Skip to main content
Log in

Wetting behaviors of methanol, ethanol, and propanol on hydroxylated SiO2 substrate

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Water molecules could form a liquid droplet on the water monolayer on a specific solid surface, which has been referred to as “ordered water monolayer that does not completely wet water” at room temperature. In contrast to the water molecules, the family of alcohol molecules has the same OH polar head and various lengths of their hydrophobic nonpolar tail; the length of the hydrophobic tail can affect the hydrophobic effect. In this study, using molecular dynamics simulations, we investigated the wetting behaviors of methanol, ethanol, and propanol molecules adsorbed on a SiO2 surface. The results showed that the methanol, ethanol, and propanol molecules could form an ordered monolayer on the SiO2 surface and a droplet on top of this monolayer, with different contact angles. The differences in the contact angles were attributed to the differences in the interactions between the alcohol monolayer and droplet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C.K. Wu, L.J. Chen, Wetting behavior of mixtures of water and nonionic polyoxyethylene alcohol. Langmuir 21, 6883–6890 (2005). https://doi.org/10.1021/la050691i

    Article  Google Scholar 

  2. S.J. Shao, P. Guo, L. Zhao et al., Ordered water monolayer on ionic model substrates studied by molecular dynamics simulations. Nucl. Sci. Tech. 25, 020502 (2014). https://doi.org/10.13538/j.1001-8042/nst.25.020502

    Google Scholar 

  3. G.L. Chang, D.G. Wang, Y.Y. Zhang et al., Ald-coated ultrathin al2o3 film on bivo4 nanoparticles for efficient pec water splitting. Nucl. Sci. Tech. 27, 108 (2016). https://doi.org/10.1007/s41365-016-0122-6

    Article  Google Scholar 

  4. P.I. Girginova, A.L. Daniel-da-Silva, C.B. Lopes et al., Silica coated magnetite particles for magnetic removal of hg 2+ from water. J. Colloid Interface Sci. 345, 234–240 (2010). https://doi.org/10.1016/j.jcis.2010.01.087

    Article  Google Scholar 

  5. H. Yang, R. Xu, X. Xue et al., Hybrid surfactant-templated mesoporous silica formed in ethanol and its application for heavy metal removal. J. Hazard. Mater. 152, 690–698 (2008). https://doi.org/10.1016/j.jhazmat.2007.07.060

    Article  Google Scholar 

  6. Y. Sun, L. Duan, Z. Guo et al., An improved way to prepare superparamagnetic magnetite-silica core-shell nanoparticles for possible biological application. J. Magn. Magn. Mater. 285, 65–70 (2005). https://doi.org/10.1016/j.jmmm.2004.07.016

    Article  Google Scholar 

  7. X. Ren, B. Zhou, C. Wang, Promoting effect of ethanol on dewetting transition in the confined region of melittin tetramer. Nucl. Sci. Tech. 23, 252–256 (2012). https://doi.org/10.13538/j.1001-8042/nst.23.252-256

    Google Scholar 

  8. P. Wang, R.B. Zhong, M. Yuan et al., Mercury (ii) detection by water-soluble photoluminescent ultra-small carbon dots synthesized from cherry tomatoes. Nucl. Sci. Tech. 27, 35 (2016). https://doi.org/10.1007/s41365-016-0038-1

    Article  Google Scholar 

  9. W. Xu, Y.S. Tu, C.L. Wang et al., Water transport through t-shaped carbon nanotubes. Nucl. Sci. Tech. 22, 307–310 (2011). https://doi.org/10.13538/j.1001-8042/nst.22.307-310

    Google Scholar 

  10. J.J. Karnes, E.A. Gobrogge, R.A. Walker et al., Unusual structure and dynamics at silica/methanol and silica/ethanol interfaces: a molecular dynamics and nonlinear optical study. J. Phys. Chem. B 120, 1569–1578 (2015). https://doi.org/10.1021/acs.jpcb.5b07777

    Article  Google Scholar 

  11. E.A. Gobrogge, R.A. Walker, Binary solvent organization at silica/liquid interfaces: preferential ordering in acetonitrile–methanol mixtures. J. Phys. Chem. Lett 5, 2688–2693 (2014). https://doi.org/10.1021/jz500906d

    Article  Google Scholar 

  12. M.R. Brindza, R.A. Walker, Differentiating solvation mechanisms at polar solid/liquid interfaces. J. Am. Chem. Soc. 131, 6207–6214 (2009). https://doi.org/10.1021/ja810117f

    Article  Google Scholar 

  13. A.R. Siler, R.A. Walker, Effects of solvent structure on interfacial polarity at strongly associating silica/alcohol interfaces. J. Phys. Chem. C 115, 9637–9643 (2011). https://doi.org/10.1021/jp201153z

    Article  Google Scholar 

  14. T. Cheng, H. Sun, Adsorption of ethanol vapor on mica surface under different relative humidities: a molecular simulation study. J. Phys. Chem. C 116, 16436–16446 (2012). https://doi.org/10.1021/jp3020595

    Article  Google Scholar 

  15. A. Phan, D.R. Cole, A. Striolo, Liquid ethanol simulated on crystalline alpha alumina. J. Phys. Chem. B 117, 3829–3840 (2013). https://doi.org/10.1021/jp312238d

    Article  Google Scholar 

  16. H.L. Rossetto, J. Bowen, K. Kendall, Adhesion of alumina surfaces through confined water layers containing various molecules. Langmuir 28, 4648–4653 (2012). https://doi.org/10.1021/la2045064

    Article  Google Scholar 

  17. I.S. Pasarín, M. Yang, N. Bovet et al., Molecular ordering of ethanol at the calcite surface. Langmuir 28, 2545–2550 (2012). https://doi.org/10.1021/la2021758

    Article  Google Scholar 

  18. D. Wu, A. Navrotsky, Probing the energetics of organic–nanoparticle interactions of ethanol on calcite. Proc. Natl. Acad. Sci. USA. 112, 5314–5318 (2015). https://doi.org/10.1073/pnas.1505874112

    Article  Google Scholar 

  19. J. Sung, G.A. Waychunas, Y.R. Shen, Surface-induced anisotropic orientations of interfacial ethanol molecules at air/sapphire(1\(\overline{1}\)02) and ethanol/sapphire(1\(\overline{1}\)02) interfaces. J. Phys. Chem. Lett 2, 1831–1835 (2011). https://doi.org/10.1021/jz2006397

    Article  Google Scholar 

  20. C. Wang, H. Lu, Z. Wang et al., Stable liquid water droplet on a water monolayer formed at room temperature on ionic model substrates. Phys. Rev. Lett. 103, 137801 (2009). https://doi.org/10.1103/PhysRevLett.103.137801

    Article  Google Scholar 

  21. C.L. Wang, H.P. Fang, “Ordered water monolayer that does not completely wet water” at room temperature and molecular-scale hydrophilicity (in chinese). Sci. China-Phys. Mech. Astron 46, 74–83 (2016). https://doi.org/10.1360/SSPMA2015-00603

    Google Scholar 

  22. C. Wang, Y. Yang, H. Fang, Recent advances on “ordered water monolayer that does not completely wet water” at room temperature. Sci. China-Phys. Mech. Astron 57, 802–809 (2014). https://doi.org/10.1007/s11433-014-5415-3

    Article  Google Scholar 

  23. C. Qi, B. Zhou, C. Wang et al., A nonmonotonic dependence of the contact angles on the surface polarity for a model solid surface. Phys. Chem. Chem. Phys. 19, 6665–6670 (2017). https://doi.org/10.1039/c6cp08275k

    Article  Google Scholar 

  24. P. Guo, Y. Tu, J. Yang et al., Water-cooh composite structure with enhanced hydrophobicity formed by water molecules embedded into carboxyl-terminated self-assembled monolayers. Phys. Rev. Lett. 115, 186101 (2015). https://doi.org/10.1103/PhysRevLett.115.186101

    Article  Google Scholar 

  25. D.T. Limmer, A.P. Willard, P. Madden et al., Hydration of metal surfaces can be dynamically heterogeneous and hydrophobic. Proc. Natl. Acad. Sci. USA. 110, 4200–4205 (2013). https://doi.org/10.1073/pnas.1301596110

    Article  Google Scholar 

  26. Z. Xu, Y. Gao, C. Wang et al., Nanoscale hydrophilicity on metal surfaces at room temperature: coupling lattice constants and crystal faces. J. Phys. Chem. C 119, 20409–20415 (2015). https://doi.org/10.1021/acs.jpcc.5b04237

    Article  Google Scholar 

  27. J. Lützenkirchen, R. Zimmermann, T. Preočanin et al., An attempt to explain bimodal behaviour of the sapphire c-plane electrolyte interface. Adv. Colloid Interface Sci. 157, 61–74 (2010). https://doi.org/10.1016/j.cis.2010.03.003

    Article  Google Scholar 

  28. B. Rotenberg, A.J. Patel, D. Chandler, Molecular explanation for why talc surfaces can be both hydrophilic and hydrophobic. J. Am. Chem. Soc. 133, 20521–20527 (2011). https://doi.org/10.1021/ja208687a

    Article  Google Scholar 

  29. A. Phan, T.A. Ho, D. Cole et al., Molecular structure and dynamics in thin water films at metal oxide surfaces: magnesium, aluminum, and silicon oxide surfaces. J. Phys. Chem. C 116, 15962–15973 (2012). https://doi.org/10.1021/jp300679v

    Article  Google Scholar 

  30. L. Zhao, C. Wang, J. Liu et al., Reversible state transition in nanoconfined aqueous solutions. Phys. Rev. Lett. 112, 078301 (2014). https://doi.org/10.1103/PhysRevLett.112.078301

    Article  Google Scholar 

  31. L. Zhao, C.L. Wang, H.P. Fang et al., The gibbs-free-energy landscape for the solute association in nanoconfined aqueous solutions. Nucl. Sci. Tech. 26, 030504 (2015). https://doi.org/10.13538/j.1001-8042/nst.26.030504

    Google Scholar 

  32. C. Wang, L. Zhao, D. Zhang et al., Upright or flat orientations of the ethanol molecules on a surface with charge dipoles and the implication for wetting behavior. J. Phys. Chem. C 118, 1873–1878 (2014). https://doi.org/10.1021/jp4062016

    Article  Google Scholar 

  33. X. Nie, J. Chen, N. Sheng et al., Effect of water molecules on nanoscale wetting behaviour of molecular ethanol on hydroxylated SiO2 substrate. Mol. Simul. 43, 1377–1384 (2017). https://doi.org/10.1080/08927022.2017.1353692

    Article  Google Scholar 

  34. R.T. Cygan, J.-J. Liang, A.G. Kalinichev, Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. J. Phys. Chem. B 108, 1255–1266 (2004). https://doi.org/10.1021/jp0363287

    Article  Google Scholar 

  35. X. Ren, B. Zhou, C. Wang, Water-induced ethanol dewetting transition. J. Chem. Phys. 137, 024703 (2012). https://doi.org/10.1063/1.4733719

    Article  Google Scholar 

  36. X. Ren, C. Wang, B. Zhou et al., Ethanol promotes dewetting transition at low concentrations. Soft Matter 9, 4655–4660 (2013). https://doi.org/10.1039/C3SM00049D

    Article  Google Scholar 

  37. W.L. Jorgensen, D.S.M. And, J. Tiradorives, Development and testing of the opls all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996). https://doi.org/10.1021/ja9621760

    Article  Google Scholar 

  38. D. Van Der Spoel, E. Lindahl, B. Hess et al., Gromacs: fast, flexible, and free. J. Comput. Chem. 26, 1701–1718 (2005). https://doi.org/10.1002/jcc.20291

    Article  Google Scholar 

  39. C.-J. Shih, Q.H. Wang, S. Lin et al., Breakdown in the wetting transparency of graphene. Phys. Rev. Lett. 109, 176101 (2012). https://doi.org/10.1103/PhysRevLett.109.176101

    Article  Google Scholar 

  40. G. Vazquez, E. Alvarez, J.M. Navaza, Surface tension of alcohol water + water from 20 to 50. Degree. C. J. Chem. Eng. Data 40, 611–614 (1995). https://doi.org/10.1021/je00019a016

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Lei Wang.

Additional information

This study was supported by the National Natural Science Foundation of China (Nos. U1532260, 11674345, and 11504032), Key Research Program of Chinese Academy of Sciences (Nos. KJZD-EW-M03 and QYZDJ-SSW-SLH019), Youth Innovation Promotion Association CAS (Grant Number 2014233), Shanghai Supercomputer Center of China, Computer Network Information Center of Chinese Academy of Sciences, and Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, XC., Zhou, B., Wang, CL. et al. Wetting behaviors of methanol, ethanol, and propanol on hydroxylated SiO2 substrate. NUCL SCI TECH 29, 18 (2018). https://doi.org/10.1007/s41365-018-0364-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-018-0364-6

Keywords

Navigation