Skip to main content

Advertisement

Log in

Plant tissue culture-mediated biotechnological approaches in Lycium barbarum L. (Red goji or wolfberry)

  • Review Article
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

Plant tissue culture has long evolved since its first successful attempt by Gottlieb Haberlandt in 1902, and has then emerged as a powerful alternative approach in the breeding and conservation of various plant species. Extensive utilization of plant tissue culture has been documented in efforts to improve plant production, as well as to conserve and breed endangered and hard-to-propagate plant species through plant biotechnology. Restrictions associated with certain growth requirements, such as geographic, seasonal, and climatic limitations, could be overcome through plant tissue culture, hence enabling the mass propagation of plant species all year round. In this article, studies on various plant biotechnological approaches to breed Lycium barbarum L. (red goji) through plant tissue culture are reviewed to highlight the efficiency and usefulness of the plant tissue culture technique on red goji, summarizing the importance of biotechnology in plant studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Álvarez SP, Eduardo HA, Pérez-Leal R (2020) Plant biotechnology for agricultural sustainability. 10.1007/978-981-15-6953-1_12. In: Kumar S et al (eds) Resources Use Efficiency in Agriculture. Springer, Singapore, pp 389–425

    Chapter  Google Scholar 

  • Bentsink L, Koornneef M (2008) Seed dormancy and germination. Arabidopsis Book. 2008;6:e0119. doi: https://doi.org/10.1199/Table

  • Bhatta BP, Malla S (2020) Improving horticultural crops via CRISPR/Cas9: current successes and prospects. Plants 9:1360. doi:https://doi.org/10.3390/plants9101360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bucheli P, Gao Q, Redgwell R, Vidal K, Wang J, Zhang W (2011) Biomolecular and clinical aspects of chinese wolfberry. In: Benzie IFF, Wachtel-Galor S (eds). Herbal Medicine: Biomolecular and Clinical Aspects, 2nd edition. Boca Raton (FL): CRC Press/Taylor & Francis; 2011. Chapter 14 https://www.ncbi.nlm.nih.gov/books/NBK92756/

  • Chen JJ, Chao T, Cheng C, Wei XY (2018) Gojiberry Breeding: Current Status and Future Prospects. https://doi.org/10.5772/intechopen.76388

  • Chen D, Shao Q, Yin L, Younis A, Zheng B (2018) Polyamine function in plants: metabolism, regulation on development, and roles in abiotic stress responses. Front Plant Sci 9:1945. doi: https://doi.org/10.3389/fpls.2018.01945

    Article  PubMed  Google Scholar 

  • Cui KR, Pei XW, Qin L, Wang JJ, Wang YF (1998) Effects of modulation of abscisic acid during somatic embryogenesis in Lycium barbarum L. Shi Yan Sheng Wu Xue Bao 31(2):195-201

  • Danaila-Guidea SM, Dobrinoiu RV, Visan L, Toma RC (2015) Protocol for efficient in vitro multiplication of Lycium barbarum L. (goji) by direct organogenesis. Sci Bull Ser F Biotechnologies XIX:34–38

    Google Scholar 

  • Driver JA, Kuniyuki AH (1984) In vitro propagation of Paradox walnut rootstock. HortScience 19:507–509

    Article  Google Scholar 

  • Du LQ, Wang HZ, Huang FC, Li AS, Shao QQ (1994) Genetic transformation of Lycium barbarum L. via A. tumefaciens. Sci China B 37(3):286–292

    CAS  PubMed  Google Scholar 

  • Ekor M (2014) The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol. doi: https://doi.org/10.3389/fphar.2013.00177

    Article  PubMed  PubMed Central  Google Scholar 

  • Fira A, Joshee N, Cristea V, Simu M, Harta M, Pamfil D et al (2016) Optimization of micropropagation protocol for goji berry (Lycium barbarum L.). Bull UASVM Hortic 73(2):141–150

    Google Scholar 

  • Guan Y, Li SG, Fan XF, Su ZH (2016) Application of somatic embryogenesis in woody plants. Front Plant Sci 7:938. doi: https://doi.org/10.3389/fpls.2016.00938

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu Z, Ding HB, Wang X, Wang LS (1998) A comparative study on the syntheses of DNA, RNA and protein during in vitro organogenesis and somatic embryogenesis of Lycium barbarum L. Acta Biologiae Experimentalis Sinica 31(4):403–411

    CAS  PubMed  Google Scholar 

  • Hu Z, Wang LS, Guo GQ, Zheng GC (2001) Effects of polyamines on organogenesis and somatic embryogenesis of Lycium barbarum calli. Acta Biologiae Experimentalis Sinica 34(3):191–196

    CAS  PubMed  Google Scholar 

  • Hu Z, Yang J, Guo GQ, Zheng GC (2002) High-efficiency transformation of Lycium barbarum mediated by Agrobacterium tumafaciens and transgenic regeneration via somatic embryogenesis. Plant Cell Rep 21:233–237

    Article  CAS  Google Scholar 

  • Hu Z, Wu YR, Li W, Gao HH (2006) Factors affecting Agrobacterium tumefaciens-mediated genetic transformation of Lycium barbarum L. In Vitro Cell Dev Biol —Plant 42:461–466

    Article  CAS  Google Scholar 

  • Hu Z, Hu Y, Gao HH, Guan XQ, Zhuang DH (2008) Callus production, somatic embryogenesis and plant regeneration of Lycium barbarum root explants. Biol Plant 52(1):93–96

    Article  CAS  Google Scholar 

  • Islahudin F, Shahdan IA, Mohamad-Samuri S (2017) Association between belief and attitude toward preference of complementary alternative medicine use. Patient Prefer Adher 11:913–918

    Article  Google Scholar 

  • Ivanova M, Van Staden J (2009) Nitrogen source, concentration, and NH4+:NO3 ratio influence shoot regeneration and hyperhydricity in tissue cultured Aloe polyphylla. Plant Cell Tissue Organ Cult 99:167–174. https://doi.org/10.1007/s11240-009-9589-8

    Article  CAS  Google Scholar 

  • Kairong C, Gengsheng X, Xinmin L, Gengmei X, Yafu W (1999) Effect of hydrogen peroxide on somatic embryogenesis of Lycium barbarum L. Plant Sci 146(1):9–16

    Article  Google Scholar 

  • Kairong C, Ji L, Gengmei X, Jianlong L, Lihong W, Yafu W (2002) Effect of hydrogen peroxide on synthesis of proteins during somatic embryogenesis in Lycium barbarum. Plant Cell, Tissue and Organ Culture 68, 187–193

  • Karakas FP (2020) Efficient plant regeneration and callus induction from nodal and hypocotyl explants of goji berry (Lycium barbarum L.) and comparison of phenolic profiles in calli formed under different combinations of plant growth regulators. Plant Physiol Biochem 146:384–391

    Article  CAS  PubMed  Google Scholar 

  • Li S, Dai RL, Qin Z, Shen ZH, Wamg YF (2001) The effects of Ag+ on the absorption of trace metal ion during the somatic embryogenesis of Lycium barbarum. L Acta Biologiae Experimentalis Sinica 34(2):127–130

    CAS  PubMed  Google Scholar 

  • Li XD, Wang YN, Chen S, Tian H, Fu D, Zhu B, Luo Y, Zhu H (2018) Lycopene is enriched in tomato fruit by CRISPR/Cas9-mediated multiplex genome editing. Front Plant Sci 9:559

    Article  PubMed  PubMed Central  Google Scholar 

  • Lloyd G, McCown BH (1980) Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Proc. Intl. Plant Prop. Soc. 30:421–427

  • Mineo L (1990) Plant tissue culture techniques. In: Goldman CA (Ed.), Tested studies for Laboratory Teaching, Association for Biology Laboratory Education (ABLE), Pennsylvania, pp. 151–174

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Mustafa NR, de Winter W, van Iren F, Verpoorte R (2011) Initiation, growth and cryopreservation of plant cell suspension cultures. Nat Protoc 6(6):715–742. doi:https://doi.org/10.1038/nprot.2010.144

    Article  CAS  PubMed  Google Scholar 

  • National Pharmaceutical Regulatory Agency (NPRA) (2018) Banned product: Senarai produk yang diharamkan. Ministry of Health Malaysia https://www.pharmacy.gov.my/v2/sites/default/files/document-upload/banned-product-versi-julai-2018.pdf Accessed 12 December 2020

  • Osman NI, Awal A, Sidik NJ (2013a) Callus induction and somatic embryogenesis from leaf and nodal explants of Lycium barbarum L. (Goji). Biotechnol 12(1):36–45

    Article  CAS  Google Scholar 

  • Osman NI, Awal A, Sidik NJ (2013b) In vitro regeneration and antioxidant properties of Lycium barbarum L. (Goji). J Teknol (Special Edition) 62(2):35–38

    Google Scholar 

  • Prudente DDO, de Souza LB, Paiva R et al (2019) Goji berry (Lycium barbarum L.) in vitro multiplication improved by light-emitting diodes (LEDs) and 6-benzylaminopurine. In Vitro Cell Dev Biol-Plant 55:258–264. https://doi.org/10.1007/s11627-019-09970-w

    Article  CAS  Google Scholar 

  • Quoirin M, Lepoivre P (1977) Improved media for in vitro culture of Prunus sp. Acta Hort 78:437–442

    Article  Google Scholar 

  • Rao S, Kang X, Li J, Chen J (2019) Induction, identification and characterization of tetraploidy in Lycium ruthenicum. Breed Sci 69:160–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao S, Tian Y, Xia X, Li Y, Chen J (2020) Chromosome doubling mediates superior drought tolerance in Lycium ruthenicum via abscisic acid signaling. Hortic Res 7, 40 (2020). https://doi.org/10.1038/s41438-020-0260-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ratushnyak YI, Rudas VA, Piven NM (1990) Regeneration of Lycium barbarum L. plants from leaf tissue, callus culture and callus protoplasts. Plant Cell Rep 9(2):84–87. DOI: https://doi.org/10.1007/BF00231555

    Article  CAS  PubMed  Google Scholar 

  • Ruta C, De Mastro G, Ancona S, Tagarelli A, De Cillis F, Benelli C, Lambardi M (2020) Large-scale plant production of Lycium barbarum L. by liquid culture in temporary immersion system and possible application to the synthesis of bioactive substance. Plants 9(7):844. https://doi.org/10.3390/plants9070844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarasketa A, Gonzalez-Moro MB, Gonzalez-Murua C, Marino D (2016) Nitrogen source and external medium pH interaction differentially affects root and shoot metabolism in Arabidopsis. Front Plant Sci 7:29. https://doi.org/10.3389/fpls.2016.00029

    Article  PubMed  PubMed Central  Google Scholar 

  • Silvestri C, Sabbatini G, Marangelli F, Rugini E, Cristofori V (2018) Micropropagation and ex vitro rooting of wolfberry. HortScience 53(10):1494–1499

    Article  CAS  Google Scholar 

  • Taha RM, Sakinah A, Sadegh M, Awal A (2015) Callus induction, in vitro plant regeneration and acclimatization of Lycium barbarum L. (Goji). In: 17th International Conference on Biotechnology (ICBT 2015: 17th), 12–13 November 2015, Madrid, Spain

  • Thorpe TA (2007) History of plant tissue culture. Mol Biotechnol 37(2):169–180

    Article  CAS  PubMed  Google Scholar 

  • Tian HQ, Xiao YH, Liu WF (1993) Plant regeneration from hypocotyl protoplasts of Lycium barbarum L. Acta Biologiae Experimentalis Sinica 26(1):89–93

    CAS  PubMed  Google Scholar 

  • Vannini C, Campa M, Sassi F, Bracale M (2012) Medicinal plants: molecular biology/ biotechnology approach. In: Bagetta G, Cosentino M, Corasaniti MT, Sakurada S (eds) Herbal Medicines: Development and validation of plant-derived medicines for human health. CRC Press Taylor & Francis Group, Boca Raton, pp 51–77

    Google Scholar 

  • Verma SK, Gantait S, Mukherjee E, Gurel E (2022) Enhanced somatic embryogenesis, plant regeneration and total phenolic content estimation in Lycium barbarum L.: a highly nutritive and medicinal plant. J Crop Sci Biotechnol. https://doi.org/10.1007/s12892-022-00150-8

    Article  Google Scholar 

  • Wang R, Tavano ECDR, Lammers M, Martinelli AP, Angenent GC, de Maagd RA (2019) Re-evaluation of transcription factor function in tomato fruit development and ripening with CRISPR/Cas9-mutagenesis. Sci Rep 9(1):1696

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang W, Liu J, Wang H, Li T, Zhao H (2021) A highly efficient regeneration, genetic transformation system and induction of targeted mutations using CRISPR/Cas9 in Lycium ruthenicum. Plant Methods 17(1):1–10

    Article  Google Scholar 

  • Xu X, Yuan Y, Feng B, Deng W (2020) CRISPR/Cas9-mediated gene-editing technology in fruit quality improvement. Food Qual Saf 4:159–166

    Article  CAS  Google Scholar 

  • Yadav PR, Tyagi R (2006) Biotechnology of Plant tissue. Discovery Publishing House, New Delhi

    Google Scholar 

  • Yu QH, Wang B, Li N, Tang Y, Yang S, Yang T, Xu J, Guo C, Yan P, Wang Q, Asmutola P (2017) CRISPR/Cas9-induced targeted mutagenesis and gene replacement to generate long-shelf life tomato lines. Sci Rep 7(1):11874

    Article  PubMed  PubMed Central  Google Scholar 

  • Yusoff NHAM (2016) Acclimatization of in vitro seedling and clonal Lycium barbarum L. (GOJI). MSc thesis. Universiti Teknologi MARA, Selangor, Malaysia. Retrieved from http://ir.uitm.edu.my/id/eprint/18604/

Download references

Acknowledgements

The authors would like to acknowledge the financial support by Universiti Teknologi MARA (Selangor Branch) through Geran Penyelidikan Pembangunan Kerjaya [600-UiTMSEL (PI. 5/4) (055/2020)] and sincere gratitude is expressed to Professor Dr. Ahmed Mahmoud Ahmed Al-Afify for his generosity to share his constructive comments on the content of the manuscript. Special thanks to Anisah Aziz and Nor Syuhadah Azmi for their kind assistance in manuscript formatting and preparation.

Author information

Authors and Affiliations

Authors

Contributions

NIO did the review and wrote the manuscript. AA supervised research related to the species in review and shared ideas on the content of the manuscript.

Corresponding author

Correspondence to Nurul Izzati Osman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Sanghyun Lee.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osman, N.I., Awal, A. Plant tissue culture-mediated biotechnological approaches in Lycium barbarum L. (Red goji or wolfberry). Hortic. Environ. Biotechnol. 64, 521–532 (2023). https://doi.org/10.1007/s13580-022-00499-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-022-00499-3

Keywords

Navigation