Skip to main content

Advertisement

Log in

A review on therapeutic potential of wild mushrooms with their relative status in Chhattisgarh, Central India

  • Review
  • Published:
Advances in Traditional Medicine Aims and scope Submit manuscript

Abstract

Wild mushrooms are a rich source of bioactive compounds. They have diverse pharmacological and nutraceutical importance that help to boost immunity against many life-threatening diseases. They have biological functions such as; antibacterial, antifungal, antioxidant, antiviral, anticancer, immunomodulatory, and hepatoprotective activities, etc. Besides, they are globally used as a functional food due to low calorie (low lipid) and rich in proteins and carbohydrates. Overall, they are abundant in vitamins, minerals, fibres, nutrients, and a mighty source of potential bioactive secondary metabolites. This review aims to focus on the therapeutic values of wild mushrooms, which are found worldwide, and the availability of such wild mushrooms in Chhattisgarh based on previous literatures, to account the status of study on mushrooms in this state. It is found that a little to no work has been done on the diversity and therapeutic potentials of wild mushrooms in Chhattisgarh. This review gives a solid basis to investigate their properties from this region to support the livelihood of humanity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acharya K, Chatterjee S, Biswas G, Chatterjee A, Saha GK (2012) Hepatoprotective effect of a wild edible mushroom on carbon tetrachloride-induced hepatotoxicity in mice. Int J Pharm Pharm Sci 4(3):285–288

    CAS  Google Scholar 

  • Al Fatimi MAM (2001) Isolierung und Charakterisierung antibiotisch wirksamer Verbindungen aus Ganoderma pfeifferi Bres. und aus Podaxis pistillaris (L.: Pers.) Morse. Doctoral dissertation, Verlag nicht ermittelbar

  • Awadasseid A, Hou J, Gamallat Y, Xueqi S, Eugene KD, Hago AM, Bamba D, Meyiah A, Gift C, Xin Y (2017) Purification, characterization, and antitumor activity of a novel glucan from the fruiting bodies of coriolus versicolor. PLoS ONE 12(2):e0171270. https://doi.org/10.1371/journal.pone.0171270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babitskaya VG, Scherba VV, Ikonnikova NV, Bisko NA, Mitropolskaya NY (2002) Melanin complex from medicinal mushroom Inonotus obliquus (Pers.: Fr.) Pilat (Chaga) (Aphyllophoromycetidae). Int J Med Mushrooms 4:139–145

    CAS  Google Scholar 

  • Badalyan SM (2004) Antiprotozoal activity and mitogenic effect of mycelium of culinary-medicinal shiitake mushroom Lentinus edodes (Berk.) Singer (Agaricomycetideae). Int J Med Mushrooms 6(2):8

    Article  Google Scholar 

  • Bai MS, Wang C, Zong SC, Lei M, Gao JM (2013) Antioxidant polyketide phenolic metabolites from the edible mushroom Cortinarius purpurascens. Food Chem 141(4):3424–3427

    Article  CAS  PubMed  Google Scholar 

  • Bashir A, Vaida N, Ahmad Dar M (2014) Medicinal importance of mushrooms: a review. Int J Adv Res 2(12):1–4. https://doi.org/10.1002/14651858.CD007731

    Article  Google Scholar 

  • Batra P, Sharma AK, Khajuria R (2013) Probing lingzhi or reishi medicinal mushroom ganoderma lucidum (higher basidiomycetes): a bitter mushroom with amazing health benefits. Int J Med Mushrooms 15(2):127–143

    Article  CAS  PubMed  Google Scholar 

  • Bender S, Dumitrache-Anghel CN, Backhaus J, Christie G, Cross RF, Lonergan GT, Baker WL (2003) A case for caution in assessing the antibiotic activity of extracts of culinary-medicinal shiitake mushroom [Lentinus edodes (Berk) Singer] (Agaricomycetideae). Int J Med Mushrooms. https://doi.org/10.1615/intjmedmushr.v5.i1.40

    Article  Google Scholar 

  • Bhuarya HK, Sastri ASRAS, Chandrawanshi SK, Bobade P, Kaushik DK (2018) Agro-climatic characterization foragro-climatic zone of Chhattisgarh. Int J Curr Microbiol Appl Sci 7(8):108–117. https://doi.org/10.20546/ijcmas.2018.708.013

    Article  Google Scholar 

  • Blagodatski A, Yatsunskaya M, Mikhailova V, Tiasto V, Kagansky A, Katanaev VL (2018) Medicinal mushrooms as an attractive new source of natural compounds for future cancer therapy. Oncotarget 9(49):29259. https://doi.org/10.18632/oncotarget.25660

    Article  PubMed  PubMed Central  Google Scholar 

  • Borthakur M, Gurung AB, Bhattacharjee A, Joshi SR (2020) Analysis of the bioactive metabolites of the endangered mexican lost fungi campanophyllum–a report from India. Mycobiology 48(1):58–69. https://doi.org/10.1080/12298093.2020.1723388

    Article  PubMed  PubMed Central  Google Scholar 

  • Burczyk J, Gawron A, Slotwinska M, Smietana B, Terminska K (1996) Antimitotic activity of aqueous extracts of Inonotus obliquus. Boll Chim Farm 135(5):306–309

    CAS  PubMed  Google Scholar 

  • Cai X, Pi Y, Zhou X, Tian L, Qiao S, Lin J (2010) Hepatoma cell growth inhibition by inducing apoptosis with polysaccharide isolated from Turkey tail medicinal mushroom, Trametes versicolor (L.: Fr.) Lloyd (Aphyllophoromycetideae). Int J Med Mushrooms 12(3):257–263

    Article  CAS  Google Scholar 

  • Cai M, Lin Y, Luo YL, Liang HH, Sun P (2015) Extraction, antimicrobial, and antioxidant activities of crude polysaccharides from the wood ear medicinal mushroom Auricularia auricula-judae (higher basidiomycetes). Int J Med Mushrooms 17(6):591–600

    Article  PubMed  Google Scholar 

  • Chanda SD, Banerjee A (2015) Cordycepin an Adenosine Analogue executes anti rotaviral effect by stimulating induction of type I Interferon. J Virol Antiviral Res 4(2):2. https://doi.org/10.4172/2324-8955.1000138

    Article  Google Scholar 

  • Chang S, Miles P (1992) Mushroom biology — a new discipline. Top Catal 6(2):64–65. https://doi.org/10.1016/S0269-915X(09)80449-7

    Article  Google Scholar 

  • Chang CJ, Lu CC, Lin CS, Martel J, Ko YF, Ojcius DM, Wu TR, Tsai YH, Yeh TS, Lu JJ, Lai HC, Young JD (2018) Antrodia cinnamomea reduces obesity and modulates the gut microbiota in high-fat diet-fed mice. Int J Obes 42(2):231–243. https://doi.org/10.1038/ijo.2017.149

    Article  Google Scholar 

  • Chaturvedi VK, Agarwal S, Gupta KK, Ramteke PW, Singh MP (2018) Medicinal mushroom: boon for therapeutic applications. Biotech 8(8):1–20. https://doi.org/10.1007/s13205-018-1358-0

    Article  Google Scholar 

  • Chen H, Lu X, Qu Z, Wang Z, Zhang L (2010) Glycosidase inhibitory activity and antioxidant properties of a polysaccharide from the mushroom Inonotus obliquus. J Food Biochem 34:178–191. https://doi.org/10.1111/j.1745-4514.2009.00322.x

    Article  Google Scholar 

  • Chihara G, Maeda Y, Hamuro J, Sasaki T, Fukuoka F (1969) Inhibition of mouse sarcoma 180 by polysaccharides from Lentinus edodes (Berk.) Sing. Nature 222(5194):687–688

    Article  CAS  PubMed  Google Scholar 

  • Chu HL, Chien JC, Duh P (2011) Protective effect of Cordyceps militaris against high glucose-induced oxidative stress in human umbilical vein endothelial cells. Food Chem 129(3):871–876. https://doi.org/10.1016/j.foodchem.2011.05.037

    Article  CAS  PubMed  Google Scholar 

  • Cör D, Botić T, Knez Ž, Batista U, Gregori A, Pohleven F, Bončina T (2014) Two-stage extraction of antitumor, antioxidant and antiacetylcholinesterase compounds from Ganoderma lucidum fruiting body. J Supercrit Fluids 91:53–60. https://doi.org/10.1016/j.supflu.2014.04.006

    Article  CAS  Google Scholar 

  • Dhar BL, Sharma R (2009) Medical mushroom products in India, present status and future trading. In: Proceedings of the 5th International Medicinal Mushroom Conference

  • Dixit B, Ekka R (2021) Habitat diversity of edible wild mushrooms in Semarsot wildlife sanctuary, Chhattisgarh, India. Plant Arch 21(2):427–429

    Google Scholar 

  • Dong C, Yang T, Lian T (2014) A comparative study of the antimicrobial, antioxidant, and cytotoxic activities of methanol extracts from fruit bodies and fermented mycelia of caterpillar medicinal mushroom Cordyceps militaris (Ascomycetes). Int J Med Mushrooms. https://doi.org/10.1615/IntJMedMushrooms.v16.i5.70

    Article  PubMed  Google Scholar 

  • El-Mekkawy S, Meselhy MR, Nakamura N, Tezuka Y, Hattori M, Kakiuchi N, Shimotohno K, Kawahata T, Otake T (1998) Anti-HIV-1 and anti-HIV-1-protease substances from Ganoderma lucidum. Phytochemistry 49(6):1651–1657. https://doi.org/10.1016/S0031-9422(98)00254-4

    Article  CAS  PubMed  Google Scholar 

  • Faccin LC, Benati F, Rincão VP, Mantovani MS, Soares SA, Gonzaga ML, Nozawa C, Linhares C (2007) Antiviral activity of aqueous and ethanol extracts and of an isolated polysaccharide from Agaricus brasiliensis against poliovirus type 1. Lett Appl Microbiol 45(1):24–28. https://doi.org/10.1111/j.1472-765X.2007.02153.x

    Article  CAS  PubMed  Google Scholar 

  • Feeney MJ, Dwyer J, Hasler-Lewis CM, Milner JA, Noakes M, Rowe S, Wach M, Beelman RB, Caldwell J, Cantorna MT, Castlebury LA, Chang ST, Cheskin LJ, Clemens R, Drescher G, Fulgoni VL, Haytowitz DB, Hubbard VS, Law D, Wu D (2014) Mushrooms and health summit proceedings. J Nutr 144(7):1128S-1136S. https://doi.org/10.3945/jn.114.190728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu H, Deng C, Teng L, Yu L, Su T, Xu X, Chen J, Yang C (2015) Immunomodulatory activities on RAW 264.7 macrophages of a polysaccharide from veiled lady mushroom, dictyophora indusiata (higher basidiomycetes). Int J Med Mushrooms 17(2):151. https://doi.org/10.1615/IntJMedMushrooms.v17.i2.60

    Article  PubMed  Google Scholar 

  • Gao Y, Zhou S (2002) The Immunomodulating Effects of Ganoderma lucidum (Curt: Fr.) P. Karst (Ling Zhi, Reishi mushroom) (Aphyllophoromycetideae). Int J Med Mushrooms 4(1):11

    Article  Google Scholar 

  • Garrab M, Edziri H, el Mokni R, Mastouri M, Mabrouk H, Douki W (2019) Phenolic composition, antioxidant and anticholinesterase properties of the three mushrooms Agaricus silvaticus Schaeff., Hydnum rufescens Pers. And Meripilus giganteus (Pers.) Karst. In Tunisia. South Afr J Bot 124:159–163. https://doi.org/10.1016/j.sajb.2019.05.033

    Article  CAS  Google Scholar 

  • Ge Q, Mao JW, Zhang AQ, Wang YJ, Sun PL (2013) Purification, chemical characterization, and antioxidant activity of a polysaccharide from the fruiting bodies of sanghuang mushroom (Phellinus baumii Pilát). Food Sci Biotechnol 22(2):301–307

    Article  CAS  Google Scholar 

  • Géry A, Dubreule C, André V, Rioult JP, Bouchart V, Heutte N, de Pécoulas E, Krivomaz P, Garon D (2018) Chaga (Inonotus obliquus), a future potential medicinal fungus in oncology? A chemical study and a comparison of the cytotoxicity against human lung adenocarcinoma cells (A549) and human bronchial epithelial cells (BEAS-2B). Integr Cancer Ther 17(3):832–843. https://doi.org/10.1177/1534735418757912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Y, Wang H, Ng TB (2005) Isolation of trichogin, an antifungal protein from fresh fruiting bodies of the edible mushroom tricholoma giganteum. Peptides 26(4):575–580

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219(1):1. https://doi.org/10.1042/bj2190001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawksworth DL (2001) Mushrooms: the extent of the unexplored potential. Int J Med Mushrooms. https://doi.org/10.1615/intjmedmushr.v3.i4.50

    Article  Google Scholar 

  • Hu H, Zhang Z, Lei Z, Yang Y, Sugiura N (2009) Comparative study of antioxidant activity and antiproliferative effect of hot water and ethanol extracts from the mushroom Inonotus obliquus. J Biosci Bioeng 107(1):42–48. https://doi.org/10.1016/j.jbiosc.2008.09.004

    Article  CAS  PubMed  Google Scholar 

  • Jayakumar T, Ramesh E, Geraldine P (2006) Antioxidant activity of the oyster mushroom, pleurotus ostreatus, CCl4-induced liver injury in rats. Food Chem Toxicol 44(12):1989–1996. https://doi.org/10.1016/j.fct.2006.06.025

    Article  CAS  PubMed  Google Scholar 

  • Jia W, Bai YY, Zhang Z, Feng N, Feng J, Yan MQ, Zhu LN, Jia XC, Wang MD, Zhang JS, Fan H (2015) Antitumor compounds from the stout camphor mushroom Taiwanofungus camphoratus (higher basidiomycetes) spent culture broth. Int J Med Mushrooms. https://doi.org/10.1615/IntJMedMushrooms.v17.i6.40

    Article  PubMed  Google Scholar 

  • Kahlos K, Kaila-Kangas L, Hiltunen R (1987) Antitumor activity of some compounds and fractions from an n-hexane extract of Inonotus obliquus in vitro. Acta Pharm Fenn 96:33–40

    CAS  Google Scholar 

  • Kang JH, Jang JE, Mishra SK, Lee HJ, Nho CW, Shin D, Oh SH (2015) Ergosterol peroxide from Chaga mushroom (Inonotus obliquus) exhibits anti-cancer activity by down-regulation of the β-catenin pathway in colorectal cancer. J Ethnopharmacol 173:303–312

    Article  CAS  PubMed  Google Scholar 

  • Kim HM, Kang JS, Kim JY, Park SK, Kim HS, Lee YJ, Yun J, Hong JT, Kim Y, Han SB (2010) Evaluation of antidiabetic activity of polysaccharide isolated from Phellinus linteus in non-obese diabetic mouse. Int Immunopharmacol 10(1):72–78. https://doi.org/10.1016/j.intimp.2009.09.024

    Article  CAS  PubMed  Google Scholar 

  • Komoda Y, Shimizu M, Sonoda Y, Sato Y (1989) Ganoderic acid and its derivatives as cholesterol synthesis inhibitors. Chem Pharm Bull 37(2):531–533

    Article  CAS  Google Scholar 

  • Kosanić MM, Šeklić DS, Jovanović MM, Petrović NN, Marković SD (2020) Hygrophorus eburneus, edible mushroom, a promising natural bioactive agent. EXCLI J 19:442. https://doi.org/10.17179/excli2019-2056

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Netam B (2022) Study of wild edible mushrooms for improving human health and livelihoods support in Bastar plateau India. Plant Arch 22(1):174–186

    Article  Google Scholar 

  • Kumar V, Yadav HK (2019) Therapeutic potential of an edible macro-fungus: Ganoderma lucidum (curtis) P. Karst. Indian J Tradit Knowl 18(4):702–713

    Google Scholar 

  • Kumar V, Kerketta A, Rajhansa KC (2019) Diversity of wild edible mushrooms in Korea district of Chhattisgarh. J Pharmacogn Phytochem 8(6):2389–2392

    Google Scholar 

  • Lee IK, Yun BS, Cho SM, Kim WG, Kim JP, Ryoo IJ, Yoo ID (1996) Betulinans A and B, two benzoquinone compounds from Lenzites betulina. J Nat Prod 59(11):1090–1092

    Article  CAS  PubMed  Google Scholar 

  • Lee KC, Kuo HC, Shen CH, Lu CC, Huang WS, Hsieh MC, Huang CY, Kuo YH, Hsieh YY, Teng CC, Lee LY, Tung SY (2017) A proteomics approach to identifying novel protein targets involved in erinacine A–mediated inhibition of colorectal cancer cells’ aggressiveness. J Cell Mol Med 21(3):588–599. https://doi.org/10.1111/jcmm.13004

    Article  CAS  PubMed  Google Scholar 

  • Li YR, Liu QH, Wang HX, Ng TB (2008) A novel lectin with potent antitumor, mitogenic and HIV-1 reverse transcriptase inhibitory activities from the edible mushroom Pleurotus citrinopileatus. Biochim Biophys Acta Gen Subj 1780(1):51–57. https://doi.org/10.1016/j.bbagen.2007.09.004

    Article  CAS  Google Scholar 

  • Li F, Wen HA, Zhang YJ, An M, Liu XZ (2011) Purification and characterization of a novel immunomodulatory protein from the medicinal mushroom Trametes versicolor. Sci China Life Sci 54(4):379–385. https://doi.org/10.1007/s11427-011-4153-2

    Article  CAS  PubMed  Google Scholar 

  • Li N, Li L, Fang JC, Wong JH, Ng TB, Jiang Y, Wang CR, Zhang NY, Wen TY, Qu LY, Lv PY, Zhao R, Shi B, Wang YP, Wang XY, Liu F (2012) Isolation and identification of a novel polysaccharide-peptide complex with antioxidant, anti-proliferative and hypoglycaemic activities from the abalone mushroom. Biosci Rep 32(3):221–228. https://doi.org/10.1042/BSR20110012

    Article  CAS  PubMed  Google Scholar 

  • Li F, Li S, Li H, bin, Deng GF, Ling WH, Xu XR (2013) Antiproliferative activities of tea and herbal infusions. Food Funct 4(4):530–538. https://doi.org/10.1039/c2fo30252g

    Article  CAS  PubMed  Google Scholar 

  • Li X, Wu Q, Xie Y, Ding Y, Du WW, Sdiri M, Yang BB (2015) Ergosterol purified from medicinal mushroom amauroderma rude inhibits cancer growth in vitro and in vivo by up-regulating multiple tumor suppressors. Oncotarget 6(19):17832. https://doi.org/10.18632/oncotarget.4026

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, Wu Q, Bu M, Hu L, Du WW, Jiao C, Pan H, Sdiri M, Wu N, Xie Y, Yang BB (2016) Ergosterol peroxide activates Foxo3-mediated cell death signaling by inhibiting AKT and c-Myc in human hepatocellular carcinoma cells. Oncotarget 7(23):33948. https://doi.org/10.18632/oncotarget.8608

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Zhang W, Chen C, Zhang C, Duan J, Yao H, Wei Q, Meng A, Shi J (2018) Inotodiol protects PC12 cells against injury induced by oxygen and glucose deprivation/restoration through inhibiting oxidative stress and apoptosis. J Appl Biomed 16(2):126–132. https://doi.org/10.1016/j.jab.2017.11.004

    Article  Google Scholar 

  • Lin ZB (2004) Focus on anti-oxidative and free radical scavenging activity of Ganoderma lucidum. In: Proceedings of the Korean society of applied pharmacology, pp 61–77

  • Lin JW, Jia J, Shen YH, Zhong M, Chen LJ, Li HG, Ma H, Guo ZF, Qi MF, Liu LX, Li TL (2013) Functional expression of FIP-fve, a fungal immunomodulatory protein from the edible mushroom Flammulina velutipes in Pichia pastoris GS115. J Biotechnol 168(4):527–533. https://doi.org/10.1016/j.jbiotec.2013.09.013

    Article  CAS  PubMed  Google Scholar 

  • Lin WH, Tsai MT, Chen YS, Hou RCW, Hung HF, Li CH, Wang HK, Lai MN, Jeng KCG (2007) Improvement of sperm production in subfertile boars by Cordyceps militaris supplement. Am J Chin Med 35(4):631–641. https://doi.org/10.1142/S0192415X07005120

    Article  PubMed  Google Scholar 

  • Lindequist U, Niedermeyer TH, Jülich WD (2005) The pharmacological potential of mushrooms. Evid Based Complement Altern Med 2(3):285–299

    Article  Google Scholar 

  • Liu YT, Sun J, Luo ZY, Rao SQ, Su YJ, Xu RR, Yang YJ (2012) Chemical composition of five wild edible mushrooms collected from Southwest China and their antihyperglycemic and antioxidant activity. Food Chem Toxicol 50(5):1238–1244

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Jia L, Kan J, Jin C (2013) In vitro and in vivo antioxidant activity of ethanolic extract of white button mushroom (Agaricus bisporus). Food Chem Toxicol 51(1):310–316. https://doi.org/10.1016/j.fct.2012.10.014

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Wang JL, Zhao L, Wang Q (2014) Anticancer and antimicrobial activities and chemical composition of the birch mazegill mushroom Lenzites betulina (higher Basidiomycetes). Int J Med Mushrooms 16(4):327–337

    Article  PubMed  Google Scholar 

  • Ma K, Bao L, Han J, Jin T, Yang X, Zhao F, Liu H (2014) New benzoate derivatives and hirsutane type sesquiterpenoids with antimicrobial activity and cytotoxicity from the solid-state fermented rice by the medicinal mushroom Stereum hirsutum. Food chem, 143:239–245. https://doi.org/10.1016/j.foodchem.2013.07.124

    Article  Google Scholar 

  • Mahesh T, Shukla K, Shukla RV, Tripathi AM (2009) Prevalence of tribal mushrooms in sal forests of Chhattisgarh. J Mycopathol Res 47(2):111–117

    Google Scholar 

  • Mao G, Feng W, Xiao H, Zhao T, Li F, Zou YE, Wu X (2014) Purification, characterization, and antioxidant activities of selenium-containing proteins and polysaccharides in royal sun mushroom, Agaricus brasiliensis (higher Basidiomycetes). Int J Med Mushrooms 16(5):463–475

    Article  PubMed  Google Scholar 

  • Masterson CH, Murphy E, Major I, González H, O’Toole D, McCarthy S, Laffey JG, Rowan N (2019) Purified Beta-Glucan from the Lentinus Edodes Mushroom Attenuates Antibiotic Resistant Klebsiella Pneumoniae-Induced Pulmonary Sepsis. In: A28. Bacterial and viral lung infections in pathogenesis A1222. https://doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a1222

  • Mentel R, Meinsen D, Pilgrim H, Herrmann B, Lindequist U (1994) In vitro antiviral effect of extracts of Kuehneromyces mutabilis on influenza virus. Pharmazie 49(11):859–869

    CAS  PubMed  Google Scholar 

  • Miles PG, Chang ST (2004) Mushrooms: cultivation, nutritional value, medicinal effect, and environmental impact. CRC Press, Boca Raton

    Book  Google Scholar 

  • Molitoris HP (1994) Mushrooms in medicine. Folia Microbiol 39:91–98

    Article  CAS  Google Scholar 

  • Morigiwa A, Kitabatake K, Fujimoto Y, Ikekawa N (1986) Angiotensin converting enzyme-inhibitory triterpenes from Ganoderma lucidim. Chem Pharm Bull 34(7):3025–3028

    Article  CAS  Google Scholar 

  • Mothana RAA, Ali NA, Jansen R, Wegner U, Mentel R, Lindequist U (2003) Antiviral lanostanoid triterpenes from the fungus Ganoderma pfeifferi. Fitoterapia 74(1–2):177–180

    Article  CAS  PubMed  Google Scholar 

  • Muszyńska B, Fijałkowska A, Sułkowska-Ziaja K, Włodarczyk A, Kaczmarczyk P, Nogaj E, Piętka J (2020) Fomitopsis officinalis: a species of arboreal mushroom with promising biological and medicinal properties. Chem Biodivers 17(6):e2000213. https://doi.org/10.1002/cbdv.202000213

    Article  CAS  PubMed  Google Scholar 

  • Nakamichi N, Nakayama K, Ishimoto T, Masuo Y, Wakayama T, Sekiguchi H, Sutoh K, Usumi K, Iseki S, Kato Y (2016) Food-derived hydrophilic antioxidant ergothioneine is distributed to the brain and exerts antidepressant effect in mice. Brain Behav 6(6):e00477. https://doi.org/10.1002/brb3.477

    Article  PubMed  PubMed Central  Google Scholar 

  • Netam RS, Yadav SC, Mukherjee SC, Kumari P (2018) Cultivation of button mushroom (Agaricus bisporus) under controlled condition: an initiative in Bastar Plateau of Chhattisgarh. Int J Curr Microbiol Appl Sci 7(10):782–787

    Article  CAS  Google Scholar 

  • Ngai PH, Zhao Z, Ng TB (2005) Agrocybin, an antifungal peptide from the edible mushroom agrocybe cylindracea. Peptides 26(2):191–196

    Article  CAS  PubMed  Google Scholar 

  • Nowacka-Jechalke N, Nowak R, Juda M, Malm A, Lemieszek M, Rzeski W, Kaczyński Z (2019) Corrigendum to “New biological activity of the polysaccharide fraction from Cantharellus cibarius and its structural characterization.” Food Chem 268(2018):355–361. https://doi.org/10.1016/j.foodchem.2018.09.147

    Article  CAS  Google Scholar 

  • Owaid MN, Al-Saeedi SSS, Al-Assaffii IAA (2015) Antimicrobial activity of mycelia of oyster mushroom species (Pleurotus spp.) and their liquid filtrates (in vitro). J Med Bioeng 4(5):376–380 https://doi.org/10.12720/jomb.4.5.376-380

    Article  Google Scholar 

  • Özaltun B, Sevindik M (2020) Evaluation of the effects on atherosclerosis and antioxidant and antimicrobial activities of Agaricus xanthodermus poisonous mushroom. Eur Res J 6(6):539–544. https://doi.org/10.18621/eurj.524149

    Article  Google Scholar 

  • Pan H, Han Y, Huang J, Yu X, Jiao C, Yang X, Dhaliwal P, Xie Y, Yang BB (2015) Purification and identification of a polysaccharide from medicinal mushroom Amauroderma rude with immunomodulatory activity and inhibitory effect on tumor growth. Oncotarget 6(19):17777. https://doi.org/10.18632/oncotarget.4397

    Article  PubMed  PubMed Central  Google Scholar 

  • Paul JS, Jadhav SK, Quraishi A, Naik ML (2020) Ferret out a natural bio-pesticide: ophicordyceps nutans in Central India and its interaction analysis with tree stink bug. In: Proceedings of the zoological society, 73 pp 316–319

  • PubChem. (2022) Retrieved from: https://pubchem.ncbi.nlm.nih.gov/

  • Rahi DK, Malik D (2016) Diversity of mushrooms and their metabolites of nutraceutical and therapeutic significance. J Mycol 2016:1. https://doi.org/10.1155/2016/7654123

    Article  Google Scholar 

  • Ryu E, Son M, Lee M, Lee K, Cho JY, Cho S, Lee SK, Lee YM, Cho H, Sung GH, Kang H (2014) Cordycepin is a novel chemical suppressor of Epstein-Barr virus replication. Oncoscience 1(12):866. https://doi.org/10.18632/oncoscience.110

    Article  PubMed  PubMed Central  Google Scholar 

  • Selamoglu Z, Sevindik M, Bal C, Ozaltun B, Sen İ, Pasdaran A (2020) Antioxidant, antimicrobial and DNA protection activities of phenolic content of Tricholoma virgatum (Fr.) P.Kumm. Biointerface Res Appl Chem. https://doi.org/10.33263/BRIAC103.500506

    Article  Google Scholar 

  • Shang X, Tan Q, Liu R, Yu K, Li P, Zhao GP (2013) In vitro anti-Helicobacter pylori effects of medicinal mushroom extracts, with special emphasis on the Lion’s Mane mushroom, Hericium erinaceus (higher Basidiomycetes). Int J Med Mushrooms 15(2):165–174

    Article  PubMed  Google Scholar 

  • Sharma R, Rajak RC, Pandey AK (2009) Ectomycorrhizal mushrooms in indian tropical forests. Biodiversity 10(1):25–30

    Article  Google Scholar 

  • Shukla K (2016) Ethnopharmacological important of tribal mushrooms in Chhattisgarh Forest. J Ravishankar Univ Part-B Sci 29:67–68

    Google Scholar 

  • Shukla K, Giri B, Shukla Rv (2017) Occurrence and distribution of mushrooms in semi-evergreen Sal (Shorea robusta) forest Chhattisgarh, Central India. Developments in Fungal Biology and Applied Mycology 501–523. Springer, Singapore, pp 501–523. https://doi.org/10.1007/978-981-10-4768-8_25

    Chapter  Google Scholar 

  • Shukla RV, Tripathi AM, Shukla KK, Tiwari MK (2009) Diversity of Agarics in Achanakmar-Amarkantak biosphere reserve, Chhattisgarh. Mushroom Res 18(2):57–63

    Google Scholar 

  • Simic MG (1988) Mechanisms of inhibition of free-radical processes in mutagenesis and carcinogenesis. Mutat Res Fundam Mol Mech Mutagen 202(2):377–386. https://doi.org/10.1016/0027-5107(88)90199-6

    Article  CAS  Google Scholar 

  • Smania A Jr, Monache FD, Smania EDFA, Cuneo RS (1999) Antibacterial activity of steroidal compounds isolated from Ganoderma applanatum (Pers.) Pat. (Aphyllophoromycetideae) fruit body. Int J Med Mushrooms. https://doi.org/10.1615/IntJMedMushr.v1.i4.40

    Article  Google Scholar 

  • Smania E, Delle Monache F, Smania Jr A, Yunes RA, Cuneo RS (2003) Antifungal activity of sterols and triterpenes isolated from Ganoderma annulare. Fitoterapia 74(4):375–377

    Article  CAS  PubMed  Google Scholar 

  • Smina TP, De S, Devasagayam TPA, Adhikari S, Janardhanan KK (2011) Ganoderma lucidum total triterpenes prevent radiation-induced DNA damage and apoptosis in splenic lymphocytes in vitro. Mutat Res Genet Toxicol Environ Mutagen 726(2):188–194

    Article  CAS  Google Scholar 

  • Song FQ, Liu Y, Kong XS, Chang W, Song G (2013) Progress on understanding the anticancer mechanisms of medicinal mushroom: Inonotus obliquus. Asian Pac J Cancer Prev 14(3):1571–1578

    Article  PubMed  Google Scholar 

  • Soni I (2017) Diversity and economic value of medicinal mushroom of Chattishgarh. Indian J Sci Res 13(2):152–157

    Google Scholar 

  • Su CY, Shiao MS, Wang CT (1999) Predominant inhibition of ganodermic acid S on the thromboxane A2-dependent pathway in human platelets response to collagen. Biochimica et Biophysica Acta BBA Mol Cell Biol Lipids 1437(2):223–234

    CAS  Google Scholar 

  • Takiar R, Nadayil D, Nandakumar A (2010) Projections of number of cancer cases in India (2010–2020) by cancer groups. Asian Pac J Cancer Prev 11(4):1045–1049

    PubMed  Google Scholar 

  • Thakur MP (2017) Occurrence of mushroom diversity in chhattisgarh plains, northern hilly regions and bastar plateau of chhattisgarh state. Int J Res Biosci Agric Technol 5(2):1–5

    Google Scholar 

  • Therkelsen SP, Hetland G, Lyberg T, Lygren I, Johnson E (2016) Effect of a medicinal agaricus blazei murill- based mushroom extract, andosan™, on symptoms, fatigue and quality of life in patients with ulcerative colitis in a randomized single-blinded placebo controlled study. PLoS ONE 11(3):e0150191. https://doi.org/10.1371/journal.pone.0150191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian Y, Zeng H, Xu Z, Zheng B, Lin Y, Gan C, Lo YM (2012) Ultrasonic-assisted extraction and antioxidant activity of polysaccharides recovered from white button mushroom (Agaricus bisporus). Carbohydr Polym 88(2):522–529

    Article  CAS  Google Scholar 

  • Tiwari S, Sharma a (2017) Studies on the diversity of mushroom of Surguja Chhattisgarh. J Sci Lett 2(2):65–70

    Google Scholar 

  • Verma S, Tiwari M, Shukla RV, Shukla K (2022) Species of Termitomyces (Agaricales) Occurring in Achanakmar Biosphere Reserve, Chhattisgarh. J Ravishankar Univ 35(1):87–100. https://doi.org/10.52228/JRUB.2022-35-1-8

    Article  Google Scholar 

  • Verma S, Valvi V, Shukla KK (2022) Screening some extracellular enzymes of wild mushrooms from pt. Ravishankar Shukla University campus. J Ravishankar Univ 35(1):42–52. https://doi.org/10.52228/JRUB.2022-35-1-6

    Article  Google Scholar 

  • Wang HX, Ng TB (2000) Isolation of a novel ubiquitin-like protein from Pleurotus ostreatus mushroom with anti-human immunodeficiency virus, translation-inhibitory, and ribonuclease activities. Biochem Biophys Res Commun 276(2):587–593. https://doi.org/10.1006/bbrc.2000.3540

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Ng TB (2006) Ganodermin, an antifungal protein from fruiting bodies of the medicinal mushroom Ganoderma lucidum. Peptides 27(1):27–30. https://doi.org/10.1016/j.peptides.2005.06.009

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Cheng X, Wang P, Wang L, Fan J, Wang X, Liu Q (2014) Investigating migration inhibition and apoptotic effects of Fomitopsis pinicola chloroform extract on human colorectal cancer SW-480 cells. PLoS ONE 9(7):e101303. https://doi.org/10.1371/journal.pone.0101303

    Article  PubMed  PubMed Central  Google Scholar 

  • Wasser SP (2010) Medicinal mushroom science: history, current status, future trends and unsolved problems. Int J Med Mushrooms. https://doi.org/10.1615/IntJMedMushr.v12.i1.10

    Article  Google Scholar 

  • Wasser SP, Weis AL (1999) Medicinal properties of substances occurring in higher basidiomycetes mushrooms: current perspectives. Int J Med Mushrooms 1(1):31–62

    Article  CAS  Google Scholar 

  • Wu X, Zeng J, Hu J, Liao Q, Zhou R, Zhang P, Chen Z (2013) Hepatoprotective effects of aqueous extract from lingzhi or reishi medicinal mushroom Ganoderma lucidum (higher Basidiomycetes) on α-amanitin-induced liver injury in mice. Int J Med Mushrooms. https://doi.org/10.1615/IntJMedMushr.v15.i4.60

    Article  PubMed  Google Scholar 

  • Welcome to Forest Survey of India. (2019) Retrieved from: https://fsi.nic.in/forest-report-2019

  • Xiao JH, Xiao DM, Chen DX, Xiao Y, Liang ZQ, Zhong JJ (2012) Polysaccharides from the medicinal mushroom Cordyceps taii show antioxidant and immunoenhancing activities in a D-galactose-induced aging mouse model. Evid Based Complement Altern Med 2012:273435

    Article  Google Scholar 

  • Xue Z, Li J, Cheng A, Yu W, Zhang Z, Kou X, Zhou F (2015) Structure identification of Triterpene from the mushroom pleurotus eryngii with inhibitory effects against breast cancer. Plant Foods Hum Nutr 70(3):291–296. https://doi.org/10.1007/s11130-015-0492-7

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Wang SW, Xie YH, Sun JY, Wang JB (2010) HPLC analysis of Ganoderma lucidum polysaccharides and its effect on antioxidant enzymes activity and bax, Bcl-2 expression. Int J Biol Macromol 46(2):167–172. https://doi.org/10.1016/j.ijbiomac.2009.11.002

    Article  CAS  PubMed  Google Scholar 

  • Yoo HS, Shin JW, Cho JH, Son CG, Lee YW, Park SY, Cho CK (2004) Effects of Cordyceps militaris extract on angiogenesis and tumor growth. Acta Pharmacol Sin 25(5):657–665

    CAS  PubMed  Google Scholar 

  • Yuen JW, Gohel MDI, Au DWT (2007) Telomerase-associated apoptotic events by mushroom ganoderma lucidum on premalignant human urothelial cells. Nutr Cancer 60(1):109–119

    Article  Google Scholar 

  • Yun BS, Cho Y, Lee IK, Cho SM, Lee TH, Yoo ID (2002) Sterins A and B, new antioxidative compounds from Stereum hirsutum. J Antibiot 55(2):208–210

    Article  CAS  Google Scholar 

  • Zhang M, Cheung PCK, Chiu LCM, Wong EYL, Ooi VEC (2006) Cell-cycle arrest and apoptosis induction in human breast carcinoma MCF-7 cells by carboxymethylated β-glucan from the mushroom sclerotia of Pleurotus tuber-regium. Carbohydr Polym 66(4):455–462. https://doi.org/10.1016/j.carbpol.2006.03.031

    Article  CAS  Google Scholar 

  • Zhang N, Chen H, Zhang Y, Ma L, Xu X (2013) Comparative studies on chemical parameters and antioxidant properties of stipes and caps of shiitake mushroom as affected by different drying methods. J Sci Food Agric 93(12):3107–3113

    Article  CAS  PubMed  Google Scholar 

  • Zhang BB, Guan YY, Hu PF, Chen L, Xu GR, Liu L, Cheung PCK (2019) Production of bioactive metabolites by submerged fermentation of the medicinal mushroom Antrodia cinnamomea: recent advances and future development. Crit Rev Biotechnol 39(4):541–555. https://doi.org/10.1080/07388551.2019.1577798

    Article  CAS  PubMed  Google Scholar 

  • Zheng L, Si J, Wong YS (2009) Ergosterol peroxide and 9,11-dehydroergosterol peroxide from Ling Zhi or Reishi medicinal mushroom, Ganoderma lucidum (W. Curt.: Fr.) P. Karst. (Aphyllophoro mycetideae) mycelia inhibit the growth of human breast adenocarcinoma MCF-7 cells. Int J Med Mushrooms. https://doi.org/10.1615/IntJMedMushr.v11.i3.40

    Article  Google Scholar 

  • Zheng S, Liu Q, Zhang G, Wang H, Ng TB (2010) Purification and characterization of an antibacterial protein from dried fruiting bodies of the wild mushroom clitocybe sinopica. Acta Biochim Pol 57(1):43–48. https://doi.org/10.18388/abp.2010_2370

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Yang C, Meng Q, Cui Y, Wang Y, Chen X, Fu S (2020) Investigation of chemical compounds and dpph radical scavenging activity of oudemansiella raphanipes (Agaricomycetes) based on fermentation. Int J Med Mushrooms 22(3):299. https://doi.org/10.1615/IntJMedMushrooms.2020033998

    Article  PubMed  Google Scholar 

  • Zhu H, Sheng K, Yan E, Qiao J, Lv F (2012) Extraction, purification and antibacterial activities of a polysaccharide from spent mushroom substrate. Int J Biol Macromol 50(3):840–843. https://doi.org/10.1016/j.ijbiomac.2011.11.016

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Luo X, Tang Q, Liu Y, Zhou S, Yang Y, Zhang J (2013) Isolation, purification, and immunological activities of a low-molecular-weight polysaccharide from the lingzhi or reishi medicinal mushroom ganoderma lucidum (higher Basidiomycetes). Int J Med Mushrooms 15(4):407–414. https://doi.org/10.1615/IntJMedMushr.v15.i4.80

    Article  CAS  PubMed  Google Scholar 

  • Zhuan-Yun L, Xue-Ping Y, Bin L, Reheman HN, Yang G, Zhan S, Qi M (2015) Auricularia auricular-judae polysaccharide attenuates lipopolysaccharide-induced acute lung injury by inhibiting oxidative stress and inflammation. Biomed Rep 3(4):478–482. https://doi.org/10.3892/br.2015.470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou Y, Xiong H, Xiong H, Lu T, Zhu F, Luo Z, Yuan X, Wang Y (2015) A polysaccharide from mushroom huaier retards human hepatocellular carcinoma growth, angiogenesis, and metastasis in nude mice. Tumor Biol 36(4):2929–2936. https://doi.org/10.1007/s13277-014-2923-8

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that this study has no funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamlesh Shukla.

Ethics declarations

Ethical approval

This article does not contain any studies involving animals performed by any of the authors. This article does not contain any studies involving human participants performed by any of the authors.

Conflict of interest

Srishti Verma has no conflict of interest. Samay Tirkey has no conflict of interest. Kamlesh Shukla has no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, S., Tirkey, S. & Shukla, K. A review on therapeutic potential of wild mushrooms with their relative status in Chhattisgarh, Central India. ADV TRADIT MED (ADTM) (2023). https://doi.org/10.1007/s13596-023-00713-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13596-023-00713-2

Keywords

Navigation