Skip to main content
Log in

Dysregulated microRNAs participate in the crosstalk between colorectal cancer and atrial fibrillation

  • Review Article
  • Published:
Human Cell Aims and scope Submit manuscript

A Correction to this article was published on 16 April 2023

This article has been updated

Abstract

Colorectal cancer and atrial fibrillation share several common risk factors, and the incidence of the two diseases also exhibits a certain correlation. The above facts suggest a potential interaction mechanism between them, which has obtained increasing attention in the scientific community but remains to be further explored. Participating in diverse physiological and pathological processes, miRNAs exert important roles in both occurrence and growth of colorectal cancer and atrial fibrillation. To fill the gap in the understanding of the potential linkage between two diseases, the present study collected dysregulated miRNAs of colorectal cancer and atrial fibrillation from previous studies and then selected the miRNAs with the same change trends in both diseases. Finally, we reviewed the potential crosstalk of two diseases focusing on the roles of 6 dysregulated miRNAs, including 3 co-downregulated miRNAs (hsa-mir-126, hsa-mir-133a and hsa-mir-150) and 3 co-upregulated miRNAs (hsa-mir-106a, hsa-mir-155 and hsa-mir-21). The molecular mechanisms mediated by these miRNAs in colorectal cancer and atrial fibrillation were reviewed, and the possible crosstalk between the two diseases was discussed from the perspective of miRNAs. This study also provides potential common targets for preventive and curative measures against both colorectal cancer and atrial fibrillation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

Change history

References

  1. Siegel RL, et al. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33.

    Article  PubMed  Google Scholar 

  2. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet, 2017;390(10100): 1151–1210.

  3. Hu YF, et al. Inflammation and the pathogenesis of atrial fibrillation. Nat Rev Cardiol. 2015;12(4):230–43.

    Article  CAS  PubMed  Google Scholar 

  4. Kamp DW, Shacter E, Weitzman SA. Chronic inflammation and cancer: the role of the mitochondria. Oncol (Williston Park). 2011;25(5):400–13.

    Google Scholar 

  5. Vinter N, et al. Atrial fibrillation and risk of cancer: a Danish population-based cohort study. J Am Heart Assoc. 2018;7(17): e009543.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Li Y, et al. Risk factors for new-onset atrial fibrillation: a focus on Asian populations. Int J Cardiol. 2018;261:92–8.

    Article  CAS  PubMed  Google Scholar 

  7. Syed AR, et al. Old vs new: risk factors predicting early onset colorectal cancer. World J Gastrointest Oncol. 2019;11(11):1011–20.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kim K, et al. Effect of non-vitamin K antagonist oral anticoagulants in atrial fibrillation patients with newly diagnosed cancer. Korean Circ J. 2018;48(5):406–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jakobsen CB, et al. Incidence of atrial fibrillation in different major cancer subtypes: a Nationwide population-based 12 year follow up study. BMC Cancer. 2019;19(1):1105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. O’Neal WT, et al. Relation between cancer and atrial fibrillation (from the REasons for geographic and racial differences in stroke study). Am J Cardiol. 2015;115(8):1090–4.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Erichsen R, et al. Colorectal cancer and risk of atrial fibrillation and flutter: a population-based case-control study. Intern Emerg Med. 2012;7(5):431–8.

    Article  PubMed  Google Scholar 

  12. Chu G, et al. Atrial fibrillation and cancer—an unexplored field in cardiovascular oncology. Blood Rev. 2019;35:59–67.

    Article  PubMed  Google Scholar 

  13. Menichelli D, et al. Cancer and atrial fibrillation: epidemiology, mechanisms, and anticoagulation treatment. Prog Cardiovasc Dis. 2021;66:28–36.

    Article  PubMed  Google Scholar 

  14. Chen L, et al. Trends in the development of miRNA bioinformatics tools. Brief Bioinform. 2019;20(5):1836–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ali SZ, et al. Regulatory mechanism of MicroRNA expression in cancer. Int J Mol Sci. 2020;21(5):1723.

    Article  Google Scholar 

  16. Zhang N, et al. The role of miRNAs in colorectal cancer progression and chemoradiotherapy. Biomed Pharmacother. 2021;134: 111099.

    Article  CAS  PubMed  Google Scholar 

  17. Huang X, et al. Dissecting miRNA signature in colorectal cancer progression and metastasis. Cancer Lett. 2021;501:66–82.

    Article  CAS  PubMed  Google Scholar 

  18. Briasoulis A, et al. MicroRNAs in atrial fibrillation. Curr Med Chem. 2019;26(5):855–63.

    Article  CAS  PubMed  Google Scholar 

  19. Wei F, et al. Integrated analysis of circRNA-miRNA-mRNA-mediated network and its potential function in atrial fibrillation. Front Cardiovasc Med. 2022;9: 883205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ravelli F, Mase M. MicroRNAs: new contributors to mechano-electric coupling and atrial fibrillation. Prog Biophys Mol Biol. 2021;159:146–56.

    Article  CAS  PubMed  Google Scholar 

  21. Lozano-Velasco E, et al. Genetics and epigenetics of atrial fibrillation. Int J Mol Sci. 2020;21(16):5717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li N, et al. miR-126 inhibits colon cancer proliferation and invasion through targeting IRS1, SLC7A5 and TOM1 gene. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2013;38(8):809–17.

    CAS  PubMed  Google Scholar 

  23. Hansen TF, et al. The prognostic value of microRNA-126 and microvessel density in patients with stage II colon cancer: results from a population cohort. J Transl Med. 2014;12:254.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fiala O, et al. The association of miR-126-3p, miR-126-5p and miR-664-3p expression profiles with outcomes of patients with metastatic colorectal cancer treated with bevacizumab. Tumour Biol. 2017;39(7):1010428317709283.

    Article  PubMed  Google Scholar 

  25. Wei XJ, et al. Biological significance of miR-126 expression in atrial fibrillation and heart failure. Braz J Med Biol Res. 2015;48(11):983–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sun Z, et al. YAP1-induced MALAT1 promotes epithelial-mesenchymal transition and angiogenesis by sponging miR-126-5p in colorectal cancer. Oncogene. 2019;38(14):2627–44.

    Article  CAS  PubMed  Google Scholar 

  27. Huang W, Lin J, Zhang H. miR-126: a novel regulator in colon cancer. Biomed Rep. 2016;4(2):131–4.

    Article  CAS  PubMed  Google Scholar 

  28. Moghaddam AS, et al. Cardioprotective microRNAs: Lessons from stem cell-derived exosomal microRNAs to treat cardiovascular disease. Atherosclerosis. 2019;285:1–9.

    Article  CAS  PubMed  Google Scholar 

  29. Han L, et al. MiR-126 inhibits vascular endothelial cell apoptosis in rats with coronary heart disease through PI3K/Akt pathway. Minerva Surg. 2021.

  30. Mormile R. Type 2 diabetes and susceptibility to atrial fibrillation: the two facets of downregulation of MiR-126? Cardiovasc Endocrinol Metab. 2018;7(3):68–9.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sabry D, et al. Role of miRNA-210, miRNA-21 and miRNA-126 as diagnostic biomarkers in colorectal carcinoma: impact of HIF-1alpha-VEGF signaling pathway. Mol Cell Biochem. 2019;454(1–2):177–89.

    Article  CAS  PubMed  Google Scholar 

  32. Wu S, et al. miR-126 downregulates CXCL12 expression in intestinal epithelial cells to suppress the recruitment and function of macrophages and tumorigenesis in a murine model of colitis-associated colorectal cancer. Mol Oncol. 2022;16(19):3465–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li W, et al. miR-133a acts as a tumor suppressor in colorectal cancer by targeting eIF4A1. Tumour Biol. 2017;39(5):1010428317698389.

    Article  PubMed  Google Scholar 

  34. Tsoporis JN, et al. Increased right atrial appendage apoptosis is associated with differential regulation of candidate MicroRNAs 1 and 133A in patients who developed atrial fibrillation after cardiac surgery. J Mol Cell Cardiol. 2018;121:25–32.

    Article  CAS  PubMed  Google Scholar 

  35. Shen Y, Yang Y, Li Y. MiR-133a acts as a tumor suppressor in lung cancer progression by regulating the LASP1 and TGF-beta/Smad3 signaling pathway. Thorac Cancer. 2020;11(12):3473–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Caporali S, et al. The miR-133a, TPM4 and TAp63gamma role in myocyte differentiation microfilament remodelling and colon cancer progression. Int J Mol Sci. 2021;22(18):9818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lei X, Li L, Duan X Long non-coding RNA ABHD11-AS1 promotes colorectal cancer development through regulation of miR-133a/SOX4 axis. Biosci Rep. 2018;38(6).

  38. Yang H, et al. Hypoxia induced exosomal circRNA promotes metastasis of colorectal cancer via targeting GEF-H1/RhoA axis. Theranostics. 2020;10(18):8211–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cheng Y, et al. FOXD3-induced miR-133a blocks progression and metastasis of colorectal cancer through regulating UBA2. J Cancer. 2021;12(20):6145–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xiao Y, et al. MicroRNA-133a and myocardial infarction. Cell Trans. 2019;28(7):831–8.

    Article  Google Scholar 

  41. Yao L, et al. LncRNA MIAT/miR-133a-3p axis regulates atrial fibrillation and atrial fibrillation-induced myocardial fibrosis. Mol Biol Rep. 2020;47(4):2605–17.

    Article  CAS  PubMed  Google Scholar 

  42. Cheng WL, et al. MicroRNA-133 suppresses ZFHX3-dependent atrial remodelling and arrhythmia. Acta Physiol (Oxf). 2019;227(3): e13322.

    Article  CAS  PubMed  Google Scholar 

  43. Abo-Elela DA, et al. Potential diagnostic role of circulating MiRNAs in colorectal cancer. Int J Immunopathol Pharmacol. 2023;37:3946320221144565.

    Article  PubMed  Google Scholar 

  44. Sarlinova M, et al. miR-21, miR-221 and miR-150 are deregulated in peripheral blood of patients with colorectal cancer. Anticancer Res. 2016;36(10):5449–54.

    Article  CAS  PubMed  Google Scholar 

  45. He Z, et al. The involvement of miR-150/beta-catenin axis in colorectal cancer progression. Biomed Pharmacother. 2020;121: 109495.

    Article  CAS  PubMed  Google Scholar 

  46. Liu Z, et al. The expression levels of plasma micoRNAs in atrial fibrillation patients. PLoS One. 2012;7(9): e44906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Goren Y, et al. Relation of reduced expression of MiR-150 in platelets to atrial fibrillation in patients with chronic systolic heart failure. Am J Cardiol. 2014;113(6):976–81.

    Article  CAS  PubMed  Google Scholar 

  48. Sur D, et al. Diagnostic and prognostic significance of MiR-150 in colorectal cancer: a systematic review and meta-analysis. J Pers Med. 2020;10(3):99.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Li C, et al. MicroRNA-150 inhibits the proliferation and metastasis potential of colorectal cancer cells by targeting iASPP. Oncol Rep. 2018;40(1):252–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang ZC, et al. Increasing miR-150 and lowering HMGA2 inhibit proliferation and cycle progression of colon cancer in SW480 cells. Eur Rev Med Pharmacol Sci. 2018;22(20):6793–800.

    PubMed  Google Scholar 

  51. Ju J, et al. miR-150 regulates glucose utilization through targeting GLUT4 in insulin-resistant cardiomyocytes. Acta Biochim Biophys Sin (Shanghai). 2020;52(10):1111–9.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang Y, Fan X, Yang H. Long noncoding RNA FTX ameliorates hydrogen peroxide-induced cardiomyocyte injury by regulating the miR-150/KLF13 axis. Open Life Sci. 2020;15(1):1000–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Aonuma T, et al. Cardiomyocyte microRNA-150 confers cardiac protection and directly represses proapoptotic small proline-rich protein 1A. JCI Insight. 2021;6(18).

  54. Hao H, et al. Diagnostic and prognostic value of miR-106a in colorectal cancer. Oncotarget. 2017;8(3):5038–47.

    Article  PubMed  Google Scholar 

  55. Slagsvold KH, et al. Mitochondrial respiration and microRNA expression in right and left atrium of patients with atrial fibrillation. Physiol Genomics. 2014;46(14):505–11.

    Article  PubMed  Google Scholar 

  56. Hao H, et al. miR-106a suppresses tumor cells death in colorectal cancer through targeting ATG7. Med Mol Morphol. 2017;50(2):76–85.

    Article  CAS  PubMed  Google Scholar 

  57. Qin Y, et al. mir-106a regulates cell proliferation and apoptosis of colon cancer cells through targeting the PTEN/PI3K/AKT signaling pathway. Oncol Lett. 2018;15(3):3197–201.

    PubMed  Google Scholar 

  58. Zhu GF, et al. Mir20a/106a-WTX axis regulates RhoGDIa/CDC42 signaling and colon cancer progression. Nat Commun. 2019;10(1):112.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Liu Z, et al. Overexpression of miR-106a enhances oxaliplatin sensitivity of colorectal cancer through regulation of FOXQ1. Oncol Lett. 2020;19(1):663–70.

    CAS  PubMed  Google Scholar 

  60. Qin Y, et al. miR-106a reduces 5-fluorouracil (5-FU) sensitivity of colorectal cancer by targeting dual-specificity phosphatases 2 (DUSP2). Med Sci Monit. 2018;24:4944–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gao WQ, et al. Downregulation of circFASTKD1 ameliorates myocardial infarction by promoting angiogenesis. Aging (Albany NY). 2020;13(3):3588–604.

    Article  PubMed  Google Scholar 

  62. Guan X, et al. miR-106a promotes cardiac hypertrophy by targeting mitofusin 2. J Mol Cell Cardiol. 2016;99:207–17.

    Article  CAS  PubMed  Google Scholar 

  63. He Y, et al. Biological effects and clinical characteristics of microRNA-106a in human colorectal cancer. Oncol Lett. 2017;14(1):830–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Velazquez KT, et al. MicroRNA-155 deletion promotes tumorigenesis in the azoxymethane-dextran sulfate sodium model of colon cancer. Am J Physiol Gastrointest Liver Physiol. 2016;310(6):G347–58.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Wang JG, et al. Differential expressions of miRNAs in patients with nonvalvular atrial fibrillation. Zhonghua Yi Xue Za Zhi. 2012;92(26):1816–9.

    CAS  PubMed  Google Scholar 

  66. Liu N, et al. MiRNA-155 promotes the invasion of colorectal cancer SW-480 cells through regulating the Wnt/beta-catenin. Eur Rev Med Pharmacol Sci. 2018;22(1):101–9.

    CAS  PubMed  Google Scholar 

  67. Guo J, Liao M, Wang J. TLR4 signaling in the development of colitis-associated cancer and its possible interplay with microRNA-155. Cell Commun Signal. 2021;19(1):90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Li Y, et al. Targeted delivery of anti-miR-155 by functionalized mesoporous silica nanoparticles for colorectal cancer therapy. Int J Nanomedicine. 2018;13:1241–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang J, et al. Inhibiting microRNA-155 attenuates atrial fibrillation by targeting CACNA1C. J Mol Cell Cardiol. 2021;155:58–65.

    Article  CAS  PubMed  Google Scholar 

  70. Adly SN, Ahmed RL, Ahmed AMM. Circulating miR-155 and JAK2/STAT3 axis in acute ischemic stroke patients and its relation to post-ischemic inflammation and associated ischemic stroke risk factors. Int J Gen Med. 2021;14:1469–84.

    Article  Google Scholar 

  71. Nassar FJ, et al. Circulating miRNA as biomarkers for colorectal cancer diagnosis and liver metastasis. Diagnostics (Basel). 2021;11(2):341.

    Article  CAS  PubMed  Google Scholar 

  72. Bautista-Sanchez D, et al. The promising role of miR-21 as a cancer biomarker and its importance in RNA-based therapeutics. Mol Ther Nucleic Acids. 2020;20:409–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nishi H, et al. Impact of microRNA expression in human atrial tissue in patients with atrial fibrillation undergoing cardiac surgery. PLoS One. 2013;8(9): e73397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bao Z, et al. The critical role of the miR-21-MEG2 axis in colorectal cancer. Crit Rev Eukaryot Gene Expr. 2020;30(6):509–18.

    Article  PubMed  Google Scholar 

  75. Liu H, et al. Curcumol inhibits colorectal cancer proliferation by targeting miR-21 and modulated PTEN/PI3K/Akt pathways. Life Sci. 2019;221:354–61.

    Article  CAS  PubMed  Google Scholar 

  76. Wu X, et al. m(6)A demethylase ALKBH5 inhibits cell proliferation and the metastasis of colorectal cancer by regulating the FOXO3/miR-21/SPRY2 axis. Am J Transl Res. 2021;13(10):11209–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Lai CY, et al. MicroRNA-21 plays multiple oncometabolic roles in colitis-associated carcinoma and colorectal cancer via the PI3K/AKT, STAT3, and PDCD4/TNF-alpha signaling pathways in Zebrafish. Cancers (Basel). 2021;13(21):5565.

    Article  CAS  PubMed  Google Scholar 

  78. Calvo-Lopez T, et al. Association of miR-21 and miR-335 to microsatellite instability and prognosis in stage III colorectal cancer. Cancer Biomark. 2022;34(2):201–10.

    Article  CAS  PubMed  Google Scholar 

  79. Barana A, et al. Chronic atrial fibrillation increases microRNA-21 in human atrial myocytes decreasing L-type calcium current. Circ Arrhythm Electrophysiol. 2014;7(5):861–8.

    Article  CAS  PubMed  Google Scholar 

  80. Chen H, et al. Relationship between circulating miRNA-21, atrial fibrosis, and atrial fibrillation in patients with atrial enlargement. Ann Palliat Med. 2021;10(12):12742–9.

    Article  PubMed  Google Scholar 

  81. Ogunwobi OO, Mahmood F, Akingboye A. Biomarkers in colorectal cancer: current research and future prospects. Int J Mol Sci. 2020;21(15):5311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Babapoor-Farrokhran S, Gill D, Rasekhi RT. The role of long noncoding RNAs in atrial fibrillation. Heart Rhythm. 2020;17(6):1043–9.

    Article  PubMed  Google Scholar 

  83. Xie YH, Chen YX, Fang JY. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther. 2020;5(1):22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ji X, Peng Q, Wang M. Anti-colon-cancer effects of polysaccharides: a mini-review of the mechanisms. Int J Biol Macromol. 2018;114:1127–33.

    Article  CAS  PubMed  Google Scholar 

  85. Zhang Y, et al. Gut microbiota dysbiosis promotes age-related atrial fibrillation by lipopolysaccharide and glucose-induced activation of NLRP3-inflammasome. Cardiovasc Res. 2022;118(3):785–97.

    Article  CAS  PubMed  Google Scholar 

  86. Kyaruzi M, et al. Trace element status and postoperative morbidity after on-pump coronary artery bypass surgery. Biol Trace Elem Res. 2022.

  87. Phipps O, Brookes MJ, Al-Hassi HO. Iron deficiency, immunology, and colorectal cancer. Nutr Rev. 2021;79(1):88–97.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Number: 81860433, 82103645, and 82260596); Training Plan for Academic and Technical Young Leaders of Major Disciplines in Jiangxi Province (Grant Number: 20204BCJ23021); the Natural Science Youth Foundation of Jiangxi Province (Grant Numbers: 20192BAB215036); and the Key Technology Research and Development Program of Jiangxi Province (Grant Number: 20202BBG73024).

Author information

Authors and Affiliations

Authors

Contributions

JD and YC wrote the manuscript. CQ searched the literature. ZZ revised and approved the manuscript.

Corresponding author

Correspondence to Zhen Zong.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval and consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised to add a grant number in funding.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, J., Cao, Y., Qi, C. et al. Dysregulated microRNAs participate in the crosstalk between colorectal cancer and atrial fibrillation. Human Cell 36, 1336–1342 (2023). https://doi.org/10.1007/s13577-023-00899-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-023-00899-2

Keywords

Navigation