Skip to main content
Log in

The Relationship Between Oxidation and Thermal Fatigue of Martensitic Hot-Work Die Steels

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Thermal fatigue behaviors of two forged hot-work die steels subjected to cyclic heating (650 °C)–water quenching were investigated. A martensitic hot-work die steel containing 10% Cr (HHD), showing superior oxidation resistance and thermal fatigue resistance to the commercial martensitic hot-work die steel (Uddeholm DIEVAR®), was developed. The maximal crack length in HHD was 35% shorter than that in DIEVAR after 2000 thermal cycles, and the hot yield strength at 650 °C of HHD was 14% lower than that of DIEVAR prior to thermal fatigue testing, which is 30% higher after 1500 cycles. It is found that cracks initiated and propagated along the oxide layers in the grain boundaries, suggesting that the oxidation-induced thermal fatigue cracks can significantly reduce the mechanical performance and service life for the hot-work die steel. High-temperature oxidation behavior is crucial for thermal fatigue crack formation, while high-temperature yield strength and ductility play a less important role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D. Mellouli, N. Haddar, A. Köster, H.F. Ayedi, Eng. Fail. Anal. 20, 137 (2012)

    Article  Google Scholar 

  2. D. Klobčar, L. Kosec, B. Kosec, J. Tušek, Eng. Fail. Anal. 20, 43 (2012)

    Article  Google Scholar 

  3. J. Zhou, D.S Ma, H.X Chi, Z.Z Chen and X.Y Li. J. Iron Steel Res. Int. 20, 117 (2013)

    Article  Google Scholar 

  4. A. Persson, S. Hogmark, J. Bergström, Surf. Coat. Technol. 191, 216 (2005)

    Article  Google Scholar 

  5. C.M. Starling, J.R. Branco, Thin Solid Films 308, 436 (1997)

    Article  Google Scholar 

  6. A. Persson, S. Hogmark, J. Bergström, J. Mater. Process. Technol. 152, 228 (2004)

    Article  Google Scholar 

  7. I. Khader, A. Renz, A. Kailer, D. Haas, J. Eur. Ceram. Soc. 33, 593 (2013)

    Article  Google Scholar 

  8. B.K. Kosec, L. Kosec, J. Kopač, Eng. Fail. Anal. 8, 355 (2001)

    Article  Google Scholar 

  9. S. Malm, L.-Å. Norström, Met. Sci. 13, 544 (1979)

    Article  Google Scholar 

  10. L.-Å. Norström, M. Svensson, N. Öhrberg, Met. Technol. 8, 376 (1981)

    Article  Google Scholar 

  11. Q.C. Jiang, H.L. Sui, Q.F. Guan, ISIJ Int. 44, 1103 (2004)

    Article  Google Scholar 

  12. A. Sherman, R. Davies, Int. J. Fatigue 3, 36 (1981)

    Article  Google Scholar 

  13. J. Sjöstrom, J. Bergström, J. Mater. Process. Technol. 153–154, 1089 (2004)

    Article  Google Scholar 

  14. X.F. Guo, Y.Y. Ni, J.M. Gong, Acta Metall. Sin. (Engl. Lett.) 30, 829 (2017)

  15. S.H. Sun, A.M. Zhao, R. Ding, Acta Metall. Sin. (Engl. Lett.) (in Press) https://doi.org/10.1007/s40195-017-0667-3

  16. X.L. Li, C.S. Lei, X.T. Deng, Acta Metall. Sin. (Engl. Lett.) 30, 1067 (2017)

  17. S. Kheirandish, A. Noorian, J. Iron Steel Res. Int. 15, 61 (2008)

    Article  Google Scholar 

  18. Å. Gustafson, J. Ågren, Acta Mater. 46, 81 (1998)

    Article  Google Scholar 

  19. J.H. Park, Y.G. Kweon, H.J. Kim, I.B. Kim, ISIJ Int. 40, 1164 (2000)

    Article  Google Scholar 

  20. J. Gu, J. Li, Y. Chen, Metals 7, 310 (2017)

    Article  Google Scholar 

  21. Q.F. Guan, Q.C. Jiang, J.R. Fang, H. Jiang, ISIJ Int. 43, 784 (2003)

    Article  Google Scholar 

  22. H. Liu, P. Fu, H. Liu, C. Sun, J. Gao, D. Li, Metals 7, 436 (2017)

    Article  Google Scholar 

  23. Z. Wang, X. Chen, Y. Li, H. Zhang, Y. Liu, Acta Metall. Sin. 51, 519 (2015). (in Chinese)

    Google Scholar 

  24. V. Leskovšek, B. Šuštaršič, G. Jutriša, J. Mater. Process. Technol. 178, 328 (2006)

    Article  Google Scholar 

  25. A. Ning, W. Mao, X. Chen, H. Guo, J. Guo, Metals 7, 70 (2017)

    Article  Google Scholar 

  26. Y. Zhang, J. Li, C.B. Shi, Y.F. Qi, Q.T. Zhu, Metals 7, 94 (2017)

    Article  Google Scholar 

  27. X.L. Gui, B.X. Zhang, G.H. Gao, P. Zhao, B.Z. Bai, Y.Q. Weng, Acta Metall. Sin. 52, 1036 (2016). (in Chinese)

    Google Scholar 

  28. V.A. Kovrigin, B.S. Starokozhev, S.A. Yurasov, Met. Sci. Heat Treat. 22, 688 (1980)

    Article  Google Scholar 

  29. S. Chander, V. Chawla, Mater. Today Proc. 4, 1147 (2017)

    Article  Google Scholar 

  30. C. Xu, Q.L. Nai, Z.H. Yao, H. Jiang, J.X. Dong, Acta Metall. Sin. 53, 1453 (2017). (in Chinese)

    Google Scholar 

  31. Q.H. Zhao, W. Liu, Y.C Zhu, Acta Metall. Sin. (Engl. Lett.) 30, 164 (2017)

  32. P.J. Withers, W.M. Stobbs, O.B. Pedersen, Acta Metall. 37, 3061 (1989)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Project 985-High Properties Materials of Jilin University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Long Zhao.

Additional information

Available online at http://link.springer.com/journal/40195

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1843 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, QC., Zhao, XM., Qiu, F. et al. The Relationship Between Oxidation and Thermal Fatigue of Martensitic Hot-Work Die Steels. Acta Metall. Sin. (Engl. Lett.) 31, 692–698 (2018). https://doi.org/10.1007/s40195-017-0699-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-017-0699-8

Keywords

Navigation