Skip to main content
Log in

Photoelectrochemical characteristics of TiO2 nanorod arrays grown on fluorine doped tin oxide substrates by the facile seeding layer assisted hydrothermal method

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

TiO2 nanorod arrays (NRAs) were prepared on fluorine doped tin oxide (FTO) substrates by a facile two-step hydrothermal method. The nanorods were selectively grown on the FTO regions which were covered with TiO2 seeding layer. It took 5 h to obtain the compact arrays with the nanorod length of ~2 μm and diameter of ~50 nm. The photoelectrochemical (PEC) properties of TiO2 NRAs are also investigated. It is demonstrated that the TiO2 NRAs indicate the good photoelectric conversion ability with an efficiency of 0.22% at a full-wavelength irradiation. A photocurrent density of 0.21 mA/cm2 is observed at 0.7 V versus the saturated calomel electrode (SCE). More evidences suggest that the charge transferring resistance is lowered at an irradiation, while the flat-band potential (V fb) is shifted towards the positive side.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. M. Momeni and Y. Ghaye, Journal of Electroanalytical Chemistry 751, 43 (2015).

    Article  Google Scholar 

  2. X. C. Ni, L. X. Sang, H. J. Zhang, A. Kiliyanamkandy, S. Amoruso, X. Wang, R. Fittipaldi, T. Li, M. L. Hu and L. J. Xu, Optoelectronics Letters 10, 43 (2014).

    Article  ADS  Google Scholar 

  3. B. O’Regan and M. Grätzel, Nature 353, 737 (1991).

    Article  Google Scholar 

  4. J. R. Jenning, A. Ghicov, L. M. Peter, P. Schmuki and A. B. Walker, Journal of American Chemical Society 130, 13364 (2008).

    Article  Google Scholar 

  5. B. L. Xu, C. X. Liu, H. Y. Sun and Y. R. Zhong, Optoelectronics Letters 10, 84 (2014).

    Article  ADS  Google Scholar 

  6. S. A. Berhe, S. Nag, Z. Molinets and W. J. Youngblood, ACS Applied Materials & Interfaces 54, 573 (2013).

    Google Scholar 

  7. D. D. Qin, Y. P. Bi, X. J. Feng, W. Wang, G. D. Barber, T. Wang, Y. M. Song, X. Q. Lu and T. E. Mallouk, Chemistry of Materials 27, 4180 (2015).

    Article  Google Scholar 

  8. M. Lv, D. Zheng, M. Ye, J. Xiao, W. Guo, Y. Lai, L. Sun, C. Lin and J. Zuo,, Energy & Environmental Science 6, 1615 (2013).

    Article  Google Scholar 

  9. A. Yella, L. P. Heiniger, P. Gao, M. K. Nazeeruddin and M. Grätzel, Nano Letters 14, 2591 (2014).

    Article  ADS  Google Scholar 

  10. A. Wolcott, W. A. Smith, T. R. Kuykendall, Y. Zhao and J. Z. Zhang, Small 5, 104 (2009).

    Article  Google Scholar 

  11. X. Gu, S. Zhang, Y. Qiang, Y. Zhao and L. Zhu, Journal of Electronic Materials 43, 2709 (2014).

    Article  ADS  Google Scholar 

  12. Z. Li, W. Luo, M. Zhang, J. Feng and Z. Zou, Energy & Environmental Science 6, 347 (2013).

    Article  Google Scholar 

  13. M. Sui, C. Han, X. Gu, Y. Wang, L. Tang and H. Tang, Optoelectronics Letters 11, 405 (2015).

    Article  ADS  Google Scholar 

  14. T. J. Jacobsson and T. Edvinsson, Journal of Physical Chemistry C 116, 15692 (2012).

    Article  Google Scholar 

  15. H. P. Maruska and A. K. Ghosh, Solar Energy 20, 443 (1978).

    Article  ADS  Google Scholar 

  16. E. Burstein,, Phys. Rev. B 93, 632 (1954).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei-rong Sui  (隋美蓉).

Additional information

This work has been supported by the Science and Technology Projects of Xuzhou City (No.KC14SM088), and the Natural Science Fund for Colleges and Universities in Jiangsu Province (No.15KJB430031).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sui, Mr., Han, Cp., Gu, Xq. et al. Photoelectrochemical characteristics of TiO2 nanorod arrays grown on fluorine doped tin oxide substrates by the facile seeding layer assisted hydrothermal method. Optoelectron. Lett. 12, 161–165 (2016). https://doi.org/10.1007/s11801-016-5242-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-016-5242-z

Document code

Navigation