Skip to main content

Advertisement

Log in

Polythiophene-based reduced graphene oxide and carbon black nanocomposites for supercapacitors

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

In this study, polythiophene (PTh), reduced graphene oxide (rGO), or graphene oxide (GO) and carbon black (CB) nanocomposites (rGO/PTh/CB and GO/PTh/CB) have been prepared chemically and electrospinning method for two-electrode symmetric attractive application prospects for supercapacitors. They have been synthesized by an easy procedure and cheaper than most of the other thiophene-based materials in the literature. Nanocomposites are characterized by Fourier-transform infrared–attenuated total reflection spectroscopy (FTIR–ATR), scanning electron microscopy–energy-dispersive X-ray analysis (SEM–EDX), atomic force microscopy (AFM), thermal gravimetric analysis–differential thermal analysis (TGA–DTA), Brunauer–Emmett–Teller (BET) surface area, and Four-point probe conductivity analysis. The highest electrical conductivity was calculated as 22.4 × 10–4 S × cm−1 for PTh due to the good conjugation of π–π bonds. The highest specific capacitance (Csp = 930.63 F × g−1 by CV method at 2 mV × s−1), capacitance retention (~ 92.57% at 1000 cycles at 100 mV × s−1 by CV method), energy density (E = 42.47 Wh × kg−1) and power density (P = 1532 W × kg−1 by GCD method) were obtained for rGO/PTh/CB nanocomposite. With the addition of PTh and CB on GO material, the specific capacitance was increased 6.86 times from Csp = 135.62 F × g−1 for rGO to Csp = 930.62 F × g−1 for rGO/PTh/CB nanocomposite at 2 mV × s−1 by CV method. In addition, Rs(C1Rct(C2R1)) circuit model was applied to interpret electrical parameters of supercapacitors. The results of this investigation demonstrate that rGO/PTh/CB nanocomposite can be successfully used as a supercapacitor technology.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lee DG, Kim BH (2016) MnO2 decorated in electrospun carbon nanofiber/graphene composites as supercapacitor electrode materials. Synth Met 219:115–123

    Article  CAS  Google Scholar 

  2. Wu Z, Li L, Yan JM, Zhang XB (2017) Materials design and system construction for conventional and new-concept supercapacitors. Adv Sci 4:1600382

    Article  Google Scholar 

  3. Cao A, Chen Z, Wang Y, Zhang J, Wang Y, Li T, Han Y (2019) Redox-active doped polypyrrole microspheres induced by phosphomolybdic acid as supercapacitor electrode materials. Synth Met 252:135–141

    Article  CAS  Google Scholar 

  4. Zhang LL, Zhao XS (2009) Carbon based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531

    Article  CAS  PubMed  Google Scholar 

  5. Han Y, Zhang Z, Yang M, Li T, Wang Y, Cao A, Chen Z (2018) Facile preparation of reduced graphene oxide/polypyrrole nanocomposites with urchin-like microstructure for wide-potential-window supercapacitors. Electrochim Acta 289:238–247

    Article  CAS  Google Scholar 

  6. Huang L, Chen DC, Ding Y, Feng S, Wang ZL, Liu ML (2013) Nickel-cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett 13:3135–3139

    Article  CAS  PubMed  Google Scholar 

  7. Zuo X, Zhang Y, Si L, Zhou B, Zhao B, Zhu L, Jiang X (2016) One step electrochemical preparation of sulfonated graphene/polypyrrole composite and its application to supercapacitors. J Alloys Compds 688:140–148

    Article  CAS  Google Scholar 

  8. Suktha P, Sawangphruk M (2017) Electrospinning of carbon-carbon fiber composites for high performance single coin cell supercapacitors: effects of carbon additives and electrolytes. Ind Eng Chem Res 65:10078–10086

    Article  Google Scholar 

  9. Pantea D, Darmstadt H, Kaliaguine S, Sümmchen L, Roy C (2001) Electrical conductivity of thermal carbon blacks inflence of surface chemistry. Carbon 39:1147–1158

    Article  CAS  Google Scholar 

  10. Spain IL (1994). In: Walker PL, Thrower PA (eds) Chemistry and physics of carbon, vol 16. Marcel Dekker, New York, p 120

    Google Scholar 

  11. Technical bulletin pigments, pigment blacks for plastics, Franfurt, Germany, Degussa, 1990, Tecnical report, no.69

  12. Probst N, Grivei E (2002) Structure and electrical properties of carbon black. Carbon 40:201–205

    Article  CAS  Google Scholar 

  13. Kim M, Oh I, Kim J (2015) Hierarchical porous silicon carbide with controlled micropores and mesopores for electric double layer capacitors. J Power Sour 282:277–285

    Article  CAS  Google Scholar 

  14. Zhou Q, Ye X, Wan Z, Jia C (2015) A three dimensional flexible supercapacitor with enhanced performance based on light-weight, conductive graphene-cotton fabric electrode. J Power Sour 296:186–196

    Article  CAS  Google Scholar 

  15. Lai CC, Chung MY, Lo CT (2019) Nitric acid oxidation of electrospun carbon nanofibers as supercapacitor electrodes. Text Res J 87:2337–2348

    Article  Google Scholar 

  16. Shan R, Kausar A, Muhammad B, Khan M (2016) Investigation on thermal conductivity and physical properties of polythiophene/p-phenylenediamine-graphene oxide and polythiophene-co-poly(methyl methacrylate)/p-phenylenediamine graphene oxide composites. Compos Interfaces 23:887–899

    Article  Google Scholar 

  17. Cong HP, Ren XC, Wang P, Yu SH (2013) Flexible graphene-polyaniline composite paper for high-performance supercapacitor. Energy Environ Sci 6:1185–1191

    Article  CAS  Google Scholar 

  18. Shi Y, Pan LJ, Liu BR, Wang YQ, Cui Y, Bao ZA, Yu GH (2014) Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes. J Mater Chem A 2:6086–6091

    Article  CAS  Google Scholar 

  19. Ni D, Chen YX, Song HJ, Liu CC, Yang XW, Cai KF (2019) Free-standing and highly conductive PEDOT nanowire films for high-performance all-solid state supercapacitors. J Mater Chem A 7:1323–1333

    Article  CAS  Google Scholar 

  20. Laforgue A, Simon P, Sarrazin C, Fauvarque JF (1999) Polythiophene-based supercapacitors. J Power Sour 80:142–148

    Article  CAS  Google Scholar 

  21. Momodu D, Bello A, Dongbegnon J, Barzeger F, Fabiane M, Manyala N (2015) P3HT, PCBM/Nickel-Aluminum layered double hydroxide-graphene foam composites for supercapacitor electrodes. J Solid Electrochem 19:445–452

    Article  CAS  Google Scholar 

  22. Patil BH, Patil SJ, Lokhande CD (2014) Electrochemical characterization of chemically synthesized polythiophene thin films, performance of asymmetric supercapacitor device. Electroanalysis 26:2023–2032

    Article  CAS  Google Scholar 

  23. Kong D, Fan H, Ding X, Wang D, Tian S, Hu H, Du D, Li Y, Gao X, Hu H, Xue Q, Yan Z, Ren H, Xing W (2020) β-hydrogen of polythiophene induced aluminum ion storage for high-performance Al-polythiophene batteries. ACS Appl Mater Interfaces 12:46065–46072

    Article  CAS  PubMed  Google Scholar 

  24. Li Y, Zhou M, Wang Y, Pan Q, Gong Q, Xia Z, Li Y (2019) Remarkable enhanced performances of novel polythiophene-grafting–graphene oxide composite via alkoxy linkage for supercapacitor application. Carbon 147:519–531

    Article  CAS  Google Scholar 

  25. Ni D, Chen Y, Yang X, Liu C, Cai K (2018) Microwave-assisted synthesis method for rapid synthesis of tin selenide electrode material for supercapacitors. J Alloys Compds 737:623–629

    Article  CAS  Google Scholar 

  26. Yesmin S, Devi M, Dasgupta R, Dhar SS (2022) CoFe2O4 nanocubes over Cu/graphitic carbon nitride as electrode materials for solid-state asymmetric supercapacitors. Chem Eng J 446:136540

    Article  CAS  Google Scholar 

  27. Rahman AU, Noreen H, Nawaz Z, Igbal J, Rahman G, Yaseen M (2021) Synthesis of graphene nanoplatelets/polythiophene as a high performance supercapacitor electrode material. New J Chem 45:16187–16195

    Article  CAS  Google Scholar 

  28. Sowmiya G, Velraj G (2020) Designing a ternary composite of PPy-PT/TiO2 using TiO2, and multipart-conducting polymers for supercapacitor application. J Mater Sci Mater Electron 31:14287–14294

    Article  CAS  Google Scholar 

  29. Alabadi A, Razzaque S, Dong ZH, Wang WX, Tan B (2016) Graphene oxide-polythiophene derivative hybrid nanosheet for enhancing performance of supercapacitor. J Power Sour 306:241–247

    Article  CAS  Google Scholar 

  30. Yousefi SR, Alshaemsi HA, Amiri O, Salavati-Niasari M (2021) Synthesis, characterization and application of Co/Co3O4 nanocomposites as an effective photocatalyst for discoloration of organic dye contaminants in waste water and antibacterial properties. J Mol Liq 337:116405

    Article  CAS  Google Scholar 

  31. Gradzka E, Wysocka-Zolopa M, Winkler K (2020) Fullerene-based conducting polymers: n-Dopable materials for charge storage application. Adv Energy Mater 10:2001443

    Article  CAS  Google Scholar 

  32. Nath AR, Madhu B, Mohan A, Sandhyarani N (2022) Enhancing the stability of electrochemical asymmetric supercapacitor by incorporating thiophene-pyrrole copolymer with nickel sulfide/nickel hydroxide composite. J Energy Storage 46:103833

    Article  Google Scholar 

  33. Mahdi MA, Yousefi SR, Jasim LS, Salavati-Niasari MS (2022) Green synthesis of DyBa2Fe3O7,988/DyFeO3 nanocomposites using almond extract with dual eco-friendly applications: photocatalytic and antibacterial activities. Int J Hydrogen Energy 47:14319–14330

    Article  CAS  Google Scholar 

  34. Chen BL, Wong WY (2022) Introducing a redox-active ferrocenyl moiety onto a polythiophene derivative towards high-performance flexible all solid-state symmetric supercapacitor. J Mater Chem A 10:7968–7977

    Article  CAS  Google Scholar 

  35. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339

    Article  CAS  Google Scholar 

  36. Zu SZ, Han BH (2009) Aqueous dispersion of graphene sheets stabilized by pluronic copolymers, formation of supramolecular hydrogels. J Phys Chem C 113:13651–13657

    Article  CAS  Google Scholar 

  37. Ates M, Yildirim M, Kuzgun O, Ozkan H (2019) The synthesis of rGO, rGO/RuO2 and rGO/RuO2/PVK nanocomposites and their supercapacitors. J Alloys Compds 787:851–864

    Article  CAS  Google Scholar 

  38. Murugan AV, Muraliganth T, Manthram A (2009) Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy storage. Chem Mater 21:5004–5006

    Article  CAS  Google Scholar 

  39. Mehdizadeh P, Jamdar M, Mahdi MA, Abdulsahib WK, Jasim LS, Yousefi SR, Salacvati-Niasari M (2023) Rapid microwave fabrication of new nanocomposites based on Tb–Co–O nanostructures and their application as photocatalysts under UV–Visible light for removal of organic pollutants in water. Arab J Chem 16:104579

    Article  CAS  Google Scholar 

  40. Erdönmez S (2012) Structural, thermal and dielectric properties of polythiophene/copper(II) acetylacetonate composites, MSc thesis, Kocaeli University, Kocaeli, Turkey

  41. Barghamadi M, Karrabi M, Ghoreishy MHR, Mohammadian-Gezaz SM (2019) Effects of two types of nanoparticles on the cure, rheological and mechanical properties of rubber nanocomposites based on the NBR/PVC blends. J Appl Polym Sci 136:47550

    Article  Google Scholar 

  42. Yadav SK, Kumar R, Sundramoorthy AK, Singh RK, Koo CM (2016) Simultaneous reduction and covalent grafting of polythiophene on graphene oxide sheets for excellent capacitance retention. RSC Adv 6:52945–52949

    Article  CAS  Google Scholar 

  43. Barghamadi M, Ghoreishy MHR, Karrabi M, Mohammadian-Gezaz SM (2020) Investigation on the kinetics of cure reaction of acrylonitrile-butadiene rubber (NBR)/polyvinyl chloride (PVC)/graphene nanocomposite using various models. J Appl Polym Sci 137:48632

    Article  CAS  Google Scholar 

  44. Bai L, Fruehwirth JW, Cheng X, Macosko CW (2015) Dynamics and rheology of nonpolar bijels. Soft Mater 11:5282–5293

    Article  CAS  Google Scholar 

  45. Memon MA, Sun JH, Jung HT, Yan SK, Geng JX (2017) Fabrication of polythiophene patterns through blending of a thermally curable polythiophene with poly(methyl methacrylate) and selective thermal curation. Chin J Polym Sci 35:422–433

    Article  CAS  Google Scholar 

  46. Vaderrama-Garcia BX, Gonzalez-Mendez I, Sournia-Saquet A, Tasse M, Ching KIMC, Rivera E (2019) Electrosynthesis of thin films of polythiophenes containing pyrene groups and flexible spacers, useful in the preparation of graphene polymer composites. MRS Adv 4:3233–3242

    Article  Google Scholar 

  47. Jaiswal R, Saha U, Prasad NE, Goswami TH (2022) Microwave assisted synthesis of low band gap water soluble dyad materials using polythiophene carboxylic acids as donor and fullerenol as acceptor. J Appl Polym Sci 130:e52305

    Article  Google Scholar 

  48. Van KL, Thi TTL (2014) Activated carbon derived from rice husk by NaOH activation and its application in supercapacitor. Prog Nat Sci Mater Int 24:191–198

    Article  Google Scholar 

  49. Najar MH, Majid K (2013) Synthesis, characterization, electrical and thermal properties of nanocomposite of polythiophene with nanophotoadduct: a potent composite for electronic use. J Mater Sci Mater Electron 24:4332–4339

    Article  CAS  Google Scholar 

  50. Ates M, Caliskan S, Ozten E (2018) A ternary nanocomposite of reduced graphene oxide, Ag nanoparticle and polythiophene used for supercapacitors. Fuller Nanotub Carbon Nanostruct 26:360–369

    Article  CAS  Google Scholar 

  51. Khanra P, Lee CN, Kuila T, Kim NH, Park MJ, Lee JH (2014) 7,7,8,8-Tetracyanoquinodimethane-assisted one-step electrochemical exfoliation of graphite and its performance as an electrode material. Nanoscale 6:4864–4873

    Article  CAS  PubMed  Google Scholar 

  52. Khatamian M, Divband B, Jodaei A (2012) Degradation of 4-nitrophenol (4-NP) using ZnO nanoparticles supported on zeolites and modelling of experimental results by artificial neutral networks. Mater Chem Phys 134:31–37

    Article  CAS  Google Scholar 

  53. Gok A, Omastova M, Yavuz AG (2007) Synthesis and characterization of polythiophenes prepared in the presence of surfactants. Synth Met 157:23–25

    Article  Google Scholar 

  54. Ali Shah AH, Ullah S, Bilal S, Rahman G, Jeema H (2020) Reduced graphene oxide/poly(pyrrole-co-thiophene) hybrid composite materials: synthesis, characterization, and supercapacitive properties. Polymers 12:1110–1131

    Article  Google Scholar 

  55. Azimi M, Abbaspour M, Fazlı A, Setoodeh H, Pourrabbas B (2018) Investigation on electrochemical properties of polythiophene nanocomposite with graphite derivatives as supercapacitor material on breath figure-decorated PMMA electrode. J Electronic Mater 47:2093–2102

    Article  Google Scholar 

  56. Guo XZ, Kang YF, Yang TL, Wang SR (2012) Low temperature NO2 sensors based on polythiophene/WO3 organic-inorganic hybrids. Nonferr Trans Met Soc 22:380–385

    Article  CAS  Google Scholar 

  57. Senthilkumar B, Thenamirtham P, Seluan RK (2011) Structural and electrochemical properties of polythiophene. Appl Surf Sci 257:9063–9067

    Article  CAS  Google Scholar 

  58. Bora C, Pegu R, Saikia BJ, Dolui SK (2014) Synthesis of polythiophene/graphene oxide composites by interfacial polymerization and evaluation of their electrical and electrochemical properties. Polym Int 63:2061–2067

    Article  CAS  Google Scholar 

  59. Karim MR, Lim KT, Lee CJ, Lee MS (2007) A facile synthesis of polythiophene nanowires. Synth Met 157:1008–1012

    Article  CAS  Google Scholar 

  60. Lan Z, Luo L, Ye J, Luo Q, Zhao L (2020) Preparation of novel morning glory structure γ-MnO2/carbon nanofiber composite materials with the electrospinning method and their high electrochemical performance. RSC Adv 10:36546–36553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Liu YY, Luo SH, Yan SX, Feng J, Yi TF (2020) Green synthesis of reduced graphene oxide as high-performance electrode materials for supercapacitors. Ionics 26:415–422

    Article  CAS  Google Scholar 

  62. Kolathodi MS, Palei M, Natarajan TS, Singh G (2020) MnO2 encapsulated electrospun TiO2 nanofibers as electrodes for asymmetric supercapacitors. Nanotechnology 31:125401

    Article  CAS  PubMed  Google Scholar 

  63. Zuo S, Yao C, Liu W, Li X, Kong Y, Liu X, Mao H, Li Y (2013) Porous polygorskite-polythiophene conductive composites for acrylic coatings. J Appl Polym Sci 129:2707–2715

    Article  CAS  Google Scholar 

  64. Sahoo S, Bhattacharya P, Hatui G, Ghosh D, Das CK (2013) Sonochemical synthesis and characterization of amine-modified graphene / conducting polymer nanocomposites. J Appl Polym Sci 128:1476–1483

    CAS  Google Scholar 

  65. Bose S, Kuila T, Uddin ME, Kim NH, Lau AKT, Lee JH (2010) In-situ synthesis and characterization of electrically conductive polypyrrole / graphene nanocomposites. Polymer 51:5921–5928

    Article  CAS  Google Scholar 

  66. He TS, Yu XD, Bai TJ, Li XY, Fu YR, Cai KG (2020) Porous carbon nanofibers derived from PAA-PVP electrospun fibers for supercapacitor. Ionics 26:4103–4111

    Article  CAS  Google Scholar 

  67. Park J, Yoo YE, Mai LQ, Kim W (2019) Rational design of a redox-active nonaqueous electrolyte for a high-energy density supercapacitor based on carbon nanotubes. ACS Sustain Chem Eng 7:7728–7735

    Article  CAS  Google Scholar 

  68. He TS, Jia R, Lang XS, Wu X, Wang YB (2017) Preparation and electrochemical performance of PVdF ultrafine porous fiber separator-cum-electrolyte for supercapacitor. J Electrochem Soc 164:E379–E384

    Article  CAS  Google Scholar 

  69. Ye YS, Rick J, Hwang BJ (2013) Ionic liquid polymer electrolytes. J Mater Chem A 1:2743–2819

    Article  Google Scholar 

  70. Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Science 321:651–652

    Article  CAS  PubMed  Google Scholar 

  71. Ibanez-Marin F, Morales-Verdejo C, Camarada MB (2017) Composites of electrochemically reduced graphene oxide and polythiophene and their application in supercapacitors. Int J Electrochem Sci 12:11546–11555

    Article  CAS  Google Scholar 

  72. Feng LX, Wang K, Zhang X, Sun XZ, Li C, Ge XB, Ma YW (2018) Flexible-solid state supercapacitors with enhanced performance from hierarchically graphene nanocomposite electrodes and ionic liquid incorporated gel polymer electrolyte. Adv Funct Mater 28:1704463

    Article  Google Scholar 

  73. Swain N, Mitra A, Saravanakumar B, Balasingram SK, Mohanty S, Nayak SK, Ramadoss A (2020) Construction of three-dimensional MnO2/Ni network as an efficient electrode material for high performance supercapacitors. Electrochim Acta 342:136041

    Article  CAS  Google Scholar 

  74. Chen A, Wang Y, Li Q, Yu Y, Li Y, Zhang Y, Li Y, Xia K, Li S (2016) Synthesis of nitrogen-doped micro-mesoporous carbon for supercapacitors. J Electrochem Soc 163:A1864–A1959

    Article  Google Scholar 

  75. Jyothibasu J, Lee RH (2018) Facile, scalable, eco-friendly fabrication of high performance flexible all-solid state supercapacitors. Polymer 10:1247

    Article  Google Scholar 

  76. Wang G, Lin B, Cao Y, Sun Y, Zhang X, Yang H, Sun H (2020) High-performance GdxSr1-xNiO3 porous nanofibers prepared by electrospinning for symmetric and asymmetric supercapacitors. J Phys Chem Solids 140:109361

    Article  CAS  Google Scholar 

  77. Jyothibasu JP, Chen MZ, Lee RH (2020) Polypyrrole/carbon nanotube free-standing electrode with excellent electrochemical properties for high-performance all-solid state supercapacitors. ACS Omega 5:6441–6451

    Article  Google Scholar 

  78. Sopcic S, Antonic D, Mandic Z (2022) Effect of the composition of active carbon electrodes on the impedance performance of the AC/AC supercapacitors. J Solid State Electrochem 26:591–605

    Article  CAS  Google Scholar 

  79. Suresh Babu GN, Kaliselvi N (2021) Co2GeO4/graphene hetero-architecture as a potential anode for sodium ion batteries. J Phys Chem Solids 150:109863

    Article  CAS  Google Scholar 

  80. Miniach E, Sliwak A, Moyseowicz A, Fernandez-Garcia L, Gonzalez Z, Granda M, Menendez R, Gryglewicz G (2017) MnO2/thermally reduced graphene oxide composites for high-voltage asymmetric supercapacitors. Electrochim Acta 240:53–62

    Article  CAS  Google Scholar 

  81. Miller JR, Outlaw RA, Holloway BC (2011) Graphene electric double layer capacitor with ultrahigh power performance. Electrochim Acta 56:10443–10449

    Article  CAS  Google Scholar 

  82. Feng L, Li G, Zhang S, Zhang YX (2017) Decoration of carbon cloth by manganese oxides for flexible asymmetric supercapacitors. Ceram Int 43:8321–8328

    Article  CAS  Google Scholar 

  83. Ban S, Zhang JJ, Zhang L, Tsay K, Sang DT, Zou XT (2013) Charging and discharging electrochemical supercapacitors in the presence of both parallel leakage process and electrochemical decomposition of solvent. Electrochim Acta 90:542–549

    Article  CAS  Google Scholar 

  84. Shabani-Nooshabadi M, Zahedi F (2017) Electrochemical reduced graphene oxide polyaniline as effective nanocomposite film for high-performance supercapacitor applications. Electrochim Acta 245:575–586

    Article  CAS  Google Scholar 

  85. Xie Y, Xia C, Du H, Wang W (2015) Enhanced electrochemical performance of polyaniline/carbon/titanium nitride nanowire array for flexible supercapacitor. Power Sour 286:561–570

    Article  CAS  Google Scholar 

  86. Lai L, Yang H, Wang L, Teh BK, Zhang J, Chou H, Chen L, Chen W, Shen Z, Ruoff RS, Lin J (2012) Preparation of supercapacitor electrodes through selection of graphene surface functionalities. ACS Nano 6:5941–5951

    Article  CAS  PubMed  Google Scholar 

  87. Noreen H, Iqbal J, Hassan W, Rahman G, Yaseen M, Ur Rahman A (2021) Synthesis of graphene nanoplatelets / polythiophene nanocomposites with enhanced photocatalytic degradation of bromophenol blue and antibacterial properties. Mater Res Bull 142:111435

    Article  CAS  Google Scholar 

  88. Ansari MO, Khan MM, Ansari SA, Cha MH (2015) Polythiophene nanocomposites for photo-degradation applications: post, present and future. J Saudi Chem Soc 19:494–504

    Article  Google Scholar 

  89. Martha R (2021) Caretonoid-like lycopene extracted from tomato as an efficient electrode for high-specific capacitance and high power density of supercapacitors. J Mater Sci Mater Electron 32:13926–13940

    Article  CAS  Google Scholar 

  90. Xiao F, Xu Y (2012) Pulse electrodeposition of Manganese oxide for high-rate capability supercapacitors. Int J Electrochem Sci 7:7440–7450

    Article  CAS  Google Scholar 

  91. Qiu H, Zheng H, Jin Y, Yuan Q, Zhang X, Zhao C, Wang H, Jia M (2021) Mesoporous cubic SnO2-CoO nanoparticles deposited on graphene as anode materials for sodium ion batteries. J Alloys Compds 874:159967

Download references

Acknowledgements

This work is a part of the research project NKUBAP.01.YL.21.350 approved by the Scientific and Research Project Unit (Tekirdag Namik Kemal University). This research grant is gratefully acknowledged.

Funding

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through the contributions of all the authors.

Corresponding author

Correspondence to Murat Ates.

Ethics declarations

Conflict of interest

The authors said that there is no conflict of interest in this study.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ates, M., Alperen, C. Polythiophene-based reduced graphene oxide and carbon black nanocomposites for supercapacitors. Iran Polym J 32, 1241–1255 (2023). https://doi.org/10.1007/s13726-023-01201-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-023-01201-9

Keywords

Navigation