Skip to main content

Advertisement

Log in

Biohydrogen production from waste materials: benefits and challenges

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Escalating global energy demand has opened up a wide avenue for alternative energy research. One such alternative energy is biohydrogen (H2) which is now projected as clean energy, since harnessed by biological means with high energy content; it finds the application on a broader scale. Recently, the employment of sustainable energy origins for generating biohydrogen has gained traction worldwide. Biohydrogen sourced from organic resources mainly of waste origins promises to provide sustainable energy in comparison with its other counterparts. The current work spotlights the various waste materials sourced for the generation of biohydrogen, bio-processing approaches, various microbes involved, conditions, factors, various relative advantages, and challenges. Diversities in biohydrogen processes such as utilizing different waste materials and biomass as raw material, probed akin to their chattels in the environment, bioreactor operative factors (temperature, pH, and partial pressure) are summarized. In this article, we have pursued to explicate the major hurdles confronted while procuring biohydrogen as a profit-making proposition by creating an appraisal of its improved role, also taking into account the diverse mechanism and procedures, while assessing its future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmad T, Aadil RM, Ahmed H, Rahman UU, Soares BCV et al (2019) Treatment and utilization of dairy industrial waste: a review. Trends Food Sci Technol 88:361–372

    CAS  Google Scholar 

  • Ahuja D, Tatsutani M (2009) Sustainable energy for developing countries. S A P I EN S 2:1–16

    Google Scholar 

  • Alexandropoulou M, Antonopoulou G, Trably E, Carrere H, Lyberatos G (2018) Continuous biohydrogen production from a food industry waste: influence of operational parameters and microbial community analysis. J Cleaner Prod 174:1054–1063

    CAS  Google Scholar 

  • Argun H, Gokfiliz P, Karapinar I (2017) Biohydrogen production potential of different biomass sources. In: Singh A, Rathore D (eds) Biohydrogen production: sustainability of current technology and future perspective. Springer India, New Delhi, pp 11–78

    Google Scholar 

  • Arimi MM, Knodel J, Kiprop A, Namango SS, Zhang Y, Geiben SU (2015) Strategies for improvement of biohydrogen production from organic-rich wastewater: a review. Biomass Bioenergy 75:101–118

    CAS  Google Scholar 

  • Arizzi M, Morra S, Pugliese M, Gullino ML, Gilardi G et al (2016) Biohydrogen and biomethane production sustained by untreated matrices and alternative application of compost waste. Waste Manag 56:151–157

    CAS  Google Scholar 

  • Azbar N, Cetinkaya Dokgoz FT, Keskin T, Korkmaz KS, Syed HM (2009) Continuous fermentative hydrogen production from cheese whey waste water under thermophilic anaerobic conditions. Int J Hydrog Energy 34:7441–7447

    CAS  Google Scholar 

  • Balachandar G, Khanna N, Das D (2013) Chapter-6: Biohydrogen production from organic wastes by dark fermentation. In: Panday A, Chang JS, Hallenbecka PC, Larroche C (eds) Biohydrogen. Elsevier, Amsterdam, pp 103–144

    Google Scholar 

  • Balat H, Kırtay E (2010) Hydrogen from biomass. Present scenario and future prospects. Int J Hydrog Energy 35:7416–7426

    CAS  Google Scholar 

  • Basak B, Fatima A, Jeon B, Ganguly A, Chatterjee PK et al (2018) Process kinetic studies of biohydrogen production by co-fermentation of fruit-vegetable wastes and cottage cheese whey. Energy Sustain Dev 47:39–52

    Google Scholar 

  • Benemann JR (1997) Feasibility analysis of photobiological hydrogen production. Int J Hydrog Energy 22:979–987

    CAS  Google Scholar 

  • Boni MR, Sbaffoni S, Tuccinardi L, Viotti P (2013) Development and calibration of a model for biohydrogen production from organic waste. Waste Manag 33:1128–1135

    CAS  Google Scholar 

  • Burmistrz P, Chmielniak T, Czepirski L, Gazda-Grzywacz M (2014) Carbon footprint of the hydrogen production process utilizing subbituminous coal and lignite gasification. J Cleaner Prod 139:858–865

    Google Scholar 

  • Cai J, Zhao Y, Fan J et al (2019) Photosynthetic bacteria improved hydrogen yield of combined dark- and photo-fermentation. J Biotechnol 302:18–25

    CAS  Google Scholar 

  • Castillo-Hernandez A, Mar-Alvarez I, Moreno-Andrade I (2015) Start-up and operation of continuous stirred-tank reactor for biohydrogen production from restaurant organic solid waste. Int J Hydrog Energy 40:17239–17245

    CAS  Google Scholar 

  • Chandrasekhar K, Lee Y, Lee D (2015) Biohydrogen production: strategies to improve process efficiency through microbial routes. Int J Mol Sci 16:8266–8293

    CAS  Google Scholar 

  • Chatellard L, Marone A, Carrère H, Trably E (2017) Trends and challenges in biohydrogen productionfrom agricultural waste. In: Singh A, Rathore D (eds) biohydrogen production: sustainability of current technology and future perspective. Springer India, New Delhi, pp 69–95

    Google Scholar 

  • Chen CC, Chuang YS, Lin CY, Lay CH, Sen B (2012) Thermophilic dark fermentation of untreated rice straw using mixed cultures for hydrogen production. Int J Hydrog Energy 37:15540–15546

    CAS  Google Scholar 

  • Cheng J, Ding L, Lin R, Yue L, Liu J et al (2016) Fermentative biohydrogen and biomethane co-production from mixture of food waste and sewage sludge: effects of physiochemical properties and mix ratios on fermentation performance. Appl Energy 184:1–8

    CAS  Google Scholar 

  • Chu Y, Wei Y, Yuan X, Shi X (2011) Bioconversion of wheat stalk to hydrogen by dark fermentation: effect of different mixed microflora on hydrogen yield and cellulose solubilisation. Bioresour Technol 102:3805–3809

    CAS  Google Scholar 

  • Concetti S, Chiariotti A, Patriarca C, Marone A, Contò G et al (2013) Biohydrogen production from buffalo manure codigested with agroindustrial by-products in an anaerobic reactor. Buffalo Bull 32:1241–1244

    Google Scholar 

  • da Silva AN, Macedo WV, Sakamoto IK, Pereyra DLAD, Mendes CO et al (2019) Biohydrogen production from dairy industry wastewater in an anaerobic fluidized-bed reactor. Biomass Bioenergy 120:257–264

    CAS  Google Scholar 

  • Dareioti MA, Kornaros M (2014) Effect of hydraulic retention time (HRT) on the anaerobic co-digestion of agro-industrial wastes in a two-stage CSTR system. Bioresour Technol 167:407–415

    CAS  Google Scholar 

  • Dareioti MA, Vavouraki AI, Kornaros M (2014) Effect of pH on the anaerobic acidogenesis of agroindustrial wastewaters for maximization of bio-hydrogen production: a lab-scale evaluation using batch tests. Bioresour Technol 162:218–227

    CAS  Google Scholar 

  • Das D, Veziroglu TN (2001) Hydrogen production by biological processes: a survey of literature. Int J Hydrog Energy 26:13–28

    CAS  Google Scholar 

  • Das D, Veziroglu TN (2008) Advances in biological hydrogen production processes. Int J Hydrog Energy 33:6046–6057

    CAS  Google Scholar 

  • Das D, Khanna N, Veziroğlu NT (2008) Recent developments in biological hydrogen production processes. Chem Ind Chem Eng Q 14:57–67

    CAS  Google Scholar 

  • Derwent R, Simmonds P, O’Doherty S, Manning A, Collins W, Stevenson D (2006) Global environmental impacts of the hydrogen economy. Int J Nucl Hydrog Prod Appl 1:57–67

    Google Scholar 

  • Dinesh GK, Chauhan R, Chakma S (2018) Influence and strategies for enhanced biohydrogen production from food waste. Renew Sust Energy Rev 92:807–822

    CAS  Google Scholar 

  • Dutta D, Debojyoti D, Chaudhuri S, Bhattacharya S (2005) Hydrogen production by cyanobacteria. Microb Cell Fact 4:36

    Google Scholar 

  • El-Bery H, Tawfik A, Kumari S, Bux F (2013) Effect of thermal pre-treatment on inoculum sludge to enhance bio-hydrogen production from alkali hydrolysed rice straw in a mesophilic anaerobic baffled reactor. Environ Technol 34:1965–1972

    CAS  Google Scholar 

  • Esposito G, Frunzo L, Giordano A, Liotta F, Panico A et al (2012) Anaerobic co-digestion of organic wastes. Rev Environ Sci Biol Technol 11:325–341

    CAS  Google Scholar 

  • FAO (2011) Global food losses and food waste- Eextent, causes and prevention. FAO, Rome

    Google Scholar 

  • FAO (2013) FAO statistical yearbook 2013: world food and agriculture. FAO, Rome

    Google Scholar 

  • Fernandes BS, Peixoto G, Albrecht FR et al (2010) Potential to produce biohydrogen from various wastewaters. Energy Sustain Dev 14:143–148

    CAS  Google Scholar 

  • Gadhae A, Sonawane SS, Varma MN (2015) Enhanced biohydrogen production from dark fermentation of complex dairy wastewater by sonolysis. Int J Hydrog Energy 40:9942–9951

    Google Scholar 

  • Gadhe A, Sonawane S, Verma MN (2014) Ultrasonic pretreatment for an enhancement of biohydrogen production from complex food waste. Int J Hydrog Energy 39:7721–7729

    CAS  Google Scholar 

  • Ghimire A, Frunzo L, Pontoni L, d’Antonio G, Lens PNL et al (2015) Dark fermentation of complex waste biomass for biohydrogen production by pretreated thermophilic anaerobic digestate. J Environ Manag 152:43–48

    CAS  Google Scholar 

  • Ghimire A, Luongo V, Frunzo LM, Pirozzi F, Lens PNL et al (2017) Continuous biohydrogen production by thermophilic dark fermentation of cheese whey: use of buffalo manure as buffering agent. Int J Hydrog Energy 42(8):4861–4869

    CAS  Google Scholar 

  • Ghosh R, Bhadury P, Debnath M (2017) Characterization and screening of algal strains for sustainable biohydrogen production: primary constraints. In: Singh A, Rathore D (eds) Biohydrogen production: sustainability of current technology and future perspective. Springer India, New Delhi, pp 115–146

    Google Scholar 

  • Gilroyed BH, Li C, Hao X, Chu A, McAllister TA (2010) Biohydrogen production from specified risk materials co-digested with cattle manure. Int J Hydrog Energy 35:1099–1105

    CAS  Google Scholar 

  • Gorgec FK, Karapinar I (2019) Production of biohydrogen from waste wheat in continuously operated UPBR: the effect of influent substrate concentration. Int J Hydrog Energy 44:17323–17333

    Google Scholar 

  • Greenbaum E, Guillard RRL, Sunda WG (1983) Hydrogen and oxygen photoproduction by marine algae. Photochem Photobiol 37:649–655

    CAS  Google Scholar 

  • Gupta SK, Kumari S, Reddy K, Bux F (2013) Trends in biohydrogen production: major challenges and state of the art developments. Environ Technol 34:1653–1670

    Google Scholar 

  • Hafez H, Nakhla G, El Naggar H (2009) Biological hydrogen production from corn-syrup waste using a novel system. Energies 2:445–455

    CAS  Google Scholar 

  • Hallenbeck PC, Benemann JR (2002) Biological hydrogen production; fundamentals and limiting processes. Int J Hydrog Energy 27:1185–1193

    CAS  Google Scholar 

  • Hamelers HVM, Ter-Heijne A, Sleutels THJA, Jeremiasse AW, Strik DPBTB, Buisman CJN (2010) New applications and performance of bio-electrochemical systems. Appl Microbiol Biotechnol 85:1673–1685

    CAS  Google Scholar 

  • Han H, Wei L, Liu B, Yang H, Shen J (2012) Optimization of biohydrogen production from soybean straw using anaerobic mixed bacteria. Int J Hydrog Energy 37:13200–13208

    CAS  Google Scholar 

  • Han W, Liu DN, Shi YW, Tang JH, Li YF et al (2015) Biohydrogen production from food waste hydrolysate using continuous mixed immobilized sludge reactors. Bioresour Technol 180:54–58

    CAS  Google Scholar 

  • Han W, Huang J, Zhao H, Li Y (2016) Continuous biohydrogen production from waste bread by anaerobic sludge. Bioresour Technol 212:1–5

    CAS  Google Scholar 

  • Holladay JD, Hu J, King DL, Wang Y (2009) An overview of hydrogen production technologies. Catal Today 139:244–260

    CAS  Google Scholar 

  • Hong Y, Nizami AS, Pourbafrani M, Saville BA, MacLean HL (2013) Impact of cellulase production on environmental and financial metrics for lignocellulosic ethanol. Biofuels Bioprod Biorefin 7:303–313

    CAS  Google Scholar 

  • Hsiao CL, Chang JJ, Wu JH, Chin WC, Wen FS et al (2009) Clostridium strain cocultures for biohydrogen production enhancement from condensed molasses fermentation solubles. Int J Hydrog Energy 34:7173–7181

    CAS  Google Scholar 

  • Hu B, Li M, Wang Y, Zhu M (2018) High-yield biohydrogen production from non-detoxified sugarcane bagasse: fermentation strategy and mechanism. Chem Eng J 335:979–987

    CAS  Google Scholar 

  • Huang CY, Hsieh H, Lay CH, Chuang YS, Kuo AY et al (2010) Biohydrogen production by anaerobic co-digestion of textile and food wastewaters. In: The 2010 Asian bio-hydrogen symposium and APEC advanced bio-hydrogen technology conference Taiwan

  • Hwang JH, Choi JA, Abou-Shanab RAI, Min B, Song H et al (2011) Feasibility of hydrogen production from ripened fruits by a combined two-stage (dark/dark) fermentation system. Bioresour Technol 102:1051–1058

    CAS  Google Scholar 

  • IEA, Energy statistics, p. 6. http://www.iea.org/textbase/nppdf/free/2007/key_stats_2007.pdf. Accessed 6 Aug 2008

  • Jiang D, Ge X, Zhang T, Liu H, Zhang Q (2016) Photo-fermentative hydrogen production from enzymatic hydrolysate of corn stalk pith with a photosynthetic consortium. Int J Hydrog Energy 41:16778–16785

    CAS  Google Scholar 

  • Jung KW, Kim DH, Shin SH (2010) Continuous fermentative hydrogen production from coffee drink manufacturing wastewater by applying UASB reactor. Int J Hydrog Energy 35:13370–13378

    CAS  Google Scholar 

  • Kanchanasuta S, Prommeenate P, Boonapatcharone N, Pisutpaisal N (2017) Stability of Clostridium butyricum in biohydrogen production from non-sterile food waste. Int J Hydrog Energy 42:3454–3465

    CAS  Google Scholar 

  • Kannah RY, Kavitha S, Sivashanmugam P, Kumar G, Nguyen DD et al (2019) Biohydrogen production from rice straw: effect of combinative pretreatment, modelling assessment and energy balance consideration. Int J Hydrog Energy 44:2203–2215

    Google Scholar 

  • Kaushik A, Sharma M (2017) Exploiting biohydrogen pathways of cyanobacteria and green algae: an industrial production approach. In: Singh A, Rathore D (eds) Biohydrogen production: sustainability of current technology and future perspective. Springer India, New York, pp 97–114. https://doi.org/10.1007/978-81-322-3577-4_5

    Chapter  Google Scholar 

  • Kongjan P, O-Thong S, Angelidaki I (2013) Hydrogen and methane production from desugared molasses using a two-stage thermophilic anaerobic process. Eng Life Sci 13(2):118–125

    CAS  Google Scholar 

  • Korres NE, Norsworthy JK (2017) Biohydrogen production from agricultural biomass and organic wastes. In: Singh A, Rathore D (eds) Biohydrogen production: sustainability of current technology and future perspective. Springer India, New Delhi, pp 79–86

    Google Scholar 

  • Korres NE, O’Kiely P, Benzie JAH, West JS (2013) Bioenergy production by anaerobic digestion: using agricultural biomass and organic waste. Pub Earthscan from Routledge/Taylor and Francis Pub. Group, London

    Google Scholar 

  • Kotay SM, Das D (2008) Biohydrogen as a renewable energy resource-Prospects and potentials. Int J Hydrogen Energy 33:258–263

    Google Scholar 

  • Kotsopoulos TA, Fotidis IA, Tsolakis N, Martzopoulos GG (2009) Biohydrogen production from pig slurry in a CSTR reactor system with mixed cultures under hyperthermophilic temperature. Biomass Bioenergy 33:1168–1174

    CAS  Google Scholar 

  • Koutrouli EC, Kalfas H, Gavala HN, Skiadas IV, Stamatelatou K et al (2009) Hydrogen and methane production through two-stage mesophilic anaerobic digestion of olive pulp. Bioresour Technol 100:3718–3723

    CAS  Google Scholar 

  • Krupp M, Widmann R (2009) Biohydrogen production by dark fermentation: experiences of continuous operation in large lab scale. Int J Hydrog Energy 34:4509–4516

    CAS  Google Scholar 

  • Kumar G, Nguyen DD, Sivagurunathan P, Kobayashi T, Xu K et al (2018) Cultivation of microalgal biomass using swine manure for biohydrogen production: impact of dilution ratio and pretreatment. Bioresour Technol 260:16–22

    CAS  Google Scholar 

  • Kumar AN, Bandarapu AK, Venkata Mohan S (2019) Microbial electro-hydrolysis of sewage sludge for acidogenic production of biohydrogen and volatile fatty acids along with struvite. Chem Eng J 374:1264–1274

    Google Scholar 

  • Lateef SA, Beneragama N, Yamashiro T, Iwasaki M, Ying C et al (2012) Biohydrogen production from codigestion of cow manure and waste milk under thermophilic temperature. Bioresour Technol 110:251–257

    CAS  Google Scholar 

  • Lay JJ, Li YY, Noike T (1997) Influences of pH and moisture content on the methane production in high-solids sludge digestion. Water Res 31:1518–1524

    CAS  Google Scholar 

  • Lay JJ, Lee YJ, Noike T (1999) Feasibility of biological hydrogen production from organic fraction of municipalsolid waste. Water Res 33:2579–2586

    CAS  Google Scholar 

  • Lay CH, Kuo SY, Sen B, Chen CC, Chang JS et al (2012) Fermentative biohydrogen production from starch-containing textile wastewater. Int J Hydrog Energy 37:2050–2057

    CAS  Google Scholar 

  • Lay C, Vo T, Lin P, Lin CY, Lee CW et al (2019) Anaerobic hydrogen and methane production from low-strength beverage wastewater. In press, Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2019.03.165

    Book  Google Scholar 

  • Lee D (2016) Cost-benefit analysis, LCOE and evaluation of financial feasibility of full commercialization of biohydrogen. Int J Hydrog Energy 41:4347–4357

    CAS  Google Scholar 

  • Li C, Fang HHP (2007) Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit Rev Environ Sci Technol 37:1–39

    Google Scholar 

  • Li Y, Zhnag Z, Zhu S et al (2018) Comparison of bio-hydrogen production yield capacity between asynchronous and simultaneous saccharification and fermentation processes from agricultural residue by mixed anaerobic cultures. Bioresour Technol 247:1210–1214

    CAS  Google Scholar 

  • Lin CY, Lay CH (2004) Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microfora. Int J Hydrog Energy 29:41–45

    CAS  Google Scholar 

  • Liu H, Grot S, Logan BE (2005) Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol 39:4317–4320

    CAS  Google Scholar 

  • Liu Z, Li Q, Zhang C, Wang L, Han B et al (2014) Effects of operating parameters on hydrogen production from raw wet steam-exploded cornstalk and two-stage fermentation potential for biohythane production. Biochem Eng J 90:234–238

    CAS  Google Scholar 

  • Lopez-Hidalgo AM, Sanchez A, León-Rodríguez A (2017) Simultaneous production of bioethanol and biohydrogen by Escherichia coli WDHL using wheat straw hydrolysate as substrate. Fuel 188:19–27

    CAS  Google Scholar 

  • Lopez-Hidalgo AM, Alvarado-Cuevas ZD, Leon-Rodriguez A (2018) Biohydrogen production from mixtures of agro-industrial wastes: chemometric analysis, optimization and scaling up. Energy 159:32–41

    CAS  Google Scholar 

  • Lu C, Wang Y, Lee D, Zhang H, Tahir N et al (2019) Biohydrogen production in pilot-scale fermenter: effects of hydraulic retention time and substrate concentration. J Clean Prod 229:751–760

    CAS  Google Scholar 

  • Mahmod SS, Azahar AM, Tan JP, Jahim JMD, Abdul PM et al (2019) Operation performance of up-flow anaerobic sludge blanket (UASB) bioreactor for biohydrogen production by self-granulated sludge using pre-treated palm oil mill effluent (POME) as carbon source. Renew Energy 134:1262–1272

    CAS  Google Scholar 

  • Manoharan Y, Hosseini SE, Butler B, Alzhahrani H, Senior BTF et al (2019) Hydrogen fuel cell vehicles; current status and future prospect. Appl Sci 9:2296

    Google Scholar 

  • Marone A, Izzo G, Mentuccia L, Massini G, Paganin P et al (2014) Vegetable waste as substrate and source of suitable microflora for bio-hydrogen production. Renew Energy 68:6–13

    CAS  Google Scholar 

  • Marone A, Varrone C, Fiocchetti F, Giussani B, Izzo G et al (2015) Optimization of substrate composition for biohydrogen production from buffalo slurry co-fermented with cheese whey and crude glycerol, using microbial mixed culture. Int J Hydrog Energy 40:209–218

    CAS  Google Scholar 

  • McLellan B, Shoko E, Dicks AL, Da Costa JD (2005) Hydrogen production and utilisation opportunities for Australia. Int J Hydrog Energy 30:669–679

    CAS  Google Scholar 

  • Menetrez MY (2012) An overview of algae biofuel production and potential environmental impact. A critical review. Environ Sci Technol 46:7073–7085

    CAS  Google Scholar 

  • Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals and biorefinery concept. Prog Energy Combust Sci 38:522–550

    CAS  Google Scholar 

  • Miandad R, Rehan M, Ouda OKM, Khan MZ, Shahzad K et al (2017) Waste-to-hydrogen energy in Saudi Arabia: challenges and perspectives. In: Singh A, Rathore D (eds) Biohydrogen production: sustainability of current technology and future perspective. Springer India, New York, pp 237–252

    Google Scholar 

  • Miller A, Singh L, Wang L, Liu H (2019) Linking internal resistance with design and operation decisions in microbial electrolysis cells. Environ Int 126:611–618

    CAS  Google Scholar 

  • Mirza SS, Qazi JI, Liang Y, Chen S (2019) Growth characteristics and photofermentative biohydrogen production potential of purple non sulfur bacteria from sugar cane bagasse. Fuel 255:115805

    CAS  Google Scholar 

  • Mishra P, Balachandar G, Das D (2017) Improvement in biohythane production using organic solid waste and distillery effluent. Waste Manag 66:70–78

    CAS  Google Scholar 

  • Mishra P, Ameen F, Zaid RM, Singh L, Ab Wahid Z et al (2019) Relative effectiveness of substrate-inoculum ratio and initial pH on hydrogen production from palm oil mill effluent: kinetics and statistical optimization. J Clean Prod 228:276–283

    CAS  Google Scholar 

  • Momirlan M, Veziroglu TN (2002) Current status of hydrogen energy. Renew Sustain Energy Rev 6:141–179

    CAS  Google Scholar 

  • Momirlan M, Veziroglu TN (2005) The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet. Int J Hydrog Energy 30:795–802

    CAS  Google Scholar 

  • Monlau F, Sambusiti C, Barakat A, Guo XM, Latrille E et al (2012) Predictive models of biohydrogen and biomethane production based on the compositional and structural features of lignocellulosic materials. Environ Sci Technol 46:12217–12225

    CAS  Google Scholar 

  • Nagarajan D, Lee D, Chang J (2019) Recent insights into consolidated bioprocessing for lignocellulosic biohydrogen production. Int J Hydrog Energy 44:14362–14379

    CAS  Google Scholar 

  • Nasirian N, Almassi M, Minaei S, Widmann R (2011) Development of a method for biohydrogen production from wheat straw by dark fermentation. Int J Hydrog Energy 36:411–420

    CAS  Google Scholar 

  • Nicolet Y, Fontecilla-Camps JC, Fontecava M (2010) Maturation of [FeFe]-hydrogenases: structures and mechanisms. Int J Hydrog Energy 35:10750–10760

    CAS  Google Scholar 

  • Nikolaidis P, Poullikkas A (2017) A comparative overview of hydrogen Production processes. Renew Sustain Energy Rev 67:597–611

    CAS  Google Scholar 

  • Oceguera-Contreras E, Aguilar-Juarez O, Oseguera-Galindo D et al (2019) Biohydrogen production by vermihumus-associated microorganisms using agro industrial wastes as substrate. Int J Hydrog Energy 44:9856–9865

    CAS  Google Scholar 

  • Oey M, Sawyer AL, Ross IL, Hankamer B (2016) Challenges and opportunities for hydrogen production from microalgae. Plant Biotechnol J 14:1487–1499

    CAS  Google Scholar 

  • Ogden JM, William RH, Larson ED (2004) Societal lifecycle cost comparison of cars with alternative fuels/engines. Energy Policy 32:7–27

    Google Scholar 

  • Ozkan L, Erguder TH, Demirer GN (2011) Effects of pretreatment methods on solubilization of beet-pulp and bio-hydrogen production yield. Int J Hydrog Energy 36:382–389

    CAS  Google Scholar 

  • Panigrahi S, Dubey BK (2019) A critical review on operating parameters and strategies to improve the biogas yield from anaerobic digestion of organic fraction of municipal solid waste. Renew Energ 143:779–797

    CAS  Google Scholar 

  • Patel AK, Vaisnav N, Mathur A, Gupta R, Tuli DK (2016) Whey waste as potential feedstock for biohydrogen production. Renew Energy 98:221–225

    CAS  Google Scholar 

  • Perera KRJ, Nirmalakhandan N (2010) Enhancing fermentative hydrogen production from sucrose. Bioresour Technol 101:9137–9143

    CAS  Google Scholar 

  • Preethi Usman TMM, Banu R, Gunasekaran M, Kumar G (2019) Biohydrogen production from industrial wastewater: an overview. Bioresour Technol Rep 7:100287

    Google Scholar 

  • Quéméneur M, Bittel M, Trably E, Dumas C, Fourage L et al (2012) Effect of enzyme addition on fermentative hydrogen production from wheat straw. Int J Hydrog Energy 37:10639–10647

    Google Scholar 

  • Rafieenia R, Pivato A, Lavagnolo MC (2019) Optimization of hydrogen production from food waste using anaerobic mixed cultures pretreated with waste frying oil. Renew Energy 139:1077–1085

    CAS  Google Scholar 

  • Rathore D, Singh A, Dahiya D, Nigam PS (2019) Sustainability of biohydrogen as fuel: present scenario and future Perspective. AIMS Energy 7:1–19

    CAS  Google Scholar 

  • Ren N, Wang A, Cao G, Xu J, Gao L (2009) Bioconversion of lignocellulosic biomass to hydrogen: potential and challenges. Biotechnol Adv 27:1051–1060

    CAS  Google Scholar 

  • Ren J, Manzardo A, Toniolo S, Toniolo S, Scipioni A (2013) Sustainability of hydrogen supply chain. Part I: identification of critical criteria and cause-effect analysis for enhancing the sustainability using DEMATEL. Int J Hydrog Energy 38:14159–14171

    CAS  Google Scholar 

  • Ren H, Kong F, Zhao L, Ren NQ, Ma J et al (2019) Enhanced co-production of biohydrogen and algal lipids from agricultural biomass residues in long-term operation. Bioresour Technol 289:121774

    Google Scholar 

  • Roy S, Ghosh S, Das D (2012) Improvement of hydrogen production with thermophilic mixed culture from rice spent wash of distillery industry. Int J Hydrog Energy 37:15867–15874

    CAS  Google Scholar 

  • Saidi R, Liebgott PP, Gannoun H, Gaida LB, Miladi B et al (2018) Biohydrogen production from hyperthermophilic anaerobic digestion of fruit and vegetable wastes in seawater: simplification of the culture medium of Thermotoga maritima. Waste Manag 71:474–484

    CAS  Google Scholar 

  • Salem AH, Brunstermann R, Mietzel T, Widmann R (2018) Effect of pre-treatment and hydraulic retention time on biohydrogen production from organic wastes. Int J Hydrog Energy 43:4856–4865

    CAS  Google Scholar 

  • Sekoai PT, Daramola MO (2015) Biohydrogen production as a potential energy fuel in South Africa. Biofuel Res J 2:223–226

    CAS  Google Scholar 

  • Sen B, Aravind J, Kanmani P, Lay C (2016) State of the art and future concept of food waste fermentation to bioenergy. Renew Sustain Energy Rev 53:547–557

    CAS  Google Scholar 

  • Shi X, Song H, Wang C, Tang R, Huang Z et al (2010) Enhanced bio-hydrogen production from sweet sorghum stalk with alkalization pretreatment by mixed anaerobic cultures. Int J Energy Res 34:662–672

    CAS  Google Scholar 

  • Silva-Illanes F, Tapia-Venegas E, Schiappacasse MC, Trably E, Ruiz-Filippi G (2017) Impact of hydraulic retention time (HRT) and pH on dark fermentative hydrogen production from glycerol. Energy 141:358–367

    CAS  Google Scholar 

  • Singh A, Rathore D (2017) Biohydrogen: next generation fuel biohydrogen production: sustainability of current technology and future perspective. Springer India, New Delhi, pp 1–10

    Google Scholar 

  • Singh S, Jain S, Venkateswaran PS, Tiwari AK, Nouni MR et al (2016) Hydrogen: a sustainable fuel for future of the transport sector. Renew Sust Energ Rev 51:623–633

    Google Scholar 

  • Singh R, Singh A, Rathore D (2017) Biohydrogen: global trend and future perspective. In: Singh A, Rathore D (eds) Biohydrogen production: sustainability of current technology and future perspective. Springer India, New Delhi, pp 291–315

    Google Scholar 

  • Sivaramakrishna D, Sreekanth D, Sivaramakrishnan M, Kumar BS, Himabindu V et al (2014) Effect of system optimizing conditions on biohydrogen production from herbal wastewater by slaughterhouse sludge. Int J Hydrog Energy 39:7526–7533

    CAS  Google Scholar 

  • Sorathiya LM, Fulsoundar AB, Tyagi KK, Patel MD, Singh RR (2014) Eco-friendly and modern methods of livestock waste recycling for enhancing farm profitability. Int J Recycl Org Waste Agric 3:50

    Google Scholar 

  • Soydemir G, Keris-Sen UD, Sen U, Gurol MD (2016) Biodiesel production potential of mixed microalgal culture grown in domestic wastewater. Bioproc Biosyst Eng 39:45–51

    CAS  Google Scholar 

  • Staffell I, Scamman D, Abad AV, Balcombe P, Dodds PE et al (2019) The role of hydrogen and fuel cells in the global energy system. Energy Environ Sci 12:463–491

    CAS  Google Scholar 

  • Stanislaus MS, Zhang N, Zhao C, Zhu Q, Li D, Yang Y (2017) Ipomoea aquatica as a new substrate for enhanced biohydrogen production by using digested sludge as inoculum. Energy 118:264–271

    CAS  Google Scholar 

  • Suksong W, Kongjan P, O-Thong S (2015) biohythane production from co-digestion of palm oil mill effluent with solid residues by two-stage solid state anaerobic digestion process. Energy Procedia 79:943–949

    CAS  Google Scholar 

  • Sun Y, Ogden J, Delucchi M (2010) Societal lifetime cost of hydrogen fuel cell vehicles. Int J Hydrog Energy 35:11932–11946

    CAS  Google Scholar 

  • Sydney EB, Novak AC, Rosa D, Medeiros ABP, Brar S et al (2018) Screening and bioprospecting of anaerobic consortia for biohydrogen and volatile fatty acid production in a vinasse based medium through dark fermentation. Process Biochem 67:1–7

    CAS  Google Scholar 

  • Tang GL, Huang J, Sun ZJ, Tang QQ, Yan CH et al (2008) Biohydrogen production from cattle wastewater by enriched anaerobic mixed consortia: influence of fermentation temperature and pH. J Biosci Bioeng 106:80–87

    CAS  Google Scholar 

  • Tenca A, Schievano A, Perazzolo F, Adani F, Oberti R (2011) Biohydrogen from thermophilic cofermentation of swine manure with fruit and vegetable waste: maximizing stable production without pH control. Bioresour Technol 102:8582–8588

    CAS  Google Scholar 

  • Tu W, Hallett JP (2019) Recent advances in the pretreatment of lignocellulosic biomass. Curr Opin Green Sustain Chem. https://doi.org/10.1016/j.cogsc.2019.07.004

    Article  Google Scholar 

  • Vatsala TM, Raj SM, Manimaran A (2008) A pilot-scale study of biohydrogen production from distillery effluent using defined bacterial co-culture. Int J Hydrog Energy 33:5404–5415

    CAS  Google Scholar 

  • Venkata Mohan S, Pandey A (2013) Biohydrogen production: an introduction. In: Larroche AP-SCCH (ed) Biohydrogen. Elsevier, Amsterdam, pp 1–24

    Google Scholar 

  • Venkata Mohan S, Chandrasekhar K, Chiranjeevi P, Suresh Babu P (2013) Chapter 10—Biohydrogen production from wastewater. In: Larroche AP-SCCH (ed) Biohydrogen. Elsevier, Amsterdam, pp 223–257

    Google Scholar 

  • Voet D, Voet JG, Pratt CW (1999) Fundamentals of biochemistry. Wiley, New York, p 382

    Google Scholar 

  • Walsh B, Ciais P, Janssens IA, Penuelas J, Riahi K et al (2017) Pathways for balancing CO2 emissions and sinks. Nat Commun 8, Article number: 14856

  • Wang J, Yin Y (2018) Fermentative hydrogen production using various biomass-based materials as feedstock. Renew Sustain Energy Rev 92:284–306

    CAS  Google Scholar 

  • Wang A, Ren N, Shi Y, Lee DJ (2008a) Bioaugmented hydrogen production from microcrystalline cellulose using co-culture: Clostridium acetobutyricum X9 and Ethanoligenens harbinense B49. Int J Hydrog Energy 33:912–917

    CAS  Google Scholar 

  • Wang B, Li YQ, Wu N, Lan CQ (2008b) CO2 bio- mitigation using microalgae. Appl Microbiol Biotechnol 79:707–718

    CAS  Google Scholar 

  • Wang J, Xu S, Xiao B, Xu M, Yang L et al (2013) Influence of catalyst and temperature on gasification performance of pig compost for hydrogen-rich gas production. Int J Hydrog Energy 38:14200–14207

    CAS  Google Scholar 

  • Willquist K, Pawar SS, Van Niel EW (2011) Reassessment of hydrogen tolerance in Caldicellulosiruptor saccharolyticus. Microb Cell Fact 10:111

    CAS  Google Scholar 

  • Wu X, Yao W, Zhu J (2010) Effect of pH on continuous biohydrogen production from liquid swine manure with glucose supplement using an anaerobic sequencing batch reactor. Int J Hydrog Energy 35:6592–6599

    CAS  Google Scholar 

  • Wu X, Lin H, Zhu J (2013) Optimization of continuous hydrogen production from co-fermenting molasses with liquid swine manure in an anaerobic sequencing batch reactor. Bioresour Technol 136:351–359

    CAS  Google Scholar 

  • Xing Y, Li Z, Fan Y, Hou H (2010) Biohydrogen production from dairy manures with acidification pretreatment by anaerobic fermentation. Environ Sci Pollut Res Int 17:392–399

    CAS  Google Scholar 

  • Yang G, Hu Y, Wang J (2019) Biohydrogen production from co-fermentation of fallen leaves and sewage sludge. Bioresour Technol 285:121342

    CAS  Google Scholar 

  • Yokoi H, Maki R, Hirose J, Hayashi S (2002) Microbial production of hydrogen from starch manufacturing wastes. Biomass Bioenergy 22:89–95

    Google Scholar 

  • Yokoyama H, Waki M, Moriya N, Yasuda T, Tanaka Y et al (2007) Effect of fermentation temperature on hydrogen production from cow waste slurry by using anaerobic microflora within the slurry. Appl Microbiol Biotechnol 74:474–483

    CAS  Google Scholar 

  • Yoon JH, Sim SJ, Kim MS, Park TH (2002) High cell density culture of Anabaena variabilis using repeated injections of carbon dioxide for the production of hydrogen. Int J Hydrog Energy 27:1265–1270

    CAS  Google Scholar 

  • Zhang ML, Fan YT, Xing Y, Pan CM, Zhang GS et al (2007a) Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures. Biomass Bioenergy 31:250–254

    CAS  Google Scholar 

  • Zhang R, El-Mashad HM, Hartman K, Wang F, Liu G et al (2007b) Characterization of food waste as feedstock for anaerobic digestion. Bioresour Technol 98:929–939

    CAS  Google Scholar 

  • Zhang T, Jiang D, Zhang H, Jing Y, Tahir N et al (2019) Comparative study on bio-hydrogen production from corn stover: photo-fermentation, dark-fermentation and dark-photo co-fermentation. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2019.04.170

    Article  Google Scholar 

  • Zhu GF, Wu P, Wei QS, Lin J, Gao YL et al (2010) Biohydrogen production from purified terephthalic acid (PTA) processing wastewater by anaerobic fermentation using mixed microbial communities. Int J Hydrog Energy 35:8350–8356

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank all who assisted in conducting this work.

Funding

The authors received no specific funding from any agency or organization toward making of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Aravind.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Editorial responsibility: M. Abbaspour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamaraj, M., Ramachandran, K.K. & Aravind, J. Biohydrogen production from waste materials: benefits and challenges. Int. J. Environ. Sci. Technol. 17, 559–576 (2020). https://doi.org/10.1007/s13762-019-02577-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-019-02577-z

Keywords

Navigation