Skip to main content

Advertisement

Log in

Neural Basis of Dysregulation of Palatability-Driven Appetite in Autism

  • Nutrition and the Brain (K Ohla, Section Editor)
  • Published:
Current Nutrition Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

In research on autism spectrum disorder (ASD), cognitive, speech- and anxiety-related impairments have been the focus of the majority of studies. One consistently reported ASD symptom that has rarely attracted attention is disordered appetite. The goal of this paper is to assess whether ASD-related dysregulation of food intake impacts consumption of palatable foods, including sugar.

Recent Findings

Aberrant neural processing at the reward system level is at least partially responsible for excessive intake of palatable tastants, including sugar. Impaired oxytocin (OT) signaling likely contributes to the magnitude of this overconsumption.

Summary

Since intake for reward is generally elevated in individuals with ASD, one strategy to curb sugar overconsumption might utilize presentation of alternative palatable food choices that are more nutritionally adequate than sucrose. Furthermore, OT, which is clinically tested to alleviate other ASD symptoms, might be an effective tool to curb overconsumption of sugar, as well as — likely — of other excessively ingested palatable foods, especially those that have sweet taste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Bhat S, Acharya UR, Adeli H, Bairy GM, Adeli A. Autism: cause factors, early diagnosis and therapies. Rev Neurosci. 2014;25(6):841–50.

    Article  PubMed  Google Scholar 

  2. Lai MC, Lombardo MV, Baron-Cohen S. Autism Lancet. 2014;383(9920):896–910.

    Article  PubMed  Google Scholar 

  3. Rylaarsdam L, Guemez-Gamboa A. Genetic causes and modifiers of autism spectrum disorder. Front Cell Neurosci. 2019;13:385. A comprehensive review describing detailed impact of key genes on ASD phenotype.

  4. Kanner L. Autistic disturbances of affective contact. Nervous Child. 1943;2:217–50.

    Google Scholar 

  5. Sharp WG, Berry RC, McCracken C, Nuhu NN, Marvel E, Saulnier CA, et al. Feeding problems and nutrient intake in children with autism spectrum disorders: a meta-analysis and comprehensive review of the literature. J Autism Dev Disord. 2013;43(9):2159–73.

    Article  PubMed  Google Scholar 

  6. Bandini LG, Anderson SE, Curtin C, Cermak S, Evans EW, Scampini R, et al. Food selectivity in children with autism spectrum disorders and typically developing children. J Pediatr. 2010;157(2):259–64.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Diolordi L, del Balzo V, Bernabei P, Vitiello V, Donini LM. Eating habits and dietary patterns in children with autism. Eat Weight Disord. 2014;19(3):295–301.

    Article  PubMed  Google Scholar 

  8. Williams PG, Dalrymple N, Neal J. Eating habits of children with autism. Pediatr Nurs. 2000;26(3):259–64.

    CAS  PubMed  Google Scholar 

  9. Gray HL, Chiang HM. Brief report: mealtime behaviors of Chinese American Children with autism spectrum disorder. J Autism Dev Disord. 2017;47(3):892–7.

    Article  PubMed  Google Scholar 

  10. Zickgraf HF, Richard E, Zucker NL, Wallace GL. Rigidity and sensory sensitivity: independent contributions to selective eating in children, adolescents, and young adults. J Clin Child Adolesc Psychol. 2020:1–13. This paper describes the biological underpinning of selective/picky eating in various age groups.

  11. Strand M. Eggs, sugar, grated bones: colour-based food preferences in autism, eating disorders, and beyond. Med Humanit. 2021;47(1):87–94. The publication offers an exciting insight into color as a critical feature determining selectivity of food in individuals with ASD.

  12. D’Eufemia P, Celli M, Finocchiaro R, Pacifico L, Viozzi L, Zaccagnini M, et al. Abnormal intestinal permeability in children with autism. Acta Paediatr. 1996;85(9):1076–9.

    Article  PubMed  Google Scholar 

  13. Guo M, Zhu J, Yang T, Lai X, Lei Y, Chen J, et al. Vitamin A and vitamin D deficiencies exacerbate symptoms in children with autism spectrum disorders. Nutr Neurosci. 2019;22(9):637–47. The paper presents empirical evidence showing that aberrant eating behavior in ASD leads to severe deficiencies that translate to worsened ASD symptomology.

  14. Neumeyer AM, Gates A, Ferrone C, Lee H, Misra M. Bone density in peripubertal boys with autism spectrum disorders. J Autism Dev Disord. 2013;43(7):1623–9.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kinlin LM, Blanchard AC, Silver S, Morris SK. Scurvy as a mimicker of osteomyelitis in a child with autism spectrum disorder. Int J Infect Dis. 2018;69:99–102. A case study delineating a severe consequence of dysregulated appetite in an individual with ASD.

  16. Harris HA, Micali N, Moll HA, van Berckelaer-Onnes I, Hillegers M, Jansen PW. The role of food selectivity in the association between child autistic traits and constipation. Int J Eat Disord. 2021.

  17. Madra M, Ringel R, Margolis KG. Gastrointestinal issues and autism spectrum disorder. Psychiatr Clin North Am. 2021;44(1):69–81.

    Article  PubMed  Google Scholar 

  18. Kinnell HG. Pica as a feature of autism. Br J Psychiatry. 1985;147:80–2.

    Article  CAS  PubMed  Google Scholar 

  19. Fields VL, Soke GN, Reynolds A, Tian LH, Wiggins L, Maenner M, et al. Pica, autism, and other disabilities. Pediatrics. 2021;147(2).

  20. Cornish E. Gluten and casein free diets in autism: a study of the effects on food choice and nutrition. J Hum Nutr Diet. 2002;15(4):261–9.

    Article  CAS  PubMed  Google Scholar 

  21. Cascio CJ, Foss-Feig JH, Heacock JL, Newsom CR, Cowan RL, Benningfield MM, et al. Response of neural reward regions to food cues in autism spectrum disorders. J Neurodev Disord. 2012;4(1):9.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Schmitz N, Rubia K, van Amelsvoort T, Daly E, Smith A, Murphy DG. Neural correlates of reward in autism. Br J Psychiatry. 2008;192(1):19–24.

    Article  PubMed  Google Scholar 

  23. Supekar K, Kochalka J, Schaer M, Wakeman H, Qin S, Padmanabhan A, et al. Deficits in mesolimbic reward pathway underlie social interaction impairments in children with autism. Brain. 2018;141(9):2795–805.

  24. Stanley B, Sher L, Wilson S, Ekman R, Huang YY, Mann JJ. Non-suicidal self-injurious behavior, endogenous opioids and monoamine neurotransmitters. J Affect Disord. 2010;124(1–2):134–40.

    Article  CAS  PubMed  Google Scholar 

  25. Egan AM, Dreyer ML, Odar CC, Beckwith M, Garrison CB. Obesity in young children with autism spectrum disorders: prevalence and associated factors. Child Obes. 2013;9(2):125–31.

    Article  PubMed  Google Scholar 

  26. Curtin C, Bandini LG, Perrin EC, Tybor DJ, Must A. Prevalence of overweight in children and adolescents with attention deficit hyperactivity disorder and autism spectrum disorders: a chart review. BMC Pediatr. 2005;5:48.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Damiano CR, Aloi J, Burrus C, Garbutt JC, Kampov-Polevoy AB, Dichter GS. Intact hedonic responses to sweet tastes in autism spectrum disorder. Res Autism Spectr Disord. 2014;8(3):230–6.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Buchner DA, Geisinger JM, Glazebrook PA, Morgan MG, Spiezio SH, Kaiyala KJ, et al. The juxtaparanodal proteins CNTNAP2 and TAG1 regulate diet-induced obesity. Mamm Genome. 2012;23(7–8):431–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fukuhara S, Nakajima H, Sugimoto S, Kodo K, Shigehara K, Morimoto H, et al. High-fat diet accelerates extreme obesity with hyperphagia in female heterozygous Mecp2-null mice. PLoS One. 2019;14(1):e0210184. This paper shows the evidence that an ASD-linked mutation promotes aberrant feeding in mice and that this abnormal appetite manifests itself only in the presense of palatable diets.

  30. Han K, Holder JL Jr, Schaaf CP, Lu H, Chen H, Kang H, et al. SHANK3 overexpression causes manic-like behaviour with unique pharmacogenetic properties. Nature. 2013;503(7474):72–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jin C, Kang H, Kim S, Zhang Y, Lee Y, Kim Y, et al. Transcriptome analysis of Shank3-overexpressing mice reveals unique molecular changes in the hypothalamus. Mol Brain. 2018;11(1):71. The paper describes broad molecular changes in feeding-related brain areas that occur as a consequence of a mutation in the key gene associated with ASD.

  32. Bariselli S, Tzanoulinou S, Glangetas C, Prevost-Solie C, Pucci L, Viguie J, et al. SHANK3 controls maturation of social reward circuits in the VTA. Nat Neurosci. 2016;19(7):926–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Olszewski PK, Rozman J, Jacobsson JA, Rathkolb B, Stromberg S, Hans W, et al. Neurobeachin, a regulator of synaptic protein targeting, is associated with body fat mass and feeding behavior in mice and body-mass index in humans. PLoS Genet. 2012;8(3):e1002568.

  34. Nicolini C, Fahnestock M. The valproic acid-induced rodent model of autism. Exp Neurol. 2018;299(Pt A):217–27.

    Article  CAS  PubMed  Google Scholar 

  35. Kim KC, Kim P, Go HS, Choi CS, Park JH, Kim HJ, et al. Male-specific alteration in excitatory post-synaptic development and social interaction in pre-natal valproic acid exposure model of autism spectrum disorder. J Neurochem. 2013;124(6):832–43.

    Article  CAS  PubMed  Google Scholar 

  36. Favre MR, Barkat TR, Lamendola D, Khazen G, Markram H, Markram K. General developmental health in the VPA-rat model of autism. Front Behav Neurosci. 2013;7:88.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pellow S, File SE. Anxiolytic and anxiogenic drug effects on exploratory activity in an elevated plus-maze: a novel test of anxiety in the rat. Pharmacol Biochem Behav. 1986;24(3):525–9.

    Article  CAS  PubMed  Google Scholar 

  38. Spadaro PA, Flavell CR, Widagdo J, Ratnu VS, Troup M, Ragan C, et al. Long noncoding RNA-directed epigenetic regulation of gene expression is associated with anxiety-like behavior in mice. Biol Psychiatry. 2015;78(12):848–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schneider T, Przewlocki R. Behavioral alterations in rats prenatally exposed to valproic acid: animal model of autism. Neuropsychopharmacology. 2005;30(1):80–9.

    Article  CAS  PubMed  Google Scholar 

  40. Herisson FM, Brooks LL, Waas JR, Levine AS, Olszewski PK. Functional relationship between oxytocin and appetite for carbohydrates versus saccharin. NeuroReport. 2014;25(12):909–14.

    Article  CAS  PubMed  Google Scholar 

  41. Herisson FM, Waas JR, Fredriksson R, Schioth HB, Levine AS, Olszewski PK. Oxytocin acting in the nucleus accumbens core decreases food intake. J Neuroendocrinol. 2016;28(4).

  42. Olszewski PK, Klockars A, Olszewska AM, Fredriksson R, Schioth HB, Levine AS. Molecular, immunohistochemical, and pharmacological evidence of oxytocin’s role as inhibitor of carbohydrate but not fat intake. Endocrinology. 2010;151(10):4736–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bonacchi KB, Ackroff K, Touzani K, Bodnar RJ, Sclafani A. Opioid mediation of starch and sugar preference in the rat. Pharmacol Biochem Behav. 2010;96(4):507–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yamasue H, Domes G. Oxytocin and autism spectrum disorders. Curr Top Behav Neurosci. 2018;35:449–65.

    Article  CAS  PubMed  Google Scholar 

  45. Jones C, Barrera I, Brothers S, Ring R, Wahlestedt C. Oxytocin and social functioning. Dialogues Clin Neurosci. 2017;19(2):193–201.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Klockars A, Levine AS, Olszewski PK. Central oxytocin and food intake: focus on macronutrient-driven reward. Front Endocrinol (Lausanne). 2015;6:65.

    Article  Google Scholar 

  47. Verbalis JG, Blackburn RE, Olson BR, Stricker EM. Central oxytocin inhibition of food and salt ingestion: a mechanism for intake regulation of solute homeostasis. Regul Pept. 1993;45(1–2):149–54.

    Article  CAS  PubMed  Google Scholar 

  48. Nelson EE, Alberts JR, Tian Y, Verbalis JG. Oxytocin is elevated in plasma of 10-day-old rats following gastric distension. Brain Res Dev Brain Res. 1998;111(2):301–3.

    Article  CAS  PubMed  Google Scholar 

  49. Stricker EM, Huang W, Sved AF. Early osmoregulatory signals in the control of water intake and neurohypophyseal hormone secretion. Physiol Behav. 2002;76(3):415–21.

    Article  CAS  PubMed  Google Scholar 

  50. Blackburn RE, Samson WK, Fulton RJ, Stricker EM, Verbalis JG. Central oxytocin and ANP receptors mediate osmotic inhibition of salt appetite in rats. Am J Physiol. 1995;269(2 Pt 2):R245–51.

    CAS  PubMed  Google Scholar 

  51. Stricker EM, Verbalis JG. Caloric and noncaloric controls of food intake. Brain Res Bull. 1991;27(3–4):299–303.

    Article  CAS  PubMed  Google Scholar 

  52. Onaka T, Takayanagi Y. Role of oxytocin in the control of stress and food intake. J Neuroendocrinol. 2019;31(3):e12700.

  53. Iwasa T, Matsuzaki T, Mayila Y, Yanagihara R, Yamamoto Y, Kawakita T, et al. Oxytocin treatment reduced food intake and body fat and ameliorated obesity in ovariectomized female rats. Neuropeptides. 2019;75:49–57.

    Article  CAS  PubMed  Google Scholar 

  54. Spetter MS, Feld GB, Thienel M, Preissl H, Hege MA, Hallschmid M. Oxytocin curbs calorie intake via food-specific increases in the activity of brain areas that process reward and establish cognitive control. Sci Rep. 2018;8(1):2736. This important report shows the link between oxytocin, food intake and reward in humans.

  55. Burmester V, Gibson EL, Butler G, Bailey A, Terry P. Oxytocin reduces post-stress sweet snack intake in women without attenuating salivary cortisol. Physiol Behav. 2019;212:112704. The results of this study emphasize the importance of oxytocin in emotional processing of eating behavior, one of the aspects of the ASD phenotype.

  56. Wald HS, Chandra A, Kalluri A, Ong ZY, Hayes MR, Grill HJ. NTS and VTA oxytocin reduces food motivation and food seeking. Am J Physiol Regul Integr Comp Physiol. 2020;319(6):R673–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu CM, Hsu TM, Suarez AN, Subramanian KS, Fatemi RA, Cortella AM, et al. Central oxytocin signaling inhibits food reward-motivated behaviors and VTA dopamine responses to food-predictive cues in male rats. Horm Behav. 2020;126:104855.

  58. Ott V, Finlayson G, Lehnert H, Heitmann B, Heinrichs M, Born J, et al. Oxytocin reduces reward-driven food intake in humans. Diabetes. 2013;62(10):3418–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Spetter MS. Current state of the use of neuroimaging techniques to understand and alter appetite control in humans. Curr Opin Clin Nutr Metab Care. 2018;21(5):329–35.

    Article  PubMed  Google Scholar 

  60. Miedlar JA, Rinaman L, Vollmer RR, Amico JA. Oxytocin gene deletion mice overconsume palatable sucrose solution but not palatable lipid emulsions. Am J Physiol Regul Integr Comp Physiol. 2007;293(3):R1063–8.

    Article  CAS  PubMed  Google Scholar 

  61. Amico JA, Vollmer RR, Cai HM, Miedlar JA, Rinaman L. Enhanced initial and sustained intake of sucrose solution in mice with an oxytocin gene deletion. Am J Physiol Regul Integr Comp Physiol. 2005;289(6):R1798–806.

    Article  CAS  PubMed  Google Scholar 

  62. Klockars OA, Klockars A, Levine AS, Olszewski PK. Oxytocin administration in the basolateral and central nuclei of amygdala moderately suppresses food intake. NeuroReport. 2018;29(6):504–10.

    Article  CAS  PubMed  Google Scholar 

  63. Mullis K, Kay K, Williams DL. Oxytocin action in the ventral tegmental area affects sucrose intake. Brain Res. 2013;1513:85–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Head MA, Jewett DC, Gartner SN, Klockars A, Levine AS, Olszewski PK. Effect of oxytocin on hunger discrimination. Front Endocrinol (Lausanne). 2019;10:297.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Kerry Allen and Kathryn Laloli for their help in conducting animal experiments.

Funding

AK and PKO are supported by the DGC funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allen S. Levine.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

Animal studies described in the article were approved by the institutional animal ethics committee at the University of Waikato.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Nutrition and the Brain

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klockars, A., Pal, T., Levine, A.S. et al. Neural Basis of Dysregulation of Palatability-Driven Appetite in Autism. Curr Nutr Rep 10, 391–398 (2021). https://doi.org/10.1007/s13668-021-00368-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13668-021-00368-y

Navigation