81:49–60

    Article  CAS  PubMed  Google Scholar 

  • Nisbet RM, Polanco JC, Ittner LM, Götz J (2015) Tau aggregation and its interplay with amyloid-β. Acta Neuropathol 129:207–220

    Article  CAS  PubMed  Google Scholar 

  • Novak P, Zilka N, Zilkova M, Kovacech B, Skrabana R et al (2019) AADvac1, an active immunotherapy for Alzheimer’s disease and non Alzheimer tauopathies: an overview of preclinical and clinical development. J Prev Alzheimers Dis 6:63–69

    CAS  PubMed  Google Scholar 

  • Oberstein TJ, Taha L, Spitzer P, Hellstern J, Herrmann M et al (2018) Imbalance of circulating T(h)17 and regulatory T cells in Alzheimer’s disease: a case control study. Front Immunol 9:1213

    Article  PubMed  PubMed Central  Google Scholar 

  • Ou W, Yang J, Simanauskaite J, Choi M, Castellanos DM et al (2021) Biologic TNF-α inhibitors reduce microgliosis, neuronal loss, and tau phosphorylation in a transgenic mouse model of tauopathy. J Neuroinflamm 18:312

    Article  CAS  Google Scholar 

  • Pérez-González M, Badesso S, Lorenzo E, Guruceaga E, Pérez-Mediavilla A et al (2021) Identifying the main functional pathways associated with cognitive resilience to Alzheimer’s disease. Int J Mol Sci 22:9120

    Article  PubMed  PubMed Central  Google Scholar 

  • Qu BX, Gong Y, Moore C, Fu M, German DC et al (2014) Beta-amyloid auto-antibodies are reduced in Alzheimer’s disease. J Neuroimmunol 274:168–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramesh G, Maclean AG, Philipp MT (2013) Cytokines and chemokines at the crossroads of neuroinflammation, neurodegeneration, and neuropathic pain. Mediators Inflamm 2013:480739

    Article  PubMed  PubMed Central  Google Scholar 

  • Reiss AB, Arain HA, Stecker MM, Siegart NM, Kasselman LJ (2018) Amyloid toxicity in Alzheimer’s disease. Rev Neurosci 29:613–627

    Article  CAS  PubMed  Google Scholar 

  • Ries M, Sastre M (2016) Mechanisms of Aβ clearance and degradation by glial cells. Front Aging Neurosci 8:160

    Article  PubMed  PubMed Central  Google Scholar 

  • Rinne JO, Brooks DJ, Rossor MN, Fox NC, Bullock R et al (2010) 11 C-PiB PET assessment of change in fibrillar amyloid-beta load in patients with Alzheimer’s disease treated with bapineuzumab: a phase 2, double-blind, placebo-controlled, ascending-dose study. Lancet Neurol 9:363–372

    Article  CAS  PubMed  Google Scholar 

  • Roberts M, Sevastou I, Imaizumi Y, Mistry K, Talma S et al (2020) Pre-clinical characterisation of E2814, a high-affinity antibody targeting the microtubule-binding repeat domain of tau for passive immunotherapy in Alzheimer’s disease. Acta Neuropathol Commun 8:13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenqvist N, Asuni AA, Andersson CR, Christensen S, Daechsel JA et al (2018) Highly specific and selective anti-pS396-tau antibody C10.2 targets seeding-competent tau. Alzheimers Dement (N Y) 4:521–534

    Article  PubMed  Google Scholar 

  • Rosenzweig N, Dvir-Szternfeld R, Tsitsou-Kampeli A, Keren-Shaul H, Ben-Yehuda H et al (2019) PD-1/PD-L1 checkpoint blockade harnesses monocyte-derived macrophages to combat cognitive impairment in a tauopathy mouse model. Nat Commun 10:465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossi B, Santos-Lima B, Terrabuio E, Zenaro E, Constantin G (2021) Common peripheral immunity mechanisms in multiple sclerosis and Alzheimer’s disease. Front Immunol 12:639369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothaug M, Becker-Pauly C, Rose-John S (2016) The role of interleukin-6 signaling in nervous tissue. Biochim et Biophys Acta Mol Cell Res 1863:1218–1227

    Article  CAS  Google Scholar 

  • Rudan Njavro J, Vukicevic M, Fiorini E, Dinkel L, Müller SA et al (2022) Beneficial effect of ACI-24 vaccination on Aβ Plaque pathology and microglial phenotypes in an amyloidosis mouse model. Cells 12:79

    Article  PubMed  PubMed Central  Google Scholar 

  • Sandberg A, Luheshi LM, Söllvander S, Pereira De Barros T, Macao B et al (2010) Stabilization of neurotoxic Alzheimer amyloid-beta oligomers by protein engineering. Proc Natl Acad Sci USA 107:15595–15600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saykin AJ, Shen L, Foroud TM, Potkin SG, Swaminathan S et al (2010) Alzheimer’s disease neuroimaging initiative biomarkers as quantitative phenotypes: genetics core aims, progress, and plans. Alzheimers Dement 6:265–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shcherbinin S, Evans CD, Lu M, Andersen SW, Pontecorvo MJ et al (2022) Association of amyloid reduction after Donanemab treatment with Tau pathology and clinical outcomes: the TRAILBLAZER-ALZ randomized clinical trial. JAMA Neurol 79:1015–1024

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen XN, Niu LD, Wang YJ, Cao XP, Liu Q et al (2019) Inflammatory markers in Alzheimer’s disease and mild cognitive impairment: a meta-analysis and systematic review of 170 studies. J Neurol Neurosurg Psychiatry 90:590–598

    Article  PubMed  Google Scholar 

  • Siemers E, Hitchcock J, Sundell K, Dean R, Jerecic J et al (2023) ACU193, a monoclonal antibody that selectively binds soluble Aß oligomers: development rationale, phase 1 trial design, and clinical development plan. J Prev Alzheimers Dis 10:19–24

    CAS  PubMed  Google Scholar 

  • Simard AR, Soulet D, Gowing G, Julien JP, Rivest S (2006) Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron 49:489–502

    Article  CAS  PubMed  Google Scholar 

  • Singh D, Agrawal A, Singal CMS, Pandey HS, Seth P et al (2020) Sinomenine inhibits amyloid beta-induced astrocyte activation and protects neurons against indirect toxicity. Mol Brain 13:30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Söllvander S, Nikitidou E, Gallasch L, Zyśk M, Söderberg L et al (2018) The Aβ protofibril selective antibody mAb158 prevents accumulation of Aβ in astrocytes and rescues neurons from Aβ-induced cell death. J Neuroinflamm 15:98

    Article  Google Scholar 

  • Sompol P, Furman JL, Pleiss MM, Kraner SD, Artiushin IA et al (2017) Calcineurin/NFAT signaling in activated astrocytes drives network hyperexcitability in Aβ-bearing mice. J Neurosci 37:6132–6148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Späni C, Suter T, Derungs R, Ferretti MT, Welt T et al (2015) Reduced β-amyloid pathology in an APP transgenic mouse model of Alzheimer’s disease lacking functional B and T cells. Acta Neuropathol Commun 3:71

    Article  PubMed  PubMed Central  Google Scholar 

  • St-Amour I, Bosoi CR, Paré I, Ignatius Arokia Doss PM, Rangachari M et al (2019) Peripheral adaptive immunity of the triple transgenic mouse model of Alzheimer’s disease. J Neuroinflamm 16:3

    Article  Google Scholar 

  • Stancu IC, Vasconcelos B, Terwel D, Dewachter I (2014) Models of β-amyloid induced Tau-pathology: the long and folded road to understand the mechanism. Mol Neurodegener 9:51

    Article  PubMed  PubMed Central  Google Scholar 

  • Tahami Monfared AA, Tafazzoli A, Ye W, Chavan A, Zhang Q (2022) Long-term health outcomes of Lecanemab in patients with early Alzheimer’s disease using simulation modeling. Neurol Ther 11:863–880

    Article  PubMed  PubMed Central  Google Scholar 

  • Tai H-C, Ma H-T, Huang S-C, Wu M-F, Wu C-L et al. (2022) The tau oligomer antibody APNmAb005 detects early-stage pathological tau enriched at synapses and rescues neuronal loss in long-term treatments. bioRxiv:2022.2006.2024.497452

  • Tam S, Zhang G, Li L, Elmaarouf A, Skov M et al (2021) PRX012 induces microglia-mediated clearance of pyroglutamate-modified Aβ in Alzheimer’s disease brain tissue. Alzheimer’s Dement 17:e057773

    Article  Google Scholar 

  • Tan CC, Yu JT, Tan L (2014) Biomarkers for preclinical Alzheimer’s disease. J Alzheimers Dis 42:1051–1069

    Article  CAS  PubMed  Google Scholar 

  • Theunis C, Crespo-Biel N, Gafner V, Pihlgren M, López-Deber MP et al (2013) Efficacy and safety of a liposome-based vaccine against protein tau, assessed in tau.P301L mice that model tauopathy. PLoS ONE 8:e72301

    Article  PubMed  PubMed Central  Google Scholar 

  • Tucker S, Möller C, Tegerstedt K, Lord A, Laudon H et al (2015) The murine version of BAN2401 (mAb158) selectively reduces amyloid-β protofibrils in brain and cerebrospinal fluid of tg-ArcSwe mice. J Alzheimers Dis 43:575–588

    Article  CAS  PubMed  Google Scholar 

  • Umeda T, Eguchi H, Kunori Y, Matsumoto Y, Taniguchi T et al (2015) Passive immunotherapy of tauopathy targeting pSer413-tau: a pilot study in mice. Ann Clin Transl Neurol 2:241–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Dyck CH, Swanson CJ, Aisen P, Bateman RJ, Chen C et al (2022) Lecanemab in early Alzheimer’s disease. N Engl J Med 388:9–21

    Article  PubMed  Google Scholar 

  • Van Lengerich B, Zhan L, Xia D, Chan D, Joy D et al (2023) A TREM2-activating antibody with a blood-brain barrier transport vehicle enhances microglial metabolism in Alzheimer’s disease models. Nat Neurosci 26:416

    PubMed  PubMed Central  Google Scholar 

  • Verkhratsky A, Nedergaard M (2018) Physiology of Astroglia. Physiol Rev 98:239–389

    Article  CAS  PubMed  Google Scholar 

  • Vida C, De Toda IM, Garrido A, Carro E, Molina JA et al (2017) Impairment of several immune functions and redox state in blood cells of Alzheimer’s disease patients. Relevant role of neutrophils in oxidative stress. Front Immunol 8:1974

    Article  PubMed  Google Scholar 

  • Villeda SA, Luo J, Mosher KI, Zou B, Britschgi M et al (2011) The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 477:90–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Virginia M-Y, Lee M, Goedert, Trojanowski JQ (2001) Neurodegenerative tauopathies. Annu Rev Neurosci 24:1121–1159

    Article  Google Scholar 

  • Von Bartheld CS, Bahney J, Herculano-Houzel S (2016) The search for true numbers of neurons and glial cells in the human brain: a review of 150 years of cell counting. J Comp Neurol 524:3865–3895

    Article  Google Scholar 

  • Vukicevic M, Fiorini E, Siegert S, Carpintero R, Rincon-Restrepo M et al (2022) An amyloid beta vaccine that safely drives immunity to a key pathological species in Alzheimer’s disease: pyroglutamate amyloid beta. Brain Commun 4:fcac022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang CY, Finstad CL, Walfield AM, Sia C, Sokoll KK et al (2007) Site-specific UBITh amyloid-beta vaccine for immunotherapy of Alzheimer’s disease. Vaccine 25:3041–3052

    Article  CAS  PubMed  Google Scholar 

  • Wang CY, Wang PN, Chiu MJ, Finstad CL, Lin F et al (2017) UB-311, a novel UBITh(®) amyloid β peptide vaccine for mild Alzheimer’s disease. Alzheimers Dement 3:262–272

    Article  Google Scholar 

  • Wang C, Fan L, Khawaja RR, Liu B, Zhan L et al (2022) Microglial NF-κB drives tau spreading and toxicity in a mouse model of tauopathy. Nat Commun 13:1969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe-Nakayama T, Sahoo BR, Ramamoorthy A, Ono K (2020) High-speed atomic force microscopy reveals the structural dynamics of the amyloid-β and amylin aggregation pathways. Int J Mol Sci 21:4287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wendeln AC, Degenhardt K, Kaurani L, Gertig M, Ulas T et al (2018) Innate immune memory in the brain shapes neurological disease hallmarks. Nature 556:332–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilcock DM, Rojiani A, Rosenthal A, Levkowitz G, Subbarao S et al (2004) Passive amyloid immunotherapy clears amyloid and transiently activates microglia in a transgenic mouse model of amyloid deposition. J Neurosci 24:6144–6151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu CT, Chu CI, Wang FY, Yang HY, Tseng WS et al (2022) A change of PD-1/PD-L1 expression on peripheral T cell subsets correlates with the different stages of Alzheimer’s disease. Cell Biosci 12:162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie L, Zhang N, Zhang Q, Li C, Sandhu AF et al (2020) Inflammatory factors and amyloid β-induced microglial polarization promote inflammatory crosstalk with astrocytes. Aging 12:22538–22549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong L-L, Xue L-L, Du R-L, Niu R-Z, Chen L et al (2021) Single-cell RNA sequencing reveals B cell–related molecular biomarkers for Alzheimer’s disease. Exp Mol Med 53:1888–1901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Xiao N, Chen Y, Huang H, Marshall C et al (2015) Deletion of aquaporin-4 in APP/PS1 mice exacerbates brain Aβ accumulation and memory deficits. Mol Neurodegener 10:58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan P, Kim KW, Xiao Q, Ma X, Czerniewski LR et al (2022) Peripheral monocyte-derived cells counter amyloid plaque pathogenesis in a mouse model of Alzheimer’s disease. J Clin Invest. https://doi.org/10.1172/JCI152565

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang ZY, Yuan CX (2018) IL-17A promotes the neuroinflammation and cognitive function in sevoflurane anesthetized aged rats via activation of NF-κB signaling pathway. BMC Anesthesiol 18:147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang CN, Shiao YJ, Shie FS, Guo BS, Chen PH et al (2011) Mechanism mediating oligomeric Aβ clearance by naïve primary microglia. Neurobiol Dis 42:221–230

    Article  CAS  PubMed  Google Scholar 

  • Yu CR, Choi JK, Uche AN, Egwuagu CE (2018) Production of IL-35 by Bregs is mediated through binding of BATF-IRF-4-IRF-8 complex to il12a and ebi3 promoter elements. J Leukoc Biol 104:1147–1157

    Article  CAS  PubMed  Google Scholar 

  • Zenaro E, Pietronigro E, Bianca VD, Piacentino G, Marongiu L et al (2015) Neutrophils promote Alzheimer’s disease–like pathology and cognitive decline via LFA-1 integrin. Nat Med 21:880–886

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Zhang Z, Lu H, Yang Q, Wu H et al (2017) Microglial polarization and inflammatory mediators after intracerebral hemorrhage. Mol Neurobiol 54:1874–1886

    Article  CAS  PubMed  Google Scholar 

  • Zhang YY, Dong LX, Bao HL, Liu Y, An FM et al (2021) Inhibition of interleukin-1β plays a protective role in Alzheimer’s disease by promoting microRNA-9-5p and downregulating targeting protein for xenopus kinesin-like protein 2. Int Immunopharmacol 97:107578

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Wei S, Wu Q, Shen X, Dai W et al (2022) Interleukin-35 promotes Breg expansion and interleukin-10 production in CD19(+) B cells in patients with ankylosing spondylitis. Clin Rheumatol 41:2403–2416

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Wu X, Li X, Jiang LL, Gui X et al (2018) TREM2 is a receptor for β-Amyloid that mediates microglial function. Neuron 97:1023–1031e1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zieneldien T, Kim J, Sawmiller D, Cao C (2022) The immune system as a therapeutic target for Alzheimer’s disease. Life (Basel) 12:1440

    CAS  PubMed  Google Scholar 

  • Zota V, Nemirovsky A, Baron R, Fisher Y, Selkoe DJ et al (2009) HLA-DR alleles in amyloid beta-peptide autoimmunity: a highly immunogenic role for the DRB1*1501 allele. J Immunol 183:3522–3530

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Keimyung University Research Grant of 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soyeun Park.

Ethics declarations

Conflict of interest

All authors (T.D. Nguyen, L.N. Dang, J.H. Jang, and S.Y. Park) declare that they have no conflict of interest.

Research involving human and animal rights

This article does not contain any studies with human and animal participants conducted by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, TD., Dang, L.N., Jang, JH. et al. Recent advances in Alzheimer’s disease pathogenesis and therapeutics from an immune perspective. J. Pharm. Investig. 53, 667–684 (2023). https://doi.org/10.1007/s40005-023-00631-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-023-00631-0

Keywords

Navigation