Skip to main content

Advertisement

Log in

Structural and dynamical characterization of water on Ti2C MXene surface: a molecular dynamics approach

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In the present work, the structural and dynamical behaviors of water nanodroplet on MXene Ti2C substrate were investigated using molecular dynamics simulation. Contact angle calculation has given evidence for the hydrophilicity of the substrate. The energy contour map showed that MXene substrate has maximum and minimum regions for carbon and titanium, respectively. Energy contour map analysis indicates the presence of water molecules in the minimum energy regions. Furthermore, the oxygen atoms are reoriented to increase the contact area between MXene and water that caused disorder on the interface. The study of hydrogen bonds and the lifetime demonstrated short durability of the bonds. The study of the dynamical behavior of water molecules revealed an increase in their movement at the interface due to the absence of hydrogen bond network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Naguib et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011)

    Article  CAS  Google Scholar 

  2. M. Ghidiu et al., Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516(7529), 78–81 (2014)

    Article  CAS  Google Scholar 

  3. B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2(2), 1–17 (2017)

    Article  Google Scholar 

  4. H. Kim et al., Thermoelectric properties of two-dimensional molybdenum-based MXenes. Chem. Mater. 29(15), 6472–6479 (2017)

    Article  CAS  Google Scholar 

  5. K.S. Novoselov et al., Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. 102(30), 10451–10453 (2005)

    Article  CAS  Google Scholar 

  6. M. Naguib, Y. Gogotsi, Synthesis of two-dimensional materials by selective extraction. Acc. Chem. Res. 48(1), 128–135 (2015)

    Article  CAS  Google Scholar 

  7. M. Alhabeb et al., Selective etching of silicon from Ti3SiC2 (MAX) to obtain 2D titanium carbide (MXene). Angew. Chem. 130(19), 5542–5546 (2018)

    Article  Google Scholar 

  8. Y. Tian et al., Flexible and free-standing 2D titanium carbide film decorated with manganese oxide nanoparticles as a high volumetric capacity electrode for supercapacitor. J. Power Sour. 359, 332–339 (2017)

    Article  CAS  Google Scholar 

  9. V.M.H. Ng et al., Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications. J. Mater. Chem. A 5(7), 3039–3068 (2017)

    Article  Google Scholar 

  10. C. Peng et al., Hybrids of two-dimensional Ti3C2 and TiO2 exposing 001 facets toward enhanced photocatalytic activity. ACS Appl. Mater. Interfaces 8(9), 6051–6060 (2016)

    Article  CAS  Google Scholar 

  11. X. Wang et al., A new etching environment (FeF3/HCl) for the synthesis of two-dimensional titanium carbide MXenes: a route towards selective reactivity versus water. J. Mater. Chem. A 5(41), 22012–22023 (2017)

    Article  CAS  Google Scholar 

  12. Y. Dong et al., Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes. Adv. Mater. 30(10), 1705714 (2018)

    Article  Google Scholar 

  13. G. Li et al., Equilibrium and non-equilibrium free carrier dynamics in 2D Ti3C2Tx MXenes: THz spectroscopy study. 2D Mater. 5(3), 035043 (2018)

    Article  Google Scholar 

  14. D. Er et al., Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Appl. Mater. Interfaces. 6(14), 11173–11179 (2014)

    Article  CAS  Google Scholar 

  15. M. Ghidiu et al., Alkylammonium cation intercalation into Ti3C2 (MXene): effects on properties and ion-exchange capacity estimation. Chem. Mater. 29(3), 1099–1106 (2017)

    Article  CAS  Google Scholar 

  16. M. Khazaei et al., Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv. Func. Mater. 23(17), 2185–2192 (2013)

    Article  CAS  Google Scholar 

  17. M.R. Lukatskaya et al., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341(6153), 1502–1505 (2013)

    Article  CAS  Google Scholar 

  18. M. Naguib et al., MXene: a promising transition metal carbide anode for lithium-ion batteries. Electrochem. Commun. 16(1), 61–64 (2012)

    Article  CAS  Google Scholar 

  19. Y. Dong et al., Metallic MXenes: a new family of materials for flexible triboelectric nanogenerators. Nano Energy 44, 103–110 (2018)

    Article  CAS  Google Scholar 

  20. S. Chertopalov, V.N. Mochalin, Environment-sensitive photoresponse of spontaneously partially oxidized Ti3C2 MXene thin films. ACS Nano 12(6), 6109–6116 (2018)

    Article  CAS  Google Scholar 

  21. X. Ma et al., Revealing the effects of terminal groups of MXene on the water desalination performance. J. Membr. Sci. 647, 120334 (2022)

    Article  CAS  Google Scholar 

  22. Z.-K. Li et al., Ultra-thin titanium carbide (MXene) sheet membranes for high-efficient oil/water emulsions separation. J. Membr. Sci. 592, 117361 (2019)

    Article  Google Scholar 

  23. V. Borysiuk, V.N. Mochalin, Thermal stability of two-dimensional titanium carbides Tin+ 1Cn (MXenes) from classical molecular dynamics simulations. MRS Commun. 9(1), 203–208 (2019)

    Article  CAS  Google Scholar 

  24. W. Zaman et al., In situ investigation of water on MXene interfaces. Proc. Natl. Acad. Sci. 118(49), e2108325118 (2021)

    Article  CAS  Google Scholar 

  25. N.C. Osti et al., Effect of metal ion intercalation on the structure of MXene and water dynamics on its internal surfaces. ACS Appl. Mater. Interfaces 8(14), 8859–8863 (2016)

    Article  CAS  Google Scholar 

  26. G. Liu et al., Ultrathin two-dimensional MXene membrane for pervaporation desalination. J. Membr. Sci. 548, 548–558 (2018)

    Article  CAS  Google Scholar 

  27. H. Zhou et al., Study on contact angles and surface energy of MXene films. RSC Adv. 11(10), 5512–5520 (2021)

    Article  CAS  Google Scholar 

  28. Z. Ling et al., Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. 111(47), 16676–16681 (2014)

    Article  CAS  Google Scholar 

  29. X. Jin et al., Superior role of MXene nanosheet as hybridization matrix over graphene in enhancing interfacial electronic coupling and functionalities of metal oxide. Nano Energy 53, 841–848 (2018)

    Article  CAS  Google Scholar 

  30. W. Yang et al., Multifunctional MXene/natural rubber composite films with exceptional flexibility and durability. Compos. B Eng. 188, 107875 (2020)

    Article  CAS  Google Scholar 

  31. J. Liu et al., Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29(38), 1702367 (2017)

    Article  Google Scholar 

  32. N.-N. Wang et al., Robust, lightweight, hydrophobic, and fire-retarded polyimide/MXene aerogels for effective oil/water separation. ACS Appl. Mater. Interfaces 11(43), 40512–40523 (2019)

    Article  CAS  Google Scholar 

  33. Z. Fan et al., A nanoporous MXene film enables flexible supercapacitors with high energy storage. Nanoscale 10(20), 9642–9652 (2018)

    Article  CAS  Google Scholar 

  34. M.Q. Zhao et al., Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv. Mater. 29(37), 1702410 (2017)

    Article  Google Scholar 

  35. S. Chen et al., Photo-responsive Azobenzene-MXene hybrid and its optical modulated electrochemical effects. J. Power Sour. 414, 192–200 (2019)

    Article  CAS  Google Scholar 

  36. J. Liu et al., Ultrastrong and highly conductive MXene-based films for high-performance electromagnetic interference shielding. Adv. Electron. Mater. 6(1), 1901094 (2020)

    Article  CAS  Google Scholar 

  37. K.M. Kang et al., Selective molecular separation on Ti3C2T x–graphene oxide membranes during pressure-driven filtration: comparison with graphene oxide and MXenes. ACS Appl. Mater. Interfaces. 9(51), 44687–44694 (2017)

    Article  CAS  Google Scholar 

  38. S. Wei et al., Two-dimensional graphene oxide/MXene composite lamellar membranes for efficient solvent permeation and molecular separation. J. Membr. Sci. 582, 414–422 (2019)

    Article  CAS  Google Scholar 

  39. R. Bian, S. Xiang, D. Cai, Fast treatment of MXene films with isocyanate to give enhanced stability. ChemNanoMat 6(1), 64–67 (2020)

    Article  CAS  Google Scholar 

  40. L. Ding et al., A two-dimensional lamellar membrane: MXene nanosheet stacks. Angew. Chem. Int. Ed. 56(7), 1825–1829 (2017)

    Article  CAS  Google Scholar 

  41. T. Zhang et al., Synthesis of two-dimensional Ti3C2Tx MXene using HCl+ LiF etchant: enhanced exfoliation and delamination. J. Alloy. Compd. 695, 818–826 (2017)

    Article  CAS  Google Scholar 

  42. F. Du et al., Environmental friendly scalable production of colloidal 2D titanium carbonitride MXene with minimized nanosheets restacking for excellent cycle life lithium-ion batteries. Electrochim. Acta 235, 690–699 (2017)

    Article  CAS  Google Scholar 

  43. J. Luo et al., Tunable pseudocapacitance storage of MXene by cation pillaring for high performance sodium-ion capacitors. J. Mater. Chem. A 6(17), 7794–7806 (2018)

    Article  CAS  Google Scholar 

  44. V. Croutch, R. Hartley, Adhesion of ice to coatings and the performance of ice release coatings. JCT, J. Coat. Technol. 64(815), 41–53 (1992)

    CAS  Google Scholar 

  45. E. Fadeeva et al., Structuring of biomaterial surfaces with ultrashort pulsed laser radiation, in Laser Surface Modification of Biomaterials. (Elsevier, 2016), pp.145–172

    Chapter  Google Scholar 

  46. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995)

    Article  CAS  Google Scholar 

  47. W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics. J. Mol. Graph. 14(1), 33–38 (1996)

    Article  CAS  Google Scholar 

  48. W.G. Hoover, Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31(3), 1695 (1985)

    Article  CAS  Google Scholar 

  49. J.E. Lennard-Jones, Cohesion. Proc. Phys. Soc. 43(5), 61 (1931)

    Article  Google Scholar 

  50. W.L. Jorgensen et al., Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79(2), 926–935 (1983)

    Article  CAS  Google Scholar 

  51. K.D. Hammonds, J.-P. Ryckaert, On the convergence of the SHAKE algorithm. Comput. Phys. Commun. 62(2–3), 336–351 (1991)

    Article  CAS  Google Scholar 

  52. E.S. Muckley et al., Multimodality of structural, electrical, and gravimetric responses of intercalated MXenes to water. ACS Nano 11(11), 11118–11126 (2017)

    Article  CAS  Google Scholar 

  53. T. Werder et al., On the water− carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes. J. Phys. Chem. B 107(6), 1345–1352 (2003)

    Article  CAS  Google Scholar 

  54. J. Zhang et al., Wetting and evaporation of salt-water nanodroplets: a molecular dynamics investigation. Phys. Rev. E 92(5), 052403 (2015)

    Article  Google Scholar 

  55. K. Ritos et al., Dynamics of nanoscale droplets on moving surfaces. Langmuir 29(23), 6936–6943 (2013)

    Article  CAS  Google Scholar 

  56. H. Yaghoubi, M. Foroutan, Molecular investigation of the wettability of rough surfaces using molecular dynamics simulation. Phys. Chem. Chem. Phys. 20(34), 22308–22319 (2018)

    Article  CAS  Google Scholar 

  57. A.L. Rabinovich, A.P. Lyubartsev, Bond orientation properties in lipid molecules of membranes: molecular dynamics simulations. J. Phys. Conf. Ser. 510, 012022 (2014)

    Article  CAS  Google Scholar 

  58. S. Bagheri et al., Molecular investigation of water adsorption on graphene and graphyne surfaces. Phys. E 90, 123–130 (2017)

    Article  CAS  Google Scholar 

  59. A. Luzar, D. Chandler, Hydrogen-bond kinetics in liquid water. Nature 379(6560), 55–57 (1996)

    Article  CAS  Google Scholar 

  60. S. Murail et al., Water permeation across artificial I-quartet membrane channels: from structure to disorder. Faraday Discuss. 209, 125–148 (2018)

    Article  CAS  Google Scholar 

  61. B.G. Levine, J.E. Stone, A. Kohlmeyer, Fast analysis of molecular dynamics trajectories with graphics processing units—Radial distribution function histogramming. J. Comput. Phys. 230(9), 3556–3569 (2011)

    Article  CAS  Google Scholar 

  62. S. Moghtadernejad, C. Lee, M. Jadidi, An introduction of droplet impact dynamics to engineering students. Fluids 5(3), 107 (2020)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masumeh Foroutan.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1238 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saayed, D., Foroutan, M. Structural and dynamical characterization of water on Ti2C MXene surface: a molecular dynamics approach. J IRAN CHEM SOC 20, 327–338 (2023). https://doi.org/10.1007/s13738-022-02661-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-022-02661-1

Keywords

Navigation