Skip to main content
Log in

A simple and rapid reverse-phase high-performance liquid chromatographic method for the determination of propineb and tricyclazole pesticides from the wettable powder formulation

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

A simple and rapid reverse-phase high-performance liquid chromatographic method was used for the determination of propineb and tricyclazole by pre-column derivatization with ethyl iodide. The factors affecting the derivatization reaction and separation conditions were carefully evaluated and optimized. The optimum derivatization reaction conditions were as follows: reaction time = 15 min, reaction temperature = 40 °C, concentration of ethylenediaminetetraacetic acid solution = 30 mM, pH of ethylenediaminetetraacetic acid solution = 10 and volume of ethyl iodide = 0.5 mL. The method was validated as per the Directorate-General Health and Consumer Protection and International Conference on Harmonization guidelines concerning system suitability, specificity, linearity, precision, accuracy, robustness, limit of detection and limit of quantification. The validated method was successfully applied to the commercially available pesticide formulations, yielding excellent and precise results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data are available upon request from the corresponding author.

Abbreviations

RP-HPLC:

Reverse-phase high-performance liquid chromatography

PDA:

Photodiode array detector

EDTA:

Ethylenediaminetetraacetic acid

mM:

Millimolar

WP:

Wettable powder

STD. DEV.:

Standard deviation

% RSD:

Percentage relative standard deviation

LOD:

Limit of detection

LOQ:

Limit of quantification

W:

Number of weights

RT:

Retention time

A. I.:

Active ingredient

SANCO:

Directorate-General Health and Consumer Protection

ICH:

International Conference on Harmonization

References

  1. World Health Organization (WHO), Pesticides residues in food, evaluations part II-toxicology, Switzerland. (1993), http://www.inchem.org/documents/jmpr/jmpmono/v93pr01.htm. Accessed 1 June 2018

  2. G. Crnogorac, W. Schwack, Residue analysis of dithiocarbamate fungicides. TrAC Trends Anal. Chem. 28(1), 40–50 (2009)

    Article  CAS  Google Scholar 

  3. E.D. Caldas, J. Tressou, P.E. Boon, Dietary exposure of Brazilian consumers to dithiocarbamate pesticides—a probabilistic approach. Food Chem. Toxicol. 44(9), 1562–1571 (2006)

    Article  CAS  PubMed  Google Scholar 

  4. C. Tomlin, The Pesticide Manual, 11th edn. (British Crop Protection Council, Surrey, 1997), pp.1239–1241

    Google Scholar 

  5. L.G. Peterson, Tricyclazole for control of Pyricularia oryzae on rice: the relationship of the mode of action and disease occurrence and development, in Pest Management in Rice (Springer, Dordrecht, 1990), pp. 122–130

  6. J.D. Froyd, L.R. Guse, Y. Kushiro, Methods of applying tricyclazole for control. Phytopathology 68, 818–822 (1978)

    Article  Google Scholar 

  7. J.D. Froyd, C.J. Paget, L.R. Guse, B.A. Dreikorn, J.L. Pafford, Tricyclazole: a new systemic fungicide for control of Pyricularia oryzae on rice. Phytopathology 66(1), 135–141 (1976)

    Google Scholar 

  8. Collaborative international analytical pesticides council: analysis of technical and formulated pesticides: propineb (CIPAC 177/TC/M/3), in CIPAC Handbook, vol H, p. 236

  9. K. Pszczolinska, J. Czieszowic, Analysis of dithiocarbamate residues in fruits. Progress Plant Prot. 60(4), 283–289 (2020)

    CAS  Google Scholar 

  10. M. Kaur, V. Kaur, A.K. Malik, N. Verma, B. Singh, A.L. Rao, Development of a derivative spectrophotometric method for the determination of fungicide zinc ethylenebisdithiocarbamate using sodium molybdate. J. Braz. Chem. Soc. 20, 993–998 (2009)

    Article  CAS  Google Scholar 

  11. E.D. Caldas, M.H. Conceiçao, M.C. Miranda, L.C. de Souza, J.F. Lima, Determination of dithiocarbamate fungicide residues in food by a spectrophotometric method using a vertical disulfide reaction system. J. Agric. Food Chem. 49(10), 4521–4525 (2001)

    Article  CAS  PubMed  Google Scholar 

  12. R. Kesari, V.K. Gupta, A sensitive spectrophotometric method for the determination of dithiocarbamate fungicide and its application in environmental samples. Talanta 45(6), 1097–1102 (1998)

    Article  CAS  PubMed  Google Scholar 

  13. I.R. Pizzutti, A.D. Kok, R.C. Silva, G.N. Rohers, Comparison between three chromatographic (GC-ECD, GC-PFPD and GC-ITD-MS) methods and a UV–vis spectrophotometric method for the determination of dithiocarbamates in lettuce. J. Braz. Chem. Soc. 28, 775–781 (2017)

    CAS  Google Scholar 

  14. V.K. Patil, N.D. Dhande, N.H. Petha, H.P. Narkhede, A simple derivatization RP-HPLC method for the simultaneous determination of zineb and hexaconazole in pesticide formulation using a PDA detector. Anal. Methods 13(35), 3930–3939 (2021)

    Article  CAS  PubMed  Google Scholar 

  15. J. Al-Alam, L. Bom, A. Chbani, Z. Fajloun, M. Millet, Analysis of dithiocarbamate fungicides in vegetable matrices using HPLC–UV followed by atomic absorption spectrometry. J. Chromatogr. Sci. 55(4), 429–435 (2017)

    CAS  PubMed  Google Scholar 

  16. L. Zhou, J. Xu, L. Luan, J. Ma, Y. Gong, D. Qin, C. Pan, Optimization and validation of a method based on derivatization with methylating agent followed by HPLC-DAD for determining dithiocarbamates residues. Acta Chromatogr. 25(4), 613–625 (2013)

    Article  CAS  Google Scholar 

  17. H. Nakazawa, Y. Tsuda, K. Ito, Y. Yoshimura, H. Kubo, H. Homma, Determination of dithiocarbamate fungicides by reversed-phase ion-pair liquid chromatography with chemiluminescence detection. J. Liq. Chromatogr. Relat. Technol. 27(4), 705–713 (2004)

    Article  CAS  Google Scholar 

  18. N. Kibune, N. Higashisaka, M. Nakamura, Y. Maekawa, Rapid analysis method of dithiocarbamate pesticides in agricultural products by high performance liquid chromatography. Food Hyg. Saf. Sci. 36(2), 244–51_1 (1995)

    Article  CAS  Google Scholar 

  19. K.H. Gustafsson, R.A. Thompson, High-pressure liquid chromatographic determination of fungicidal dithiocarbamates. J. Agric. Food Chem. 29(4), 729–732 (1981)

    Article  CAS  PubMed  Google Scholar 

  20. S. Chawla, H.K. Patel, R.L. Kalasariya, P.G. Shah, Validation and analysis of thiram, a dithiocarbamate, as CS2 from soybean (Glycine max) samples on GC–MS. Int. J. Environ. Sci. Technol. 16(11), 6991–6998 (2019)

    Article  CAS  Google Scholar 

  21. S. Mujawar, S.C. Utture, E. Fonseca, J. Matarrita, K. Banerjee, Validation of a GC–MS method for the estimation of dithiocarbamate fungicide residues and safety evaluation of mancozeb in fruits and vegetables. Food Chem. 150, 175–181 (2014)

    Article  CAS  PubMed  Google Scholar 

  22. G. Suresh, P. Ravi, A. Ramesh, Determination of dithiocarbamate residues in aquatic tox medium by gas chromatography electron ionisation mass spectrometric method. J. Pharm. Chem. 5(4), 9–13 (2011)

    CAS  Google Scholar 

  23. J. Li, C. Dong, Q. Yang, W. An, Z. Zheng, B. Jiao, Simultaneous determination of ethylenebisdithiocarbamate (EBDC) and propylenebisdithiocarbamate (PBDC) fungicides in vegetables, fruits, and mushrooms by ultra-high-performance liquid chromatography tandem mass spectrometry. Food Anal. Methods 12(9), 2045–2055 (2019)

    Article  Google Scholar 

  24. L. Vaclavik, J.J. Shippar, U. Koesukwiwat, K. Mastovska, Method development and validation for low-level propineb and propylenethiourea analysis in baby food, infant formula and related matrices using liquid chromatography–tandem mass spectrometry. Food Addit. Contam. Part A 35(12), 2387–2399 (2018)

    Article  CAS  Google Scholar 

  25. C. Oellig, W. Schwack, Comparison of HILIC columns for residue analysis of dithiocarbamate fungicides. J. Liq. Chromatogr. Relat. Technol. 40(8), 415–418 (2017)

    Article  CAS  Google Scholar 

  26. A. Kakitani, T. Yoshioka, Y. Nagatomi, K. Harayama, A rapid and sensitive analysis of dithiocarbamate fungicides using modified QuEChERS method and liquid chromatography–tandem mass spectrometry. J. Pestic. Sci. 42(4), 145–150 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. B. Schmidt, H.B. Christensen, A. Petersen, J.J. Sloth, M.E. Poulsen, Method validation and analysis of nine dithiocarbamates in fruits and vegetables by LC-MS/MS. Food Addit. Contam. Part A. 30(7), 1287–1298 (2013)

    Article  CAS  Google Scholar 

  28. J.V. Rohit, S.K. Kailasa, 5-Sulfo anthranilic acid dithiocarbamate functionalized silver nanoparticles as a colorimetric probe for the simple and selective detection of tricyclazole fungicide in rice samples. Anal. Methods 6(15), 5934–5941 (2014)

    Article  CAS  Google Scholar 

  29. H. Tang, D. Fang, Q. Li, P. Cao, J. Geng, T. Sui, X. Wang, J. Iqbal, Y. Du, Determination of tricyclazole content in paddy rice by surface enhanced Raman spectroscopy. J. Food Sci. 77(5), T105–T109 (2012)

    Article  CAS  PubMed  Google Scholar 

  30. BIS IS 15982:2013 and IS 15985:2013, Tricyclazole content is determined by gas chromatography using internal standard technique

  31. K. Ishiguro, S. Takechi, A. Hashimoto, Behavior of tricyclazole residue on rice leaves and its efficacy for rice leaf blast control in the field. Jpn. J. Phytopathol. 58(2), 259–266 (1992)

    Article  CAS  Google Scholar 

  32. J.R. Koons, D.P. Rainey, W.L. Sullivan, Determination of tricyclazole and alcohol metabolite in rice grain and straw. J. Agric. Food Chem. 33(3), 552–555 (1985)

    Article  CAS  Google Scholar 

  33. E.D. Tsochatzis, U. Menkissoglu-Spiroudi, D.G. Karpouzas, R. Tzimou-Tsitouridou, A multi-residue method for pesticide residue analysis in rice grains using matrix solid-phase dispersion extraction and high-performance liquid chromatography–diode array detection. Anal. Bioanal. Chem. 397(6), 2181–2190 (2010)

    Article  CAS  PubMed  Google Scholar 

  34. D.T. Nhung, T.K. Phong, H. Watanabe, Determination of tricyclazole in water using solid phase extraction and liquid chromatography. J. Liq. Chromatogr. Relat. Technol. 32(18), 2712–20 (2009)

    Article  CAS  Google Scholar 

  35. T.K. Phong, D.T. Nhung, K. Yamazaki, K. Takagi, H. Watanabe, Behavior of sprayed tricyclazole in rice paddy lysimeters. Chemosphere 74(8), 1085–1089 (2009)

    Article  CAS  PubMed  Google Scholar 

  36. S.P. Bao, Evaluation on uncertainty for the contents of tricyclazole in 75% WP by HPLC. Mod. Agrochem. 8(3), 28–30 (2009)

    CAS  Google Scholar 

  37. Y. Wang, H.Y. Jin, S.C. Ma, J. Lu, R.C. Lin, Determination of 195 pesticide residues in Chinese herbs by gas chromatography–mass spectrometry using analyte protectants. J. Chromatogr. A 1218(2), 334–342 (2011)

    Article  CAS  PubMed  Google Scholar 

  38. L. Pareja, M. Colazzo, A. Pérez-Parada, N. Besil, H. Heinzen, B. Böcking, V. Cesio, A.R. Fernández-Alba, Occurrence and distribution study of residues from pesticides applied under controlled conditions in the field during rice processing. J. Agric. Food Chem. 60(18), 4440–4448 (2012)

    Article  CAS  PubMed  Google Scholar 

  39. EUROPEAN COMMISSION Directorate General Health and Consumer Protection, Guidance for generating and reporting methods of analysis of technical Material and Preparations, SANCO/3030/99 rev.5, 22/03/2019.

  40. ICH Harmonised Tripartite Guideline on the Validation of analytical procedures: text and methodology Q2 (R1) (2005)

  41. H.C. Hsu, C.S. Chien, Validation of analytical methods: a simple model for HPLC assay methods. J. Food Drug Anal. 2(3), 161–176 (1994)

    CAS  Google Scholar 

  42. Center for Drug Evaluation and Research U.S. Food and Drug Administration, Reviewer Guidance Validation of Chromatographic Methods (FDA, Rockville, 1994)

    Google Scholar 

Download references

Acknowledgements

The authors are sincerely thankful and grateful to Indofil Industries Limited, Thane, School of Chemical Sciences, KBCNMU, Jalgaon, and Smt. P. K. Kotecha Mahila Mahavidyalaya, Bhusawal, for providing the research facilities and technical support and for granting the necessary resources to carry out this research work with keen interest, help and enthusiastic environment.

Funding

This research received no funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception, design, analysis and interpretation of data substantially.

Corresponding authors

Correspondence to Vilas K. Patil or Hemant P. Narkhede.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Ethical approval

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, V.K., Chandorkar, J.G., Seshadri, D.T. et al. A simple and rapid reverse-phase high-performance liquid chromatographic method for the determination of propineb and tricyclazole pesticides from the wettable powder formulation. J IRAN CHEM SOC 20, 2587–2594 (2023). https://doi.org/10.1007/s13738-023-02857-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-023-02857-z

Keywords

Navigation