Skip to main content

Advertisement

Log in

Impact of forest organic farming change on soil microbial C turnover using 13C of phospholipid fatty acids

  • Original Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

Situated in the fast-developing country of Brazil, the Atlantic rainforest Mata Atlântica faces risks generated by population growth-derived problems. Conversion of forest to agriculture has led to a mosaic landscape with fragments of secondary forest in agricultural land. This disturbance to a naturally well-adapted ecosystem prompts rapid soil degradation. Therefore, here we compared soil C incorporation into soil microorganisms and their turnover in typical land-use systems such as primary forest, secondary forest, and agricultural land at the Atlantic Plateau of São Paulo, Brazil. In C3 and C4 plants having different 13C/12C compositions, a C3–C4 vegetation change was induced using maize, a C4 plant. We measured the δ13C composition of individual phospholipid fatty acids (PLFA) because PFLA are specific of typical microbes. Results show that statistical analysis of soil PLFA allow differentiation of four microbial units: (1) Gram-positive bacteria; (2) anaerobic Gram-positive bacteria; (3) fungi, vesicular–arbuscular mycorrhizal fungi, and Gram-positive bacteria; and (4) actinomycetes and Gram-positive bacteria. We also found that soil organic matter is cycled for longer time in primary forest ecosystems, of mean turnover time of 28 years, than in agricultural ecosystems with mean turnover time of 4 years for organic farming and 8 years for conventional farming. Calculation of maize-derived carbon of each microbial unit suggested that fungi and vesicular–arbuscular mycorrhizal fungi dominate microbial activity in primary forest whereas Gram-negative bacteria are prominent in the agricultural sites. To conclude, we found that PLFA profiles are sensitive to land-use conversion, and their compound-specific stable-isotope analysis can strongly discriminate between different managements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Backhaus K, Erichson B, Plinke W, Weber R (2003) Multivariate analysenmethoden. Springer, Berlin

    Google Scholar 

  • Behling H (1998) Late quaternary vegetational and climatic changes in Brazil. Rev Palaeobot Palynol 99:143–156

    Article  Google Scholar 

  • Berg B, Berg MP, Bottner P, Box E, Breymeyer A, Deanta RC, Couteaux M, Escudero A, Gallardo A, Kratz W, Madeira M, Malkonene E, McLaugherty C, Meentemeyer V, Munoz F, Piussi P, Remacle J, Desanto AV (1993) Litter mass loss rates in pine forests of Europe and Eastern United States: some relationships with climate and litter quality. Biogeochemistry 20:127–159

    Article  Google Scholar 

  • Bernoux M, Cerri CC, Neill C, de Moraes JFL (1998) The use of stable carbon isotopes for estimating soil organic matter turnover rates. Geoderma 82:43–58

    Article  Google Scholar 

  • Brenna JT, Corso TN, Tobias HJ, Caimi RJ (1997) High-precision continuous-flow isotope ratio mass spectrometry. Mass Spectrom Rev 16:227–258

    Article  PubMed  CAS  Google Scholar 

  • Burke RA, Molina M, Cox JE, Osher LJ, Piccolo MC (2003) Stable carbon isotope ratio and composition of microbial fatty acids in tropical soils. J Environ Qual 32:198–206

    Article  PubMed  CAS  Google Scholar 

  • Cadisch C, Imhof H, Urquiaga S, Boddey M, Giller KE (1996) Carbon turnover (δ13C) and nitrogen mineralisation potential of particulate light soil organic matter after rainforest clearing. Soil Biol Biochem 28(12):1555–1567

    Article  CAS  Google Scholar 

  • Camargo PB, Trumbore SE, Martinelli LA, Davidson EA, Nepstad DC, Victoria RL (1999) Soil carbon dynamics in regrowing forest in eastern Amazonia. Glob Chang Biol 5:693–702

    Article  Google Scholar 

  • Criquet S, Ferre E, Farnet AM, Le petit J (2004) Annual dynamics of phosphatase activities in an evergreen oak litter: influence of biotic and abiotic factors. Soil Biol Biochem 36(7):1111–1118

    Article  CAS  Google Scholar 

  • Crossman ZM, Abraham F, Evershed RP (2004) Stable isotope pulse-chasing and compound specific stable carbon isotope analysis of phospholipid fatty acids to assess methane oxidizing bacterial populations in landfill cover soils. Environ Sci Technol 38:1359–1367

    Article  PubMed  CAS  Google Scholar 

  • Crossman ZM, Ineson P, Evershed RP (2005) The use of 13C labeling of bacterial lipids in the characterization of ambient methane-oxidizing bacteria in soils. Org Geochem 36:769–778

    Article  CAS  Google Scholar 

  • de Rezende CP, Cantarutti RB, Braga JM, Gomide JA, Pereira JM, Ferreira E, Tarre R, Macedo R, Alves BJR, Urquiaga S, Cadisch G, Giller KE, Boddey RM (1999) Litter deposition and disappearance in Brachiaria pastures in the Atlantic forest region of the South of Bahia, Brazil. Nutr Cycl Agroecosyst 54:99–112

    Article  Google Scholar 

  • Diegues AC (1995) The Mata Atlantica biosphere reserve: an overview, working paper no. 1. UNESCO (South-South Cooperation Programme), Paris

    Google Scholar 

  • Dinesh R, Ghoshal CS, Sheeja TE (2004) Soil biochemical and microbial indices in wet tropical forests: effect of deforestation and cultivation. J Plant Nutr Soil Sci 167:24–32

    Article  CAS  Google Scholar 

  • Docherty G, Jones V, Evershed RP (2001) Practical and theoretical considerations in the gas chromatography/combustion/isotope ratio mass spectrometry δ13C analysis of small polyfunctional compounds. Rapid Commun Mass Spectrom 15:730–738

    Article  PubMed  CAS  Google Scholar 

  • FAO (1990) Soil map of the world, revised legend. FAO, Rome

    Google Scholar 

  • Flessa H, Ludwig B, Heil B, Merbach W (2000) The origin of soil organic C, dissolved organic C and respiration in a long-term maize experiment in Halle, Germany, determined by 13C natural abundance. Plant Nutr Soil Sci 163:157–163

    Article  CAS  Google Scholar 

  • Frostegard A, Tunlid A, Baath E (1991) Microbial biomass measured as total lipid phosphate in soils of different organic content. J Microbiol Meth 14(3):151–163

    Article  Google Scholar 

  • Gattinger A (2001) Entwicklung und Anwendung von Methoden zur Charakterisierung von mikrobiellen Gemeinschaften in oxischen und anoxischen Bodenökosystemen anhand von Phospholipid-Profilen. Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Technische Universität München, München, p 147

    Google Scholar 

  • Glaser B (2005) Compound-specific stable-isotope (δ13C) analysis in soil science. J Plant Nutr Soil Sci 168:633–648

    Article  CAS  Google Scholar 

  • Glaser B, Amelung W (2002) Determination of 13C natural abundance of amino acid enantiomers in soil: methodological considerations and first results. Rapid Commun Mass Spectrom 16:891–898

    Article  PubMed  CAS  Google Scholar 

  • Gregorich EG, Liang BC, Drury CF, Mackenzie AF, McGill WB (2000) Elucidation of the source and turnover of water soluble and microbial biomass carbon in agricultural soils. Soil Biol Biochem 32:581–587

    Article  CAS  Google Scholar 

  • Grogan D, Cronan J Jr (1997) Cyclopropane ring formation in membrane lipids of bacteria. Microbiol Mol Biol Rev 61:429–441

    PubMed  CAS  Google Scholar 

  • Gross S, Glaser B (2004) Minimization of foreign carbon addition during derivatization of organic molecules for compound-specific δ13C analysis of soil organic matter. Rapid Commun Mass Spectrom 18:2753–2764

    Article  PubMed  CAS  Google Scholar 

  • Guckert JB, Hood MA, White DC (1986) Phospholipids esterlinked fatty acid profile changes during nutrient deprivation of Vibrio cholerae: increases in the ratio and proportions of cyclopropyl fatty acids. Appl Environ Microbiol 52:794–801

    PubMed  CAS  Google Scholar 

  • Haack SK, Garchow H, Odelson DA, Forney LJ, Klug MJ (1994) Accuracy, reproducibility, and interpretation of fatty acid methyl ester profiles of model bacterial communities. Appl Environ Microbiol 60:2483–2493

    PubMed  CAS  Google Scholar 

  • Hackl E, Pfeffer M, Donat C, Bachmann G, Zechmeister-Boltenstern S (2005) Composition of the microbial communities in the mineral soil under different types of natural forest. Soil Biol Biochem 37:661–671

    Article  CAS  Google Scholar 

  • Haider K (1996) Biochemie des Bodens. Enke, Stuttgart

    Google Scholar 

  • Hayes JM, Freeman KH, Popp BN, Hoham CH (1990) Compound-specific isotope analysis: a novel tool for reconstruction of ancient biogeochemical processes. Org Geochem 16:1115–1128

    Article  PubMed  CAS  Google Scholar 

  • Hueck K (1966) Die Wälder Südamerikas. Fischer, Stuttgart

    Google Scholar 

  • Janssen J, Laatz W (1999) Statistische datenanalyse mit SPSS für Windows. Springer, Berlin

    Google Scholar 

  • Kaur A, Chaudhary A, Kaur A, Choudhary R, Kaushik R (2005) Phospholipid fatty acid—a bioindicator of environment monitoring and assessment in soil ecosystem. Curr Sci 89(7):1103–1112

    CAS  Google Scholar 

  • Knapp DR (1979) Handbook of analytical derivatization reactions, A. Wiley-Interscience, Charleston

    Google Scholar 

  • Koponen HT, Jaakkola T, Keinanen-Toivola MM, Kaipainen S, Tuomainen J, Servomaa K, Martikainen PJ (2006) Microbial communities, biomass, and activities in soils as affected by freeze thaw cycles. Soil Biol Biochem 38:1861–1871

    Article  CAS  Google Scholar 

  • Lal R (2008) Soils and sustainable agriculture. A review. Agron Sustainable Dev 28:57–64

    Article  Google Scholar 

  • Lal R (2009a) Soils and food sufficiency. A review. Agron Sustainable Dev 29:113–133

    Article  Google Scholar 

  • Lal R (2009b) Laws of sustainable soil management. Agron Sustainable Dev 29:7–9

    Article  Google Scholar 

  • Ledru M-P, Rousseau D-D, Cruz FW Jr, Riccomini C, Karmann I, Martin L (2005) Paleoclimate changes during the last 100, 000 yr from a record in the Brazilian Atlantic rainforest region and interhemispheric comparison. Quatern Res 64:444–450

    Article  Google Scholar 

  • Li Y, Xu M, Zou X, Shi P, Zhang Y (2005) Comparing soil organic carbon dynamics in plantation and secondary forest in wet tropics in Puerto Rico. Glob Chang Biol 11:239–248

    Article  Google Scholar 

  • Lichtfouse E (1995) 13C labeling of soil n-hentriacontane (C31) by maize cultivation. Tetrahedron Lett 36(4):529–530

    Article  CAS  Google Scholar 

  • Lichtfouse E (1997) Heterogeneous turnover of molecular organic substances from crop soils as revealed by 13C labeling at natural abundance with Zea mays. Naturwissenschaften 84:23–25

    Article  CAS  Google Scholar 

  • Lichtfouse E (2000) Compound-specific isotope analysis. Application to archaeology, biomedical sciences, biosynthesis, environment, extraterrestrial chemistry, food science, forensic science, humic substances, microbiology, organic geochemistry, soil science and sport. Rapid Commun Mass Spectrom 14:1337–1344

    Article  PubMed  CAS  Google Scholar 

  • Lichtfouse E, Berthier G, Houot S, Barriuso E, Bergheaud V, Vallaeys T (1995) Stable carbon isotope evidence for the microbial origin of C14–C18 n-alkanoic acids in soils. Org Geochem 23(9):849–852

    Article  CAS  Google Scholar 

  • Murase K, Itioka T, Nomura M, Yamane S (2003) Intraspecific variation in the status of ant symbiosis on a myrmecophyte. Macaranga bancana, between primary and secondary forests in Borneo. Soc Popul Ecol 45:221–226

    Article  Google Scholar 

  • Olsson PA, Baath E, Jakobsen I, Söderström B (1995) The use of phospholipid and neutral lipid fatty acids to estimate biomass of arbuscular mycorrhizal mycelium in soil. Mycol Res 99:623–629

    Article  CAS  Google Scholar 

  • Olsson PA, Francis R, Read DJ, Söderström B (1998) Growth of arbuscular mycorrhizal mycelium in calcareous dune sand and its interaction with other soil microorganisms as estimated by measurement of specific fatty acids. Plant Soil 201:9–16

    Article  CAS  Google Scholar 

  • Pardini R, Marques de Souza S, Braga-Neto R, Metzger JP (2005) The role of forest structure, fragment size and corridors in maintaining small mammal abundance and diversity in an Atlantic Forest landscape. Biol Conserv 124:253–266

    Article  Google Scholar 

  • Petersen S, Klug M (1994) Effects of sieving, storage, and incubation temperature on the phospholipid fatty acid profile of a soil microbial community. Appl Environ Microbiol 60:2421–2430

    PubMed  CAS  Google Scholar 

  • Post WM, Known KC (2000) Soil carbon sequestration and land use change: processes and potential. Glob Chang Biol 6:317–327

    Article  Google Scholar 

  • Rieley G (1994) Derivatization of organic compounds prior to gas chromatographic–combustion–isotope ratio mass spectrometric analysis: identification of isotope fractionation processes. Analyst 119:915–919

    Article  CAS  Google Scholar 

  • Roger-Estrade J, Richard G, Dexter AR, Boizard H, de Tourdonnet S, Bertrand M, Caneill J (2009) Integration of soil structure variations with time and space into models for crop management. A review. Agron Sustainable Dev 29:135–142

    Article  Google Scholar 

  • Salamanca EF, Raubuch M, Joergensen RG (2002) Relationships between soil microbial indices in secondary tropical forest soils. Appl Soil Ecol 21:211–219

    Article  Google Scholar 

  • Santruckova H, Bird MI, Lloyd J (2000) Microbial processes and carbon-isotope fractionation in tropical and temperate grassland soils. Funct Ecol 14:108–114

    Article  Google Scholar 

  • Schmidt IK, Ruess L, Baath E, Michelsen A, Ekelund F, Jonasson S (2000) Long-term manipulation of the microbes and microfauna of two subarctic heaths by addition of fungicide, bactericide, carbon and fertilizer. Soil Biol Biochem 32:707–720

    Article  CAS  Google Scholar 

  • Schmitt J, Glaser B, Zech W (2003) Amount-dependent isotopic fractionation during compound-specific isotope analysis. Rapid Commun Mass Spectrom 17:970–977

    Article  PubMed  CAS  Google Scholar 

  • Sparling GP, Felthan CW, Reynolds J, West AW, Singleton P (1990) Estimation of soil microbial C by a fumigation-extraction method: use on soils of high organic matter content, and reassessment of the kEC-factor. Soil Biol Biochem 22:301–307

    Article  Google Scholar 

  • Stoyan D, Stoyan H, Jansen U (1997) Umweltstatistik. Teubner Verlagsgesellschaft, Leipzig

    Google Scholar 

  • Tiessen H, Cuevas E, Chacon P (1994) The role of soil organic matter in sustaining soil fertility. Nature 371:783–785

    Article  CAS  Google Scholar 

  • Treonis AM, Ostle NJ, Stott AW, Primrose R, Grayston SJ, Ineson P (2004) Identification of groups of metabolically-active rhizosphere microorganisms by stable isotope probing of PLFAs. Soil Biol Biochem 36:533–537

    Article  CAS  Google Scholar 

  • Tunlid A, White DC (1992) Biochemical analysis of biomass, community structure, nutritional status and metabolic activity of microbial community in soil. In: Stotzky C, Bollag JM (eds) Soil biochemistry. Marcel Dekker, New York, pp 229–262

    Google Scholar 

  • Van Schaik CP, Mirmanto E (1985) Spatial variation in the structure and litterfall of a Sumatran rainforest. Biotropica 17:196–205

    Article  Google Scholar 

  • Waldrop MP, Balser TC, Firestone MK (2000) Linking microbial community composition to function in a tropical soil. Soil Biol Biochem 32:1837–1846

    Article  CAS  Google Scholar 

  • Zech W (2004) Soil biodiversity and soil sustainability in fragmental landscapes at the Atlantic Plateau of São Paulo (Brazil). Project number: 01 LB 0202; Subproject D 4 Universität Bayreuth, Bayreuth

  • Zech W, Senesi N, Guggenberger G, Kaiser K, Lehmann J, Miano TM, Miltner A, Schroth G (1997) Factors controlling humification and mineralization of soil organic matter in the tropics. Geoderma 79:117–161

    Article  CAS  Google Scholar 

  • Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterization of microbial communities in soil. A review. Biol Fertil Soils 29:111–129

    Article  CAS  Google Scholar 

  • Zelles L, Bai QY, Ma RX, Rackwitz R, Winter K, Beese F (1994) Microbial biomass, metabolic activity and nutritional status determined from fatty acid patterns and poly hydroxybutyrate in agriculturally managed soils. Soil Biol Biochem 26:439–446

    Article  CAS  Google Scholar 

  • Zientz E, Feldhaar H, Stoll S, Gross R (2005) Insights into the microbial world associated with ants. Arch Microbiol 184:199–206

    Article  PubMed  CAS  Google Scholar 

  • Zuazo VHD, Pleguezuelo CRR (2008) Soil-erosion and runoff prevention by plant covers. A review. Agron Sustainable Dev 28:65–86

    Article  Google Scholar 

  • Zuazo VHD, Pleguezuelo CRR, Martinez JRF, Raya AM, Panadero LA, Rodriguez BC, Moll MCN (2008) Benefits of plant strips for sustainable mountain agriculture. Agron Sustainable Dev 28:497–505

    Article  Google Scholar 

Download references

Acknowledgments

This research was established within Mata Atlântica, a German–Brazilian cooperation and was financed by Bundesministerium für Bildung und Forschung (BMBF) Germany (BMBF No. 01 LB 0202). Centro de Energia na Agricultura (CENA-USP) in Piracicaba, São Paulo, Brazil is acknowledged for providing the laboratory infrastructure. Marisa C. Piccolo (CENA-USP, Laboratorio de Biogeoquimica Ambiental, Piracicaba, São Paulo, Brazil) is granted for giving the opportunity to analyze soil microbial biomass in her laboratory. Günter Glaser is acknowledged for providing BGZufGen. Special thanks go to all students, Ph.D. students, and technical assistants in Brazil as well as in Germany who contributed to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marion Mehring.

About this article

Cite this article

Mehring, M., Glaser, B., de Camargo, P.B. et al. Impact of forest organic farming change on soil microbial C turnover using 13C of phospholipid fatty acids. Agron. Sustain. Dev. 31, 719–731 (2011). https://doi.org/10.1007/s13593-011-0013-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13593-011-0013-5

Keywords

Navigation