Skip to main content
Log in

TiO2/Bi2S3 ball-and-stick structure heterojunction prepared on FTO glass as a photoanode for solar cells

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

One-dimensional titanium dioxide (TiO2) nanorods (NRs) array are grown on transparent conductive fluorine-doped tin oxide (FTO) glass substrate by the simple hydrothermal method. Bi2S3 nanopatricles (NPs) are loaded in the TiO2/FTO by a hydrothermal deposition method to a novel ball-and-stick heterostructure for enhancing the photoelectrochemical (PEC) properties. The structures, morphologies and optical properties of the prepared films are characterized by XRD, FESEM, TEM and UV–Vis spectrometer. The photoelectrochemical properties of the composite films are studied. The results show that all of the obtained TiO2 films are monocrystalline with a rutile structure and grow along the c axis direction. Bi2S3 nanoparticles are successfully deposited on the top of the TiO2 NRs, forming a Bi2S3/TiO2 ball-and-stick structure heterojunction. The optical absorption edges of the prepared composite films are extended to the visible light range, and the absorption edges of the samples show an obvious redshift. The composite films exhibited better photoelectrochemical properties. The analysis of performance include linear voltammetry and transient photocurrent reveals that the photocurrent of Bi2S3/TiO2 NRs is the photocurrent of pure TiO2 NRs. All these results indicate the potential application of the novel TiO2 NRs in solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1

Similar content being viewed by others

References

  1. X. Wu f, S. Fang, Y. Zheng, J. Sun, K.L. Lv, Thiourea-modified TiO2 nanorods with enhanced photocatalytic activity. Molecules 21, 181–203 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. R. Mandal, S. Panja, Energy procedia: design and feasibility studies of a small scale grid connected solar PV power plant. Energy Procedia 90, 191–199 (2016)

    Article  Google Scholar 

  3. L.B. Yu, Z. Li, Y.B. Liu, F. Cheng, S.Q. Sun, Enhanced photoelectrochemical performance of CdSe/Mn-CdS/TiO2 nanorod arrays solar cell. Appl. Surf. Sci. 305, 359–365 (2014)

    Article  CAS  Google Scholar 

  4. K. Anusorn, T. Kevin, T. Kensuke, K. Masaru, V. Prashant, Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe–TiO2 architecture. J. Am. Chem. Soc. 130, 4007–4015 (2008)

    Article  CAS  Google Scholar 

  5. I. Robel, V. Subramanian, M. Kuno, P.V. Kamat, Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. J. Am. Chem. Soc. 128, 2385–2393 (2006)

    Article  CAS  PubMed  Google Scholar 

  6. National Renewable Energy Laboratory, NREL efficiency chart. https://www.nrel.gov/pv/assets/images/efficiency-chart-20180716.jpg

  7. M. Sasikumar, N.P. Subiramaniyam, Microstructure, electrical and humidity sensing properties of TiO2/polyaniline nanocomposite films prepared by sol–gel spin coating technique. J. Mater. Sci. Mater. Electron. 29, 7099–7106 (2018)

    Article  CAS  Google Scholar 

  8. Y. Liu, L.L. Wang, H.R. Wang, M.Y. Xiong, T.Q. Yang, G.S. Zakharova, Highly sensitive and selective ammonia gas sensors based on PbS quantum dots/TiO2 nanotube arrays at room temperature. Sens. Actuators B. Chem. 236, 529–536 (2016)

    Article  CAS  Google Scholar 

  9. F. Xiao, W. Zhou, B.J. Sun, H.Z. Li, P.Z. Qiao, L.P. Ren, X.J. Zhao, H.G. Fu, Engineering oxygen vacancy on rutile TiO2 for efficient electron-hole separation and high solar-driven photocatalytic hydrogen evolution. Sci. China Mater. 61, 822–830 (2018)

    Article  CAS  Google Scholar 

  10. V. Bolis, C. Busco, M. Ciarletta, C. Distasi, J. Erriquez, F. Ivana, S. Livraghi, S. Morel, Hydrophilic/hydrophobic features of TiO2 nanoparticles as a function of crystal phase, surface area and coating, in relation to their potential toxicity in peripheral nervous system. J. Colloid Interface Sci. 369, 28–39 (2012)

    Article  CAS  PubMed  Google Scholar 

  11. Y.J. Lu, J.H. Jia, Preparation and photoelectrical properties of Bi2S3 quantum dots sensitized TiO2 nanorod-arrays. Chin. J. Inorg. Chem. 31, 1091–1098 (2015)

    CAS  Google Scholar 

  12. B. Zhu, X.M. Dai, Q.F. Li, C.S. Deng, Template-based synthesis and microstructure characterization of TiO2 nano-array. Chin. J. Process Eng. 7, 160–163 (2007)

    CAS  Google Scholar 

  13. R. Mahendiran, K. Navaneetha Pandiyaraj, K. Kandavelu, D. Saravanan, Investigation of physico-chemical properties of TiO2 nanorod by direct sol filling and heating sol–gel template method. J. Nanosci. Nanotechnol. 2, 79–82 (2014)

    Google Scholar 

  14. S.L. Kang, H. Jaesung, O.S. Hyun, D.K. Young, Jinhyo, B 2010 growth of TiO2 nanorods on a Ta substrate by metal-organic chemical vapor deposition J. Nanosci. Nanotechnol. 10 3346–3349 (2010)

    Article  CAS  Google Scholar 

  15. Y. Satoshi, I. Kazuhiro, H. Sakura, Low pressure chemical vapor deposition of TiO2 layer in hydrogen-ambient. J. Cryst. Process Technol. 4, 185–192 (2014)

    Article  Google Scholar 

  16. I. Masoud, D.N. Fatemeh, A. Ebrahim, N. Keyvan, Controlled growth of vertically aligned TiO2 nanorod arrays using the improved hydrothermal method and their application to dye-sensitized solar cells. J. Alloy. Compd. 659, 44–50 (2016)

    Article  CAS  Google Scholar 

  17. K.D. Love, R. Jungho, L. Jeongmuk, O. Byungtaek, H.P. Jung, K. Byounggyu, S.J. Jum, Hydrothermal synthesis of titanate nanotubes from TiO2 nanorods prepared via a molten salt flux method as an effective adsorbent for strontium ion recovery. RSC Adv. 6, 98449–98456 (2016)

    Article  CAS  Google Scholar 

  18. J.S. Wan, R. Liu, Y. Tong, S.H. Chen, Y.X. Hu, B.Y. Wang, Y. Xu, H. Wang, Hydrothermal etching treatment to rutile TiO2 nanorod arrays for improving the efficiency of CdS-sensitized TiO2 solar cells. Nanoscale Res. Lett. 11, 12–12 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. M.R. Sui, C.P. Han, X.Q. Gu, Y. Wang, Tang L, H. Tang, Photoelectrochemical characteristics of TiO2 nanorod arrays grown on fluorine doped tin oxide substrates by the facile seeding layer assisted hydrothermal method. Optoelectron. Lett. 12, 161–165 (2016)

    Article  Google Scholar 

  20. Z.L. Zhang, J.F. Li, X.L. Wang, J.Q. Qin, W.J. Shi, Y.F. Liu, H.P. Gao, Y.L. Mao, Enhancement of Perovskite solar cells efficiency using N-doped TiO2 nanorod arrays as electron transfer layer. Nanoscale Res. Lett. 12, 43–48 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. B. Liu, E.S. Aydil, Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 131, 3985–3990 (2009)

    Article  CAS  PubMed  Google Scholar 

  22. X.J. Feng, S. Karthik, K.V. Oomman, P. Maggie, J. Thomas, A.G. Land Craig, Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications. Nano Lett. 8, 378–3786 (2008)

    CAS  Google Scholar 

  23. G.E. Zeng, A.X. Wei, J. Liu, W. Zhao, C.B. Liu, Synthesis and photovoltaic devices performance of single crystalline TiO2 nanowire bundle arrays. J. Inorg. Mater. 25, 1105–1109 (2010)

    Article  CAS  Google Scholar 

  24. K.Y. Guo, Z.F. Liu, J.H. Han, X.Q. Zhang, Y.J. Li, T.T. Hong, C.L. Zhou, Higher-efficiency photoelectrochemical electrodes of titanium dioxide-based nanoarrays sensitized simultaneously with plasmonic silver nanoparticles and multiple metal sulfides photosensitizers. J. Power Sour. 285, 185–194 (2015)

    Article  CAS  Google Scholar 

  25. Y.T. Li, L. Wei, X.Y. Chen, R.Z. Zhang, X. Sui, Y.X. Chen, J. Jiao, L.M. Mei, Efficient PbS/CdS co-sensitized solar cells based on TiO2 nanorod arrays. Nanoscale Res. Lett. 8, 67–82 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Y.L. Chen, Q. Tao, W.Y. Fu, H.B. Yang, X.M. Zhou, S. Su, D. Ding, Y.N. Mu, X. Li, M.H. Li, Enhanced photoelectric performance of PbS/CdS quantum dot co-sensitized solar cells via hydrogenated TiO2 nanorod arrays. Chem. Commun. 50, 9509–95012 (2014)

    Article  CAS  Google Scholar 

  27. Y.P. Luo, L. Wang, Y. Zou, X. Sheng, L.T. Chang, D.R. Yang 2012 Electrochemically deposited Cu2O on TiO2 nanorod arrays for photovoltaic application. Electrochem. Solid State Lett. 15 H34-H46

    Google Scholar 

  28. T. Wang, B.Y. Wang, W. Wei, H. Ding, Y.X. Hu, J. Zhang, H.P. Wang, Preparation and photovoltaic properties Cu2O/TiO2 nanorod heterojunction solar cells. Sci. Adv. Mater. 5, 1770–1774 (2013)

    Article  CAS  Google Scholar 

  29. K. Fu, J.Z. Huang, N.N. Yao, X.L. Deng, X.J. Xu, L. Li, Hybrid nanostructures of TiO2 nanorod array/Cu2O with a CH3NH3PbI3 interlayer for enhanced photocatalytic activity and photoelectrochemical performance RSC Adv. 6 57695–57700 (2016)

    Article  CAS  Google Scholar 

  30. Q. Sun, Y. Li, X.M. Sun, L.F. Dong, CuO and CuS quantum dot sensitized single-crystal TiO2 nanorod arrays and their photoelectrical performance. China Sci. Pap. 9, 218–223 (2014)

    CAS  Google Scholar 

  31. K.Y. Guo, Z.F. Liu, J.H. Han, Z.C. Liu, Y.J. Li, B. Wang, T. Cui, C. Zhou, Hierarchical TiO2–CuInS2 core-shell nanoarrays for photoelectrochemical water splitting Phys. Chem. Chem. Phys. 16, 16204–16213 (2014)

    Article  CAS  PubMed  Google Scholar 

  32. B.K. Liu, D.J. Wang, Y. Zhang, H.M. Fan, Y.H. Lin, T.F. Jiang, T.F. Xie, Photoelectrical properties of Ag2S quantum dot-modified TiO2 nanorod arrays and their application for photovoltaic devices. Dalton Trans. 42, 2232–2237 (2013)

    Article  CAS  PubMed  Google Scholar 

  33. S. Shuang, L. Ruitao, X.Y. Cui, Z. Xie, J. Zheng, Z.J. Zhang, Efficient photocatalysis with graphene oxide/Ag/Ag2S–TiO2 nanocomposites under visible light irradiation. Rsc Adv. 8, 5784–5791 (2018)

    Article  CAS  Google Scholar 

  34. R. Vogel, P. Hoyer, W. Horst, Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors. J. Phys. Chem. 98, 3183–3188 (1994)

    Article  CAS  Google Scholar 

  35. F.F. Cai, F. Yang, Y.F. Jia, C. Ke, C.H. Cheng, Y. Zhao, Bi2S3-modified TiO2 nanotube arrays: easy fabricationof heterostructure and effective enhancementof photoelectrochemical property. J. Mater. Sci. 48, 6001–6007 (2013)

    Article  CAS  Google Scholar 

  36. Z.J. Zhou, J.Q. Fan, X. Wang, W.H. Zhou, Z.L. Du, S.X. Wu, Effect of highly ordered single-crystalline TiO2 nanowire length on the photovoltaic performance of dye-sensitized solar cells. ACS Appl. Mater. Interfaces. 3, 4349–4353 (2011)

    Article  CAS  PubMed  Google Scholar 

  37. L. Tang, Y.C. Deng, G.M. Zeng, W. Hu, J.J. Wang, Y.Y. Zhou, J.J. Wang, J. Tang, W. Fang, CdS/Cu2S co-sensitized TiO2 branched nanorod arrays of enhanced photoelectrochemical properties by forming nanoscale heterostructure J. Alloys Compd. 662 516–527 (2016)

    Article  CAS  Google Scholar 

  38. S.L. Li, J.L. Huang, X.M. Ning, Y.C. Chen, Q.K. Shi, Preparation and photoelectrochemical performance of nano Bi2S3–TiO2 composites. Funct. Mater. Lett. 11, 1850055–1850061 (2018)

    Article  CAS  Google Scholar 

  39. H.M. Jia, W.W. He, B.B. Zhang, L. Yao, X.K. Yang, Z. Zheng, Facile synthesis of bismuth oxyhalide nanosheet films with distinct conduction type and photo-induced charge carrier behavior Appl. Surf. Sci. 441 832–840 (2018)

    Article  CAS  Google Scholar 

  40. L.Y. Cheng, H.M. Ding, C.H. Chen, N.N. Wang, Ag2S/Bi2S3 co-sensitized TiO2 nanorod arrays prepared on conductive glass as a photoanode for solar cells. J. Mater. Sci. Mater. Electron. 27, 3234–3239 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Natural Science Foundation of Henan Province (No. 162300410088) has financially supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinliang Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Huang, J., Ning, X. et al. TiO2/Bi2S3 ball-and-stick structure heterojunction prepared on FTO glass as a photoanode for solar cells. J IRAN CHEM SOC 16, 231–241 (2019). https://doi.org/10.1007/s13738-018-1501-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-018-1501-1

Keywords

Navigation