Skip to main content
Log in

Identification and validation of a novel long non-coding RNA (LINC01465) in ovarian cancer

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Epithelial Ovarian Cancer (EOC) is a heterogeneous disease usually diagnosed at advanced stages. Therefore, early detection is crucial for better survival. Despite the advances in ovarian research, mechanisms underlying EOC carcinogenesis are not elucidated. We performed chromatin immunoprecipitation sequencing to identify genes regulated by E2F5, a transcription factor involved in ovarian carcinogenesis. Results revealed several putative candidate genes (115 protein-coding genes, 20 lncRNAs, 6 pseudogenes, and 4 miRNAs). A literature review and bioinformatics analysis of these genes revealed a novel lncRNA candidate (LINC01465) in EOC. We validated LINC01465 by quantifying its expression in EOC cell lines and selected OVSAHO and SKOV3 as a model with high LINC01465 levels. We silenced LINC01465 and performed proliferation, wound healing, invasion, and drug resistance assays. Knocking-down LINC01465 resulted in reduced migration, suggesting potential involvement in EOC. Furthermore, to identify the significance of LINC01465 in chemoresistance, we assessed the LINC01465 levels in A2780 S cells treated with malformin, which revealed higher LINC01465 expression as compared to untreated A2780S cells implying the involvement of LINC01465 in cell death. Thus, this study unraveled the repertoire of E2F5 regulated candidate genes and suggested a putative role of LINC01465 in malformin-induced cell death in EOC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability statement

The data sets generated during and/or analyzed during this study are included in this published article.

References

  1. Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD, et al. Ovarian cancer statistics, 2018: Ovarian Cancer Statistics, 2018. CA Cancer J Clin. 2018;68:284–96.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  3. Howlader N, Noone A, Krapcho M, Garshell J, Miller D, Altekruse S, et al. SEER cancer statistics review, 1975–2012. 2014;

  4. Zhang B, Cai FF, Zhong XY. An overview of biomarkers for the ovarian cancer diagnosis. Eur J Obstet Gynecol Reprod Biol. 2011;158:119–23.

    Article  CAS  PubMed  Google Scholar 

  5. Kothandaraman N, Bajic VB, Brendan PN, Huak CY, Keow PB, Razvi K, et al. E2F5 status significantly improves malignancy diagnosis of epithelial ovarian cancer. BMC Cancer. 2010;10:64. https://doi.org/10.1186/1471-2407-10-64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ren B, Cam H, Takahashi Y, Volkert T, Terragni J, Young RA, et al. E2F integrates cell cycle progression with DNA repair, replication, and G(2)/M checkpoints. Genes Dev. 2002;16:245–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liban TJ, Thwaites MJ, Dick FA, Rubin SM. Structural conservation and E2F binding specificity within the retinoblastoma pocket protein family. J Mol Biol. 2016;428:3960–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gaubatz S, Lindeman GJ, Ishida S, Jakoi L, Nevins JR, Livingston DM, et al. E2F4 and E2F5 play an essential role in pocket protein-mediated G1 control. Mol Cell. 2000;6:729–35.

    Article  CAS  PubMed  Google Scholar 

  9. Lu G, Sun Y, An S, Xin S, Ren X, Zhang D, et al. MicroRNA-34a targets FMNL2 and E2F5 and suppresses the progression of colorectal cancer. Exp Mol Pathol. 2015;99:173–9.

    Article  CAS  PubMed  Google Scholar 

  10. Zhao J, Wu X-Y, Ling X-H, Lin Z-Y, Fu X, Deng Y-H, et al. Analysis of genetic aberrations on chromosomal region 8q21-24 identifies E2F5 as an oncogene with copy number gain in prostate cancer. Med Oncol Northwood Lond Engl. 2013;30:465.

    Article  CAS  Google Scholar 

  11. Zou C, Li Y, Cao Y, Zhang J, Jiang J, Sheng Y, et al. Up-regulated MicroRNA-181a induces carcinogenesis in hepatitis B virus-related hepatocellular carcinoma by targeting E2F5. BMC Cancer. 2014;14:97.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ishimoto T, Shiozaki A, Ichikawa D, Fujiwara H, Konishi H, Komatsu S, et al. E2F5 as an independent prognostic factor in esophageal squamous cell carcinoma. Anticancer Res. 2013;33:5415–20.

    PubMed  Google Scholar 

  13. Tian H, Hou L, Xiong Y-M, Huang J-X, Zhang W-H, Pan Y-Y, et al. miR-132 targeting E2F5 suppresses cell proliferation, invasion, migration in ovarian cancer cells. Am J Transl Res. 2016;8(3):1492–501.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Malgundkar SH, Burney I, Al Moundhri M, Al Kalbani M, Lakhtakia R, Okamoto A, et al. FAT4 silencing promotes epithelial-to-mesenchymal transition and invasion via regulation of YAP and β-catenin activity in ovarian cancer. BMC Cancer. 2020. https://doi.org/10.1186/s12885-020-06900-7.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Shridhar V, Lee J, Pandita A. Genetic analysis of early- versus late-stage ovarian tumors. Cancer Res. 2001;61(15):5895–904.

    CAS  PubMed  Google Scholar 

  16. Wei J-W, Huang K, Yang C, Kang C-S. Non-coding RNAs as regulators in epigenetics. Oncol Rep. 2017;37:3–9.

    Article  PubMed  Google Scholar 

  17. Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009;136:629–41.

    Article  CAS  PubMed  Google Scholar 

  18. Akhade VS, Pal D, Kanduri C. Long noncoding RNA: genome organization and mechanism of action. Adv Exp Med Biol. 2017;1008:47–74.

    Article  CAS  PubMed  Google Scholar 

  19. Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10:155–9.

    Article  CAS  PubMed  Google Scholar 

  20. Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011;43:904–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zamaraev AV, Volik PI, Sukhikh GT, Kopeina GS, Zhivotovsky B. Long non-coding RNAs: a view to kill ovarian cancer. Biochim Biophys Acta BBA. 2021;1876: 188584.

    CAS  Google Scholar 

  22. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  23. Wery M, Kwapisz M, Morillon A. Noncoding RNAs in gene regulation. WIREs Syst Biol Med. 2011;3:728–38.

    Article  CAS  Google Scholar 

  24. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language. Cell. 2011;146:353–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhou R-S, Zhang E-X, Sun Q-F, Ye Z-J, Liu J-W, Zhou D-H, et al. Integrated analysis of lncRNA-miRNA-mRNA ceRNA network in squamous cell carcinoma of tongue. BMC Cancer. 2019;19:779.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Prensner JR, Chinnaiyan AM. The emergence of lncRNAs in cancer biology. Cancer Discov. 2011;1:391–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yu C, Sun J, Leng X, Yang J. Long noncoding RNA SNHG6 functions as a competing endogenous RNA by sponging miR-181a-5p to regulate E2F5 expression in colorectal cancer. Cancer Manag Res. 2019;11:611–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang Y, Wang X, Han L, Hu D. LncRNA MALAT1 regulates the progression and cisplatin resistance of ovarian cancer cells via Modulating miR-1271-5p/E2F5 Axis. Cancer Manag Res. 2020;12:9999–10010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang L, Yu M, Zhao S. lncRNA MEG3 modified epithelial-mesenchymal transition of ovarian cancer cells by sponging miR-219a-5p and regulating EGFR. J Cell Biochem. 2019;120:17709–22.

    Article  CAS  PubMed  Google Scholar 

  30. Patterson AD, Gonzalez FJ, Perdew GH, Peters JM. Molecular regulation of carcinogenesis: friend and foe. Toxicol Sci. 2018;165:277–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10:1523.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mi H, Muruganujan A, Ebert D, Huang X, Thomas PD. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 2019;47:D419–26.

    Article  CAS  PubMed  Google Scholar 

  33. Gorai I, Nakazawa T, Miyagi E, Hirahara F, Nagashima Y, Minaguchi H. Establishment and characterization of two human ovarian clear cell adenocarcinoma lines from metastatic lesions with different properties. Gynecol Oncol. 1995;57(1):33–46. https://doi.org/10.1006/gyno.1995.1097. (PMID: 7535723).

    Article  CAS  PubMed  Google Scholar 

  34. Domcke S, Sinha R, Levine DA, Sander C, Schultz N. Evaluating cell lines as tumour models by comparison of genomic profiles. Nat Commun. 2013. https://doi.org/10.1038/ncomms3126.

    Article  PubMed  Google Scholar 

  35. Anglesio MS, Wiegand KC, Melnyk N, Chow C, Salamanca C, Prentice LM, et al. Type-specific cell line models for type-specific ovarian cancer research. PLoS ONE. 2013;8:e72162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods. 2001;25:402–8.

    Article  CAS  PubMed  Google Scholar 

  37. Abdullah N, Tamimi Y, Dobretsov S, Balushi NA, Alshekaili J, Al Balushi H, et al. Malformin-A1 (MA1) sensitizes chemoresistant ovarian cancer cells to cisplatin-induced apoptosis. Mol Basel Switz. 2021;26:3624.

    CAS  Google Scholar 

  38. Zheng Z, Li X, You H, Zheng X, Ruan X. LncRNA SOCS2-AS1 inhibits progression and metastasis of colorectal cancer through stabilizing SOCS2 and sponging miR-1264. Aging. 2020;12:10517–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li S-M, Wu H-L, Yu X, Tang K, Wang S-G, Ye Z-Q, et al. The putative tumour suppressor miR-1-3p modulates prostate cancer cell aggressiveness by repressing E2F5 and PFTK1. J Exp Clin Cancer Res. 2018. https://doi.org/10.1186/s13046-018-0895-z.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Huang J, Lin F, Xu C, Xu Y. LINC00662 facilitates osteosarcoma progression via sponging miR-103a-3p and regulating SIK2 expression. J Tissue Eng Regen Med. 2021;15:1082–91.

    Article  CAS  PubMed  Google Scholar 

  41. Zhai Y, Liu Y, Wang Z, Wang W, Zhou J, Lu J. Long non-coding RNA LINC00313 accelerates cervical carcinoma progression by miR-4677-3p/CDK6 axis. OncoTargets Ther. 2021;14:2213–26.

    Article  Google Scholar 

  42. da Conceição IMCA, Luscher-Dias T, Queiroz LR, de Melo AGB, Machado CR, Gomes KB, et al. Metformin treatment modulates long non-coding RNA isoforms expression in human cells. Non-Coding RNA. 2022;8:68.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wang B-G, Jiang L-Y, Xu Q. A comprehensive evaluation for polymorphisms in let-7 family in cancer risk and prognosis: a system review and meta-analysis. 2018. Biosci Rep. https://doi.org/10.1042/BSR20180273.

  44. Yang N, Kaur S, Volinia S, Greshock J, Lassus H, Hasegawa K, et al. MicroRNA microarray identifies Let-7i as a novel biomarker and therapeutic target in human epithelial ovarian cancer. Cancer Res. 2008;68:10307–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was funded by the grant from His Majesty Trust Fund (SR/MED/BIOC/14/01).

Author information

Authors and Affiliations

Authors

Contributions

YT participated in the conceptualization and designed the project methodology. SH, NA, HB, IG, ZH, and HB performed the experiments. SH interpreted the data and wrote the manuscript under the supervision of YT. AO, IB, MK, HB, and RL contributed to discussing and reviewing the clinical part of the project.

Corresponding author

Correspondence to Yahya Tamimi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malgundkar, S.H., Hassan, N.A., Al Badi, H. et al. Identification and validation of a novel long non-coding RNA (LINC01465) in ovarian cancer. Human Cell 36, 762–774 (2023). https://doi.org/10.1007/s13577-022-00842-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-022-00842-x

Keywords

Navigation