Skip to main content

Advertisement

Log in

Exosomes derived from mesenchymal stromal cells: a promising treatment for pelvic floor dysfunction

  • Review Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Pelvic floor dysfunction (PFDs), which include pelvic organ prolapse (POP), stress urinary incontinence (SUI) and anal incontinence (AI), are common degenerative diseases in women that have dramatic effects on quality of life. The pathology of PFDs is based on impaired pelvic connective tissue supportive strength due to an imbalance in extracellular matrix (ECM) metabolism, the loss of a variety of cell types, such as fibroblasts, muscle cells, peripheral nerve cells, and oxidative stress and inflammation in the pelvic environment. Fortunately, exosomes, which are one of the major secretions of mesenchymal stromal cells (MSCs), are involved in intercellular communication and the modulation of molecular activities in recipient cells via their contents, which are bioactive proteins and genetic factors such as mRNAs and miRNAs. These components modify fibroblast activation and secretion, facilitate ECM modelling, and promote cell proliferation to enhance pelvic tissue regeneration. In this review, we focus on the molecular mechanisms and future directions of exosomes derived from MSCs that are of great value in the treatment of PFD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

Not applicable.

Abbreviations

PFD:

Pelvic floor disorders

POP:

Pelvic organ prolapse

SUI:

Stress urinary incontinence

AI:

Anal incontinence

ECM:

Extracellular matrix

MSC:

Mesenchymal stromal cell

AI:

Anal incontinence

PFMT:

Pelvic floor muscle physiotherapy

BF:

Biofeedback

FBR:

Foreign body response

FDA:

Food and drug administration

EMA:

European medicines agency

HIF-1α:

Hypoxia-inducible factor 1α

AGEs:

Advanced glycation end products

MMPs:

Matrix metalloproteinases

TIMPs:

Tissue inhibitors of matrix metalloproteinases

OS:

Oxidative stress

MnSOD:

Mitochondrial superoxide dismutase

GPX:

Glutathione peroxidase

EVs:

Extracellular vesicles

TEM:

Transmission electron microscopy

NTA:

Nanoparticle tracking analysis

HSP70:

Heat shock protein 70

TSG101:

Tumour-susceptibility gene 101

MVBs:

Multivesicular bodies

SNAREs:

Soluble N-ethylmaleimide-sensitive factor attachment protein receptors

ESCRT:

The endosomal sorting complex required for transport

MSCs-Ex:

Mesenchymal stromal cell-derived exosomes

HUCMSCs:

Human umbilical cord mesenchymal stromal cells

LPP:

Leak point pressure

eMSCs:

Human endometrial mesenchymal stromal cells

BMSCs:

Bone marrow mesenchymal stromal cells

ADSC:

Adipose-derived stromal cell

USC:

Urine-derived stromal cell (USC)

SCs:

Satellite cell

ERK:

Extracellular-regulated protein kinases

SIRT1:

Silent mating type information regulation 2 homologue 1 (SIRT1)

DRG:

Dorsal root ganglion

SMC:

Smooth muscle cell

AIF:

Apoptosis-inducing factor

PARP-1:

Upregulating poly ADP-ribose polymerase 1

PAR:

Poly ADP-ribose

JAG1:

Jagged1

ROS:

Reactive oxygen species

Nrf2:

Nuclear factor-E2-related factor 2

TLR4:

Toll-like receptor 4

dECM:

Decellularized scaffold ECM

TFF:

Tangential flow filtration

References

  1. Dieter AA, Wilkins MF, Wu JM. Epidemiological trends and future care needs for pelvic floor disorders. Curr Opin Obstet Gynecol. 2015;27(5):380–4.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kim S, Harvey MA, Johnston S. A review of the epidemiology and pathophysiology of pelvic floor dysfunction: do racial differences matter? J Obstet Gynaecol Can. 2005;27(3):251–9.

    Article  CAS  PubMed  Google Scholar 

  3. Campeau L, et al. Pelvic floor disorders: linking genetic risk factors to biochemical changes. BJU Int. 2011;108(8):1240–7.

    Article  CAS  PubMed  Google Scholar 

  4. Norton PA, et al. Genitourinary prolapse and joint hypermobility in women. Obstet Gynecol. 1995;85(2):225–8.

    Article  CAS  PubMed  Google Scholar 

  5. Cheng J, et al. Status, challenges, and future prospects of stem cell therapy in pelvic floor disorders. World J Clin Cases. 2020;8(8):1400–13.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Arnouk A, et al. Physical, complementary, and alternative medicine in the treatment of pelvic floor disorders. Curr Urol Rep. 2017;18(6):47.

    Article  PubMed  Google Scholar 

  7. Fitz FF, et al. Biofeedback for the treatment of female pelvic floor muscle dysfunction: a systematic review and meta-analysis. Int Urogynecol J. 2012;23(11):1495–516.

    Article  PubMed  Google Scholar 

  8. Alvarez J, Cvach K, Dwyer P. Complications in pelvic floor surgery. Minerva Ginecol. 2013;65(1):53–67.

    CAS  PubMed  Google Scholar 

  9. Olsen AL, et al. Epidemiology of surgically managed pelvic organ prolapse and urinary incontinence. Obstet Gynecol. 1997;89(4):501–6.

    Article  CAS  PubMed  Google Scholar 

  10. Sima Y, Chen Y. MSC-based therapy in female pelvic floor disorders. Cell Biosci. 2020;10:104.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dällenbach P. To mesh or not to mesh: a review of pelvic organ reconstructive surgery. Int J Womens Health. 2015;7:331–43.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Marinaro F, et al. Meshes in a mess: Mesenchymal stem cell-based therapies for soft tissue reinforcement. Acta Biomater. 2019;85:60–74.

    Article  CAS  PubMed  Google Scholar 

  13. Shah HN, Badlani GH. Mesh complications in female pelvic floor reconstructive surgery and their management: A systematic review. Indian J Urol. 2012;28(2):129–53.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhang L, et al. Tension-free polypropylene mesh-related surgical repair for pelvic organ prolapse has a good anatomic success rate but a high risk of complications. Chin Med J. 2015;128(3):295–300.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kariminekoo S, et al. Implications of mesenchymal stem cells in regenerative medicine. Artif Cells Nanomed Biotechnol. 2016;44(3):749–57.

    Article  CAS  PubMed  Google Scholar 

  16. Hassan WU, Greiser U, Wang W. Role of adipose-derived stem cells in wound healing. Wound Repair Regen. 2014;22(3):313–25.

    Article  PubMed  Google Scholar 

  17. Li JJ, et al. Stem cell-derived extracellular vesicles for treating joint injury and osteoarthritis. Nanomaterials (Basel). 2019;9(2):261.

    Article  CAS  PubMed  Google Scholar 

  18. Ribeiro-Rodrigues TM, et al. Exosomes secreted by cardiomyocytes subjected to ischaemia promote cardiac angiogenesis. Cardiovasc Res. 2017;113(11):1338–50.

    Article  CAS  PubMed  Google Scholar 

  19. Bowers DT, Brown JL. Nanofiber curvature with Rho GTPase activity increases mouse embryonic fibroblast random migration velocity. Integr Biol (Camb). 2021;13(12):295–308.

    Article  PubMed  Google Scholar 

  20. Wang LT, et al. Advances in mesenchymal stem cell therapy for immune and inflammatory diseases: Use of cell-free products and human pluripotent stem cell-derived mesenchymal stem cells. Stem Cells Transl Med. 2021;10(9):1288–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ni J, et al. Therapeutic potential of human adipose-derived stem cell exosomes in stress urinary incontinence - an in vitro and in vivo study. Cell Physiol Biochem. 2018;48(4):1710–22.

    Article  CAS  PubMed  Google Scholar 

  22. Wu R, et al. Exosomes secreted by urine-derived stem cells improve stress urinary incontinence by promoting repair of pubococcygeus muscle injury in rats. Stem Cell Res Ther. 2019;10(1):80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li Q, et al. Exosomes derived by SIRT1-overexpressing bone marrow mesenchymal stem cells improve pubococcygeus muscle injury in rats. Int J Stem Cells. 2021. https://doi.org/10.15283/ijsc21065.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Marofi F, et al. MSCs and their exosomes: a rapidly evolving approach in the context of cutaneous wounds therapy. Stem Cell Res Ther. 2021;12(1):597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bian D, et al. The application of mesenchymal stromal cells (MSCs) and their derivative exosome in skin wound healing: a comprehensive review. Stem Cell Res Ther. 2022;13(1):24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Abramowitch SD, et al. Tissue mechanics, animal models, and pelvic organ prolapse: a review. Eur J Obstet Gynecol Reprod Biol. 2009;144(Suppl 1):S146–58.

    Article  PubMed  Google Scholar 

  27. Kieserman-Shmokler C, et al. From molecular to macro: the key role of the apical ligaments in uterovaginal support. Am J Obstet Gynecol. 2020;222(5):427–36.

    Article  PubMed  Google Scholar 

  28. Ruiz-Zapata AM, et al. Functional characteristics of vaginal fibroblastic cells from premenopausal women with pelvic organ prolapse. Mol Hum Reprod. 2014;20(11):1135–43.

    Article  CAS  PubMed  Google Scholar 

  29. 陈义松 and 华克勤, 2008 盆底器官脱垂子宫主韧带和阴道壁的超微结构.. 上海医学 31(7):490–492.

  30. Zhu Y, et al. Mechanical stress influences the morphology and function of human uterosacral ligament fibroblasts and activates the p38 MAPK pathway. Int Urogynecol J. 2021;33(8):2023–212.

    Google Scholar 

  31. Zhu YP, et al. Evaluation of extracellular matrix protein expression and apoptosis in the uterosacral ligaments of patients with or without pelvic organ prolapse. Int Urogynecol J. 2021;32(8):2273–81.

    Article  PubMed  Google Scholar 

  32. Ruiz-Zapata AM, et al. Extracellular matrix stiffness and composition regulate the myofibroblast differentiation of vaginal fibroblasts. Int J Mol Sci. 2020;21(13):4762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Poncet S, et al. The expression and function of the endothelin system in contractile properties of vaginal myofibroblasts of women with uterovaginal prolapse. Am J Obstet Gynecol. 2005;192(2):426–32.

    Article  CAS  PubMed  Google Scholar 

  34. Meyer S, et al. The contractile properties of vaginal myofibroblasts: is the myofibroblasts contraction force test a valuable indication of future prolapse development? Int Urogynecol J Pelvic Floor Dysfunct. 2008;19(10):1399–403.

    Article  CAS  PubMed  Google Scholar 

  35. Zhao Y, et al. Transforming growth factor beta 1 and p44/42 expression in cardinal ligament tissues of patients with pelvic organ prolapse. Med Sci Monit. 2021;27: e930433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wen Y, et al. Expression of apoptotic factors in vaginal tissues from women with urogenital prolapse. Neurourol Urodyn. 2011;30(8):1627–32.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Saatli B, et al. Alteration of apoptosis-related genes in postmenopausal women with uterine prolapse. Int Urogynecol J. 2014;25(7):971–7.

    Article  PubMed  Google Scholar 

  38. Sun ZJ, et al. Proteomic analysis of the uterosacral ligament in postmenopausal women with and without pelvic organ prolapse. Chin Med J (Engl). 2015;128(23):3191–6.

    Article  CAS  PubMed  Google Scholar 

  39. Kim EJ, et al. Involvement of oxidative stress and mitochondrial apoptosis in the pathogenesis of pelvic organ prolapse. J Urol. 2013;189(2):588–94.

    Article  CAS  PubMed  Google Scholar 

  40. Chen YS, et al. Advanced glycation end products decrease collagen I levels in fibroblasts from the vaginal wall of patients with POP via the RAGE, MAPK and NF-κB pathways. Int J Mol Med. 2017;40(4):987–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Takacs P, et al. Uterosacral ligament smooth muscle cell apoptosis is increased in women with uterine prolapse. Reprod Sci. 2009;16(5):447–52.

    Article  PubMed  Google Scholar 

  42. Kökçü A, et al. Histopathological evaluation of the connective tissue of the vaginal fascia and the uterine ligaments in women with and without pelvic relaxation. Arch Gynecol Obstet. 2002;266(2):75–8.

    Article  PubMed  Google Scholar 

  43. Cole EE, et al. Histopathological evaluation of the uterosacral ligament: is this a dependable structure for pelvic reconstruction? BJU Int. 2006;97(2):345–8.

    Article  PubMed  Google Scholar 

  44. Lien KC, et al. Levator ani muscle stretch induced by simulated vaginal birth. Obstet Gynecol. 2004;103(1):31–40.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Huang G, et al. Protective effect and potential mechanism of Schwann cell-derived exosomes on mechanical damage of rat dorsal root ganglion cells. J Obstet Gynaecol Res. 2021;47(10):3691–701.

    Article  CAS  PubMed  Google Scholar 

  46. Budatha M, et al. Extracellular matrix proteases contribute to progression of pelvic organ prolapse in mice and humans. J Clin Invest. 2011;121(5):2048–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Han L, et al. Association between pelvic organ prolapse and stress urinary incontinence with collagen. Exp Ther Med. 2014;7(5):1337–41.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hu Y, et al. Expression and significance of metalloproteinase and collagen in vaginal wall tissues of patients with pelvic organ prolapse. Ann Clin Lab Sci. 2017;47(6):698–705.

    CAS  PubMed  Google Scholar 

  49. Li Y, et al. Structural, functional and molecular pathogenesis of pelvic organ prolapse in patient and Loxl1 deficient mice. Aging (Albany NY). 2021;13(24):25886–902.

    Article  CAS  PubMed  Google Scholar 

  50. Jackson SR, et al. Changes in metabolism of collagen in genitourinary prolapse. Lancet. 1996;347(9016):1658–61.

    Article  CAS  PubMed  Google Scholar 

  51. Van Doren SR. Matrix metalloproteinase interactions with collagen and elastin. Matrix Biol. 2015;44–46:224–31.

    Article  PubMed  Google Scholar 

  52. Kerkhof MH, Hendriks L, Brölmann HA. Changes in connective tissue in patients with pelvic organ prolapse–a review of the current literature. Int Urogynecol J Pelvic Floor Dysfunct. 2009;20(4):461–74.

    Article  CAS  PubMed  Google Scholar 

  53. Vetuschi A, et al. Immunolocalization of advanced glycation end products, mitogen activated protein kinases, and transforming growth factor-β/smads in pelvic organ prolapse. J Histochem Cytochem. 2018;66(9):673–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li BS, et al. Role of mechanical strain-activated PI3K/Akt signaling pathway in pelvic organ prolapse. Mol Med Rep. 2016;14(1):243–53.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Dviri M, et al. Increased matrix metalloproteinases-1,-9 in the uterosacral ligaments and vaginal tissue from women with pelvic organ prolapse. Eur J Obstet Gynecol Reprod Biol. 2011;156(1):113–7.

    Article  CAS  PubMed  Google Scholar 

  56. Usta A, et al. Expression of matrix metalloproteinase-1 in round ligament and uterosacral ligament tissue from women with pelvic organ prolapse. J Mol Histol. 2014;45(3):275–81.

    Article  CAS  PubMed  Google Scholar 

  57. Li L, et al. The polymorphisms of extracellular matrix-remodeling genes are associated with pelvic organ prolapse. Int Urogynecol J. 2022;33(2):267–74.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lin T, et al. Expression of COX-2 and Nrf2/GPx3 in the anterior vaginal wall tissues of women with pelvic organ prolapse. Arch Gynecol Obstet. 2021;303(5):1245–53.

    Article  CAS  PubMed  Google Scholar 

  59. Hong S, et al. The role of GPX1 in the pathogenesis of female pelvic organ prolapse. PLoS ONE. 2017;12(8): e0181896.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Fang G, et al. Oxidative status of cardinal ligament in pelvic organ prolapse. Exp Ther Med. 2018;16(4):3293–302.

    PubMed  PubMed Central  Google Scholar 

  61. Kovács P, et al. Lithocholic acid, a metabolite of the microbiome, increases oxidative stress in breast cancer. Cancers (Basel). 2019;11(9):1255.

    Article  PubMed  Google Scholar 

  62. Liu C, et al. Collagen metabolic disorder induced by oxidative stress in human uterosacral ligament-derived fibroblasts: A possible pathophysiological mechanism in pelvic organ prolapse. Mol Med Rep. 2016;13(4):2999–3008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hong S, et al. Oxidative damage to human parametrial ligament fibroblasts induced by mechanical stress. Mol Med Rep. 2015;12(4):5342–8.

    Article  CAS  PubMed  Google Scholar 

  64. Wu K, et al. Roles of the cyclooxygenase 2 matrix metalloproteinase 1 pathway in brain metastasis of breast cancer. J Biol Chem. 2015;290(15):9842–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kammeyer A, Luiten RM. Oxidation events and skin aging. Ageing Res Rev. 2015;21:16–29.

    Article  CAS  PubMed  Google Scholar 

  66. Drewes PG, et al. Pelvic organ prolapse in fibulin-5 knockout mice: pregnancy-induced changes in elastic fiber homeostasis in mouse vagina. Am J Pathol. 2007;170(2):578–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chargaff E, West R. The biological significance of the thromboplastic protein of blood. J Biol Chem. 1946;166(1):189–97.

    Article  CAS  PubMed  Google Scholar 

  68. De Broe ME, et al. Spontaneous shedding of plasma membrane fragments by human cells in vivo and in vitro. Clin Chim Acta. 1977;81(3):237–45.

    Article  PubMed  Google Scholar 

  69. Harding C, Heuser J, Stahl P. Endocytosis and intracellular processing of transferrin and colloidal gold-transferrin in rat reticulocytes: demonstration of a pathway for receptor shedding. Eur J Cell Biol. 1984;35(2):256–63.

    CAS  PubMed  Google Scholar 

  70. Pan BT, et al. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol. 1985;101(3):942–8.

    Article  CAS  PubMed  Google Scholar 

  71. Johnstone RM, Bianchini A, Teng K. Reticulocyte maturation and exosome release: transferrin receptor containing exosomes shows multiple plasma membrane functions. Blood. 1989;74(5):1844–51.

    Article  CAS  PubMed  Google Scholar 

  72. Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200(4):373–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Camussi G, et al. Exosome/microvesicle-mediated epigenetic reprogramming of cells. Am J Cancer Res. 2011;1(1):98–110.

    PubMed  Google Scholar 

  74. Livshits MA, et al. Isolation of exosomes by differential centrifugation: theoretical analysis of a commonly used protocol. Sci Rep. 2015;5:17319.

    Article  PubMed  Google Scholar 

  75. Zhang H, et al. Exosome-induced regulation in inflammatory bowel disease. Front Immunol. 2019;10:1464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Schorey JS, Bhatnagar S. Exosome function: from tumor immunology to pathogen biology. Traffic. 2008;9(6):871–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chang YH, et al. Exosomes and stem cells in degenerative disease diagnosis and therapy. Cell Transpl. 2018;27(3):349–63.

    Article  Google Scholar 

  78. Kowal EJK, et al. Extracellular vesicle isolation and analysis by western blotting. Methods Mol Biol. 2017;1660:143–52.

    Article  CAS  PubMed  Google Scholar 

  79. Jung MK, Mun JY. Sample preparation and imaging of exosomes by transmission electron microscopy. J Vis Exp. 2018. https://doi.org/10.3791/56482.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Dragovic RA, et al. Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis. Nanomedicine. 2011;7(6):780–8.

    Article  CAS  PubMed  Google Scholar 

  81. Su T, et al. Bone marrow mesenchymal stem cells-derived exosomal MiR-29b-3p regulates aging-associated insulin resistance. ACS Nano. 2019;13(2):2450–62.

    CAS  PubMed  Google Scholar 

  82. Moghadasi S, et al. A paradigm shift in cell-free approach: the emerging role of MSCs-derived exosomes in regenerative medicine. J Transl Med. 2021;19(1):302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gruenberg J, van der Goot FG. Mechanisms of pathogen entry through the endosomal compartments. Nat Rev Mol Cell Biol. 2006;7(7):495–504.

    Article  CAS  PubMed  Google Scholar 

  84. Heijnen HF, et al. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood. 1999;94(11):3791–9.

    Article  CAS  PubMed  Google Scholar 

  85. Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release. Cell Mol Life Sci. 2018;75(2):193–208.

    Article  CAS  PubMed  Google Scholar 

  86. Jadli AS, et al. Inside(sight) of tiny communicator: exosome biogenesis, secretion, and uptake. Mol Cell Biochem. 2020;467(1–2):77–94.

    Article  CAS  PubMed  Google Scholar 

  87. Munich S, et al. Dendritic cell exosomes directly kill tumor cells and activate natural killer cells via TNF superfamily ligands. Oncoimmunology. 2012;1(7):1074–83.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Tian T, et al. Dynamics of exosome internalization and trafficking. J Cell Physiol. 2013;228(7):1487–95.

    Article  CAS  PubMed  Google Scholar 

  89. Mulcahy LA, Pink RC, Carter DR. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles. 2014;3(1):24641. https://doi.org/10.3402/jev.v3.24641.

    Article  CAS  Google Scholar 

  90. Zhou Y, et al. Exosome-mediated small RNA delivery for gene therapy. Wiley Interdiscip Rev RNA. 2016;7(6):758–71.

    Article  CAS  PubMed  Google Scholar 

  91. van den Boorn JG, et al. SiRNA delivery with exosome nanoparticles. Nat Biotechnol. 2011;29(4):325–6.

    Article  PubMed  Google Scholar 

  92. Mao M, et al. Human umbilical cord mesenchymal stem cells reconstruct the vaginal wall of ovariectomized Sprague-Dawley rats: implications for pelvic floor reconstruction. Cell Tissue Res. 2021;386(3):571–83.

    Article  CAS  PubMed  Google Scholar 

  93. Ma Y, et al. Mesenchymal stem cell-based bioengineered constructs enhance vaginal repair in ovariectomized rhesus monkeys. Biomaterials. 2021;275: 120863.

    Article  CAS  PubMed  Google Scholar 

  94. Edwards SL, et al. Temporal changes in the biomechanical properties of endometrial mesenchymal stem cell seeded scaffolds in a rat model. Acta Biomater. 2015;13:286–94.

    Article  CAS  PubMed  Google Scholar 

  95. Kinebuchi Y, et al. Autologous bone-marrow-derived mesenchymal stem cell transplantation into injured rat urethral sphincter. Int J Urol. 2010;17(4):359–68.

    Article  PubMed  Google Scholar 

  96. Corcos J, et al. Bone marrow mesenchymal stromal cell therapy for external urethral sphincter restoration in a rat model of stress urinary incontinence. Neurourol Urodyn. 2011;30(3):447–55.

    Article  PubMed  Google Scholar 

  97. Huang X, et al. Core-shell poly(l-lactic acid)-Hyaluronic acid nanofibers for cell culture and pelvic ligament tissue engineering. J Biomed Nanotechnol. 2021;17(3):399–406.

    Article  PubMed  Google Scholar 

  98. Jin M, et al. Transplantation of bone marrow-derived mesenchymal stem cells expressing elastin alleviates pelvic floor dysfunction. Stem Cell Res Ther. 2016;7(1):51.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Jin M, et al. MicroRNA-29 facilitates transplantation of bone marrow-derived mesenchymal stem cells to alleviate pelvic floor dysfunction by repressing elastin. Stem Cell Res Ther. 2016;7(1):167.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Wu X, et al. Acceleration of pelvic tissue generation by overexpression of basic fibroblast growth factor in stem cells. Connect Tissue Res. 2022;63(3):256–68.

    Article  CAS  PubMed  Google Scholar 

  101. Zhuang G, et al. Secretomes of human pluripotent stem cell-derived smooth muscle cell progenitors upregulate extracellular matrix metabolism in the lower urinary tract and vagina. Stem Cell Res Ther. 2021;12(1):228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhou M, et al. M2 Macrophage-derived exosomal miR-501 contributes to pubococcygeal muscle regeneration. Int Immunopharmacol. 2021;101(Pt B): 108223.

    Article  CAS  PubMed  Google Scholar 

  103. Liu X, et al. Exosomes secreted by adipose-derived mesenchymal stem cells regulate type I collagen metabolism in fibroblasts from women with stress urinary incontinence. Stem Cell Res Ther. 2018;9(1):159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kisby CK, et al. Impact of repeat dosing and mesh exposure chronicity on exosome-induced vaginal tissue regeneration in a porcine mesh exposure model. Female Pelvic Med Reconstr Surg. 2021;27(3):195–201.

    Article  PubMed  Google Scholar 

  105. Zhou M, et al. Effects of RSC96 schwann cell-derived exosomes on proliferation, senescence, and apoptosis of dorsal root ganglion cells in vitro. Med Sci Monit. 2018;24:7841–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhang J, et al. Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis. J Transl Med. 2015;13:49.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Zhang B, et al. HucMSC-exosome mediated-wnt4 signaling is required for cutaneous wound healing. Stem Cells. 2015;33(7):2158–68.

    Article  CAS  PubMed  Google Scholar 

  108. Kisby CK, et al. Exosome-induced vaginal tissue regeneration in a porcine mesh exposure model. Female Pelvic Med Reconstr Surg. 2021;27(10):609–15.

    Article  PubMed  Google Scholar 

  109. Xing H, et al. Injectable exosome-functionalized extracellular matrix hydrogel for metabolism balance and pyroptosis regulation in intervertebral disc degeneration. J Nanobiotechnology. 2021;19(1):264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhang ZG, Buller B, Chopp M. Exosomes - beyond stem cells for restorative therapy in stroke and neurological injury. Nat Rev Neurol. 2019;15(4):193–203.

    Article  PubMed  Google Scholar 

  111. Egerman MA, Glass DJ. Signaling pathways controlling skeletal muscle mass. Crit Rev Biochem Mol Biol. 2014;49(1):59–68.

    Article  CAS  PubMed  Google Scholar 

  112. Sugimura-Wakayama Y, et al. Peripheral nerve regeneration by secretomes of stem cells from human exfoliated deciduous teeth. Stem Cells Dev. 2015;24(22):2687–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Haupt M, et al. Lithium modulates miR-1906 levels of mesenchymal stem cell-derived extracellular vesicles contributing to poststroke neuroprotection by toll-like receptor 4 regulation. Stem Cells Transl Med. 2021;10(3):357–73.

    Article  CAS  PubMed  Google Scholar 

  114. Jun EK, et al. Hypoxic conditioned medium from human amniotic fluid-derived mesenchymal stem cells accelerates skin wound healing through TGF-β/SMAD2 and PI3K/Akt pathways. Int J Mol Sci. 2014;15(1):605–28.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Eirin A, et al. MicroRNA and mRNA cargo of extracellular vesicles from porcine adipose tissue-derived mesenchymal stem cells. Gene. 2014;551(1):55–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hu Y, et al. Exosomes derived from pioglitazone-pretreated MSCs accelerate diabetic wound healing through enhancing angiogenesis. J Nanobiotechnology. 2021;19(1):150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kim S, et al. Exosomes secreted from induced pluripotent stem cell-derived mesenchymal stem cells accelerate skin cell proliferation. Int J Mol Sci. 2018;19(10):3119.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Shi Y, et al. Wnt and Notch signaling pathway involved in wound healing by targeting c-Myc and Hes1 separately. Stem Cell Res Ther. 2015;6(1):120.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Wang X, et al. Fetal dermal mesenchymal stem cell-derived exosomes accelerate cutaneous wound healing by activating notch signaling. Stem Cells Int. 2019;2019:2402916.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Zhao G, et al. MSC-derived exosomes attenuate cell death through suppressing AIF nucleus translocation and enhance cutaneous wound healing. Stem Cell Res Ther. 2020;11(1):174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Katoh M, Katoh M. Notch ligand, JAG1, is evolutionarily conserved target of canonical WNT signaling pathway in progenitor cells. Int J Mol Med. 2006;17(4):681–5.

    CAS  PubMed  Google Scholar 

  122. Monroe MN, et al. Extracellular vesicles influence the pulmonary arterial extracellular matrix in congenital diaphragmatic hernia. Pediatr Pulmonol. 2020;55(9):2402–11.

    Article  PubMed  Google Scholar 

  123. Lee YI, et al. Randomized controlled study for the anti-aging effect of human adipocyte-derived mesenchymal stem cell media combined with niacinamide after laser therapy. J Cosmet Dermatol. 2021;20(6):1774–81.

    Article  PubMed  Google Scholar 

  124. Cabral J, et al. Extracellular vesicles as modulators of wound healing. Adv Drug Deliv Rev. 2018;129:394–406.

    Article  CAS  PubMed  Google Scholar 

  125. Kwon TR, et al. Conditioned medium from human bone marrow-derived mesenchymal stem cells promotes skin moisturization and effacement of wrinkles in UVB-irradiated SKH-1 hairless mice. Photodermatol Photoimmunol Photomed. 2016;32(3):120–8.

    Article  CAS  PubMed  Google Scholar 

  126. Chamberlain CS, et al. Exosome-educated macrophages and exosomes differentially improve ligament healing. Stem Cells. 2021;39(1):55–61.

    Article  CAS  PubMed  Google Scholar 

  127. Xu J, et al. Infrapatellar fat pad mesenchymal stromal cell-derived exosomes accelerate tendon-bone healing and intra-articular graft remodeling after anterior cruciate ligament reconstruction. Am J Sports Med. 2022;50(3):662–73.

    Article  PubMed  Google Scholar 

  128. Guo Z, et al. Exosomal MATN3 of urine-derived stem cells ameliorates intervertebral disc degeneration by antisenescence effects and promotes NPC proliferation and ECM synthesis by activating TGF-β. Oxid Med Cell Longev. 2021;2021:5542241.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Zhang B, et al. HucMSC exosome-delivered 14-3-3ζ orchestrates self-control of the wnt response via modulation of YAP during cutaneous regeneration. Stem Cells. 2016;34(10):2485–500.

    Article  CAS  PubMed  Google Scholar 

  130. De Gregorio C, et al. Human adipose-derived mesenchymal stem cell-conditioned medium ameliorates polyneuropathy and foot ulceration in diabetic BKS db/db mice. Stem Cell Res Ther. 2020;11(1):168.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Villatoro AJ, et al. Canine colostrum exosomes: characterization and influence on the canine mesenchymal stem cell secretory profile and fibroblast anti-oxidative capacity. BMC Vet Res. 2020;16(1):417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Li X, et al. Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by promoting vascularization in a diabetic foot ulcer rat model. Exp Mol Med. 2018;50(4):1–14.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Dalirfardouei R, et al. Promising effects of exosomes isolated from menstrual blood-derived mesenchymal stem cell on wound-healing process in diabetic mouse model. J Tissue Eng Regen Med. 2019;13(4):555–68.

    Article  CAS  PubMed  Google Scholar 

  134. Sung SE, et al. Mesenchymal stem cell exosomes derived from feline adipose tissue enhance the effects of anti-inflammation compared to fibroblasts-derived exosomes. Vet Sci. 2021;8(9):182.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Liu W, et al. Melatonin-stimulated MSC-derived exosomes improve diabetic wound healing through regulating macrophage M1 and M2 polarization by targeting the PTEN/AKT pathway. Stem Cell Res Ther. 2020;11(1):259.

    Article  PubMed  PubMed Central  Google Scholar 

  136. da Silva Meirelles L, et al. Improving the therapeutic ability of mesenchymal stem/stromal cells for the treatment of conditions influenced by immune cells. Stem Cells Int. 2019;2019:6820395.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Li P, et al. Progress in exosome isolation techniques. Theranostics. 2017;7(3):789–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Tian Y, et al. Quality and efficiency assessment of six extracellular vesicle isolation methods by nano-flow cytometry. J Extracell Vesicles. 2020;9(1):1697028.

    Article  CAS  PubMed  Google Scholar 

  139. Théry C, et al. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 2006. https://doi.org/10.1002/0471143030.cb0322s30.

    Article  PubMed  Google Scholar 

  140. Hu C, Li L. Preconditioning influences mesenchymal stem cell properties in vitro and in vivo. J Cell Mol Med. 2018;22(3):1428–42.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Jiang L, et al. Exosomes derived from TSG-6 modified mesenchymal stromal cells attenuate scar formation during wound healing. Biochimie. 2020;177:40–9.

    Article  CAS  PubMed  Google Scholar 

  142. Ding J, et al. Exosomes derived from human bone marrow mesenchymal stem cells stimulated by deferoxamine accelerate cutaneous wound healing by promoting angiogenesis. Biomed Res Int. 2019;2019:9742765.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Li B, et al. The MSC-derived exosomal lncRNA H19 promotes wound healing in diabetic foot ulcers by upregulating PTEN via MicroRNA-152-3p. Mol Ther Nucleic Acids. 2020;19:814–26.

    Article  CAS  PubMed  Google Scholar 

  144. Khayambashi P, et al. Hydrogel encapsulation of mesenchymal stem cells and their derived exosomes for tissue engineering. Int J Mol Sci. 2021;22(2):684. https://doi.org/10.3390/ijms22020684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Chen P, et al. Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration. Theranostics. 2019;9(9):2439–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kim YG, Choi J, Kim K. Mesenchymal stem cell-derived exosomes for effective cartilage tissue repair and treatment of osteoarthritis. Biotechnol J. 2020;15(12): e2000082.

    Article  PubMed  Google Scholar 

  147. Qazi TH, et al. Biomaterials that promote cell-cell interactions enhance the paracrine function of MSCs. Biomaterials. 2017;140:103–14.

    Article  CAS  PubMed  Google Scholar 

  148. Shi Q, et al. GMSC-derived exosomes combined with a chitosan/silk hydrogel sponge accelerates wound healing in a diabetic rat skin defect model. Front Physiol. 2017;8:904.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Yang J, et al. Umbilical cord-derived mesenchymal stem cell-derived exosomes combined pluronic F127 hydrogel promote chronic diabetic wound healing and complete skin regeneration. Int J Nanomed. 2020;15:5911–26.

    Article  CAS  Google Scholar 

  150. Xiong Y, et al. All-in-one: multifunctional hydrogel accelerates oxidative diabetic wound healing through timed-release of exosome and fibroblast growth factor. Small. 2022;18(1): e2104229.

    Article  PubMed  Google Scholar 

  151. Kim HY, et al. Mesenchymal stem cell-derived magnetic extracellular nanovesicles for targeting and treatment of ischemic stroke. Biomaterials. 2020;243: 119942.

    Article  CAS  PubMed  Google Scholar 

  152. Kim JY, et al. Defined MSC exosome with high yield and purity to improve regenerative activity. J Tissue Eng. 2021;12:20417314211008624.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Wang L, et al. Preparation of engineered extracellular vesicles derived from human umbilical cord mesenchymal stem cells with ultrasonication for skin rejuvenation. ACS Omega. 2019;4(27):22638–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Joo HS, et al. Current knowledge and future perspectives on mesenchymal stem cell-derived exosomes as a new therapeutic agent. Int J Mol Sci. 2020;21(3):727. https://doi.org/10.3390/ijms21030727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Cao J, et al. Three-dimensional culture of MSCs produces exosomes with improved yield and enhanced therapeutic efficacy for cisplatin-induced acute kidney injury. Stem Cell Res Ther. 2020;11(1):206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Haraszti RA, et al. Exosomes produced from 3D cultures of MSCs by tangential flow filtration show higher yield and improved activity. Mol Ther. 2018;26(12):2838–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Wu Z, He D, Li H. Bioglass enhances the production of exosomes and improves their capability of promoting vascularization. Bioact Mater. 2021;6(3):823–35.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work was supported by the Science and Technolog Commission of Shanghai Municipality (No.21Y11906700 to Yising Chen). Science Commission of Shangha and Technology Municipality (No.20Y11907300 to Yisong Chen).

Author information

Authors and Affiliations

Authors

Contributions

LMX drafted the manuscript; CZX contributed to the analysis of the results; and YZSM and YSC reviewed and modified the manuscript. All authors agreed on the final version. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yisong Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Sima, Y., Xiao, C. et al. Exosomes derived from mesenchymal stromal cells: a promising treatment for pelvic floor dysfunction. Human Cell 36, 937–949 (2023). https://doi.org/10.1007/s13577-023-00887-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-023-00887-6

Keywords

Navigation