Skip to main content
Log in

Comparative Study on Thermal Fatigue Behavior of Two Hot Work Die Steels

  • Peer Reviewed
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

The thermal fatigue behavior of 5CrNiMoV and 5CrNiMoVNb steel was compared. The results show that length of the main thermal fatigue crack for 5CrNiMoV and 5CrNiMoVNb steel are, respectively, 184.47 and 104.06 μm after 2000 thermal fatigue cycles. The fatigue crack initiation and propagation rate in 5CrNiMoVNb steel are significantly lower than that in 5CrNiMoV steel. Besides, a mixed way of transgranular and intergranular crack propagation occurs in 5CrNiMoV steel, while only transgranular propagation occurs in 5CrNiMoVNb steel. Due to high content of small carbide particles and the strong inhibitory effect on dislocation movement and microstructure coarsening, 5CrNiMoVNb steel has better microstructure stability, hardness and toughness. Based on the simplified thermal fatigue life model, it indicates that the thermal fatigue life is dependent on the stresses corresponding to the limit temperatures of their cycles. Therefore, the 5CrNiMoVNb steel with higher room temperature and high temperature stress shows longer thermal fatigue life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Reference

  1. F.S. Gobber, A.G. Pisa, D. Ugues et al., Design of a test rig for the characterization of thermal fatigue and soldering resistance of the surfaces of tool steels for high-pressure die-casting dies. Steel Res. Int. 91, 19004805SI (2020)

    Article  Google Scholar 

  2. H. Yang, C. Meng, G. Song et al., Effect of electropulsing and laser biomimetic coupling techniques on the thermal fatigue behaviour of hot worked die steel. Lasers Eng. 39(3–6), 113–126 (2018)

    CAS  Google Scholar 

  3. J. Qi-Chuan, Z. Xu-Min, Q. Feng et al., The relationship between oxidation and thermal fatigue of martensitic hot-work die steels. Acta Metall. Sin. (English Letter). 31(7), 692 (2018)

    Article  Google Scholar 

  4. S. Yeh, L. Chiu, T. Chuang et al., Thermal fatigue behavior evaluation of shot-peened JIS SKD61 hot-work mold steel. Mater. Trans. 54(6), 1053–1056 (2013)

    Article  CAS  Google Scholar 

  5. A. Srivastava, V. Joshi, R. Shivpuri, Computer modeling and prediction of thermal fatigue cracking in die-casting tooling. Wear. 256(1–2), 38–43 (2004)

    Article  CAS  Google Scholar 

  6. J. Sjostrom, J. Bergstrom, Thermal fatigue testing of chromium martensitic hot-work tool steel after different austenitizing treatments. J. Mater. Process. Technol. 153(SI1), 1089–1096 (2004)

    Article  Google Scholar 

  7. S. Bounds, K. Davey, S. Hinduja, An experimental and numerical investigation into the thermal behavior of the pressure die casting process. J. Manuf. Sci. Eng. 122(1), 90 (2000)

    Article  Google Scholar 

  8. X.B. Hu, L. Li, X.C. Wu et al., Coarsening behavior of M23C6 carbides after ageing or thermal fatigue in AISI H13 steel with niobium. Int. J. Fatigue. 28(3), 175–182 (2006)

    Article  CAS  Google Scholar 

  9. V. Kuzucu, M. Aksoy, M.H. Korkut, The effect of strong carbide-forming elements such as Mo, Ti, V and Nb on the microstructure of ferritic stainless steel. J. Mater. Process. Technol. 82(1), 165–171 (1998)

    Article  Google Scholar 

  10. H. Zhou, Y. Cao, Z.H. Zhang et al., Thermal fatigue behavior of 3Cr2W8V die steel with biomimetic non-smooth surface. Mater. Sci. Eng. Struct. Mater. Prop. Microstruct. Process. 433(1–2), 144–148 (2006)

    Article  Google Scholar 

  11. Q.C. Jiang, H.L. Sui, Q.F. Guan, Thermal fatigue behavior of new type high-Cr cast hot work die steel. ISIJ Int. 44(6), 1103–1107 (2004)

    Article  CAS  Google Scholar 

  12. M. Salem, S. Le Roux, G. Dour et al., Effect of aluminizing and oxidation on the thermal fatigue damage of hot work tool steels for high pressure die casting applications. Int. J. Fatigue. 119, 126–138 (2019)

    Article  CAS  Google Scholar 

  13. Y. Birol, Thermal fatigue testing of Inconel 617 and Stellite 6 alloys as potential tooling materials for thixoforming of steels. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 527(7–8), 1938–1945 (2010)

    Article  Google Scholar 

  14. D. Cong, H. Zhou, Z. Ren et al., Thermal fatigue resistance of hot work die steel repaired by partial laser surface remelting and alloying process. Opt. Lasers Eng. 54(SI), 55–61 (2014)

    Article  Google Scholar 

  15. V.A. Girisha, M.M. Joshi, L.J. Kirthan et al., Thermal fatigue analysis of H13 steel die adopted in pressure die-casting process. Sadhana-Acad. Proc. Eng. Sci. 44, 1486 (2019)

    Google Scholar 

  16. C. Chen, Y. Wang, H. Ou et al., Energy-based approach to thermal fatigue life of tool steels for die casting dies. Int. J. Fatigue. 92(1), 166–178 (2016)

    Article  CAS  Google Scholar 

  17. C. Meng, H. Zhou, H. Zhang et al., The comparative study of thermal fatigue behavior of H13 die steel with biomimetic non-smooth surface processed by laser surface melting and laser cladding. Mater. Des. 51, 886–893 (2013)

    Article  CAS  Google Scholar 

  18. M. Wang, Y. Wu, Q. Wei et al., Thermal fatigue properties of h13 hot-work tool steels processed by selective laser melting. Metals. 10, 1161 (2020)

    Article  Google Scholar 

  19. D. Cong, Z. Li, Q. He et al., Effect of unit size on thermal fatigue behavior of hot work steel repaired by a biomimetic laser remelting process. Opt. Laser Technol. 98, 205–213 (2018)

    Article  CAS  Google Scholar 

  20. M. Hawryluk, M. Zwierzchowski, M. Marciniak et al., Phenomena and degradation mechanisms in the surface layer of die inserts used in the hot forging processes. Eng. Fail. Anal. 79, 313–329 (2017)

    Article  CAS  Google Scholar 

  21. J. Sun, T. Sun, S. Sha et al., a study of thermal cyclic softening behavior of hot-deformed die steel. Met. Sci. Heat Treat. 63(1), 18–25 (2021)

    Article  CAS  Google Scholar 

  22. X. Yang, C. Li, Z. Zhang et al., Effect of cobalt -based coating microstructure on the thermal fatigue performance of hot work die steel. Appl. Surf. Sci. 521, 146360 (2020)

    Article  CAS  Google Scholar 

  23. Z. Hu, K. Wang, evolution of dynamic recrystallization in 5crnimov steel during hot forming. Adv. Mater. Sci. Eng. 2020, 1–13 (2020)

    Google Scholar 

  24. H. Wanhui, L. Liping, F. Gang, Microstructure evolution of hot work tool steel 5CrNiMoV throughout heating, deformation and quenching. Mater. Charact. 163, 110307 (2020)

    Article  Google Scholar 

  25. F. Meurling, A. Melander, M. Tidesten et al., Influence of carbide and inclusion contents on the fatigue properties of high speed steels and tool steels. Int. J. Fatigue. 23(3), 215–224 (2001)

    Article  CAS  Google Scholar 

  26. X. Hu, Thermal fatigue behavior of niobium microalloyed H13 steel. J. Shanghai Univ. (English Edition). 10, 375–376 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Natural Science Foundation of Suqian City (K202137).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Z., Wang, K. Comparative Study on Thermal Fatigue Behavior of Two Hot Work Die Steels. Metallogr. Microstruct. Anal. 11, 425–433 (2022). https://doi.org/10.1007/s13632-022-00854-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-022-00854-x

Keywords

Navigation