Skip to main content

Advertisement

Log in

Pyroptosis: a novel signature to predict prognosis and immunotherapy response in gliomas

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Gliomas are the most common primary brain tumors and are highly malignant with a poor prognosis. Pyroptosis, an inflammatory form of programmed cell death, promotes the inflammatory cell death of cancer. Studies have demonstrated that pyroptosis can promote the inflammatory cell death (ICD) of cancer, thus affecting the prognosis of cancer patients. Therefore, genes that control pyroptosis could be a promising candidate bio-indicator in tumor therapy. The function of pyroptosis-related genes (PRGs) in gliomas was investigated based on the Chinese Glioma Genome Atlas (CGGA), the Cancer Genome Atlas (TCGA) and the Repository of Molecular Brain Neoplasia Data (Rembrandt) databases. In this study, using the non-negative matrix factorization (NMF) clustering method, 26 PRGs from the RNA sequencing data were divided into two subgroups. The LASSO and Cox regression was used to develop a 4-gene (BAX, Caspase-4, Caspase-8, PLCG1) risk signature, and all glioma patients in the CGGA, TCGA and Rembrandt cohorts were divided into low- and high-risk groups. The results demonstrate that the gene risk signature related to clinical features can be used as an independent prognostic indicator in glioma patients. Moreover, the high-risk subtype had rich immune infiltration and high expression of immune checkpoint genes in the tumor immune microenvironment (TIME). The analysis of the Submap algorithm shows that patients in the high-risk group could benefit more from anti-PD1 treatment. The risk characteristics associated with pyroptosis proposed in this study play an essential role in TIME and can potentially predict the prognosis and immunotherapeutic response of glioma patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets used in this study are available in CGGA, TCGA and Rembrandt databases.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49. https://doi.org/10.3322/caac.21660.

    Article  PubMed  Google Scholar 

  2. Zanders ED, Svensson F, Bailey DS. Therapy for glioblastoma: is it working? Drug Discov Today. 2019;24:1193–201. https://doi.org/10.1016/j.drudis.2019.03.008.

    Article  PubMed  Google Scholar 

  3. Aldape K, Brindle KM, Chesler L, Chopra R, Gajjar A, Gilbert MR, et al. Challenges to curing primary brain tumours. Nat Rev Clin Oncol. 2019;16:509–20. https://doi.org/10.1038/s41571-019-0177-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hanahan D, Weinberg R. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74. https://doi.org/10.1016/j.cell.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  5. De Palma M, Biziato D, Petrova TV. Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer. 2017;17:457–74. https://doi.org/10.1038/nrc.2017.51.

    Article  CAS  PubMed  Google Scholar 

  6. Broekman ML, Maas SLN, Abels ER, Mempel TR, Krichevsky AM, Breakefield XO. Multidimensional communication in the microenvirons of glioblastoma. Nat Rev Neurol. 2018;14:482–95. https://doi.org/10.1038/s41582-018-0025-8.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25:486–541. https://doi.org/10.1038/s41418-017-0012-4.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cookson BT, Brennan MA. Pro-inflammatory programmed cell death. Trends Microbiol. 2001;9:113–4. https://doi.org/10.1016/s0966-842x(00)01936-3.

    Article  CAS  PubMed  Google Scholar 

  9. Wu D, Wei C, Li Y, Yang X, Zhou S. Pyroptosis, a new breakthrough in cancer treatment. Front Oncol. 2021;11: 698811. https://doi.org/10.3389/fonc.2021.698811.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Nagarajan K, Soundarapandian K, Thorne RF, Li D, Li D. Activation of pyroptotic cell death pathways in cancer: an alternative therapeutic approach. Transl Oncol. 2019;12:925–31. https://doi.org/10.1016/j.tranon.2019.04.010.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yu P, Zhang X, Liu N, Tang L, Peng C, Chen X. Pyroptosis: mechanisms and diseases. Signal Transduct Target Ther. 2021;6:128. https://doi.org/10.1038/s41392-021-00507-5.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discovery. 2019;18:197–218. https://doi.org/10.1038/s41573-018-0007-y.

    Article  CAS  PubMed  Google Scholar 

  13. Xiao Q, Nobre A, Piñeiro P, Berciano-Guerrero M, Alba E, Cobo M, et al. Genetic and epigenetic biomarkers of immune checkpoint blockade response. J Clin Med. 2020;9:286. https://doi.org/10.3390/jcm9010286.

    Article  CAS  PubMed Central  Google Scholar 

  14. Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature. 2017;541:321–30. https://doi.org/10.1038/nature21349.

    Article  CAS  PubMed  Google Scholar 

  15. Jackson CM, Choi J, Lim M. Mechanisms of immunotherapy resistance: lessons from glioblastoma. Nat Immunol. 2019;20:1100–9. https://doi.org/10.1038/s41590-019-0433-y.

    Article  CAS  PubMed  Google Scholar 

  16. Wang Q, Wang Y, Ding J, Wang C, Zhou X, Gao W, et al. A bioorthogonal system reveals antitumour immune function of pyroptosis. Nature. 2020;579:421–6. https://doi.org/10.1038/s41586-020-2079-1.

    Article  CAS  PubMed  Google Scholar 

  17. Zhao Z, Zhang KN, Wang Q, Li G, Zeng F, Zhang Y, et al. Chinese Glioma Genome Atlas (CGGA): a comprehensive resource with functional genomic data from chinese gliomas. Genomics Proteomics Bioinform. 2021;19:1–12. https://doi.org/10.1016/j.gpb.2020.10.005.

    Article  CAS  Google Scholar 

  18. Madhavan S, Zenklusen JC, Kotliarov Y, Sahni H, Fine HA, Buetow K. Rembrandt: helping personalized medicine become a reality through integrative translational research. Mol Cancer Res MCR. 2009;7:157–67. https://doi.org/10.1158/1541-7786.Mcr-08-0435.

    Article  CAS  PubMed  Google Scholar 

  19. Xia X, Wang X, Cheng Z, Qin W, Lei L, Jiang J, et al. The role of pyroptosis in cancer: pro-cancer or pro-"host"? Cell Death Dis. 2019;10:650. https://doi.org/10.1038/s41419-019-1883-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Karki R, Kanneganti TD. Diverging inflammasome signals in tumorigenesis and potential targeting. Nat Rev Cancer. 2019;19:197–214. https://doi.org/10.1038/s41568-019-0123-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang B, Yin Q. AIM2 inflammasome activation and regulation: a structural perspective. J Struct Biol. 2017;200:279–82. https://doi.org/10.1016/j.jsb.2017.08.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Man SM, Kanneganti TD. Regulation of inflammasome activation. Immunol Rev. 2015;265:6–21. https://doi.org/10.1111/imr.12296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gaujoux R, Seoighe C. A flexible R package for nonnegative matrix factorization. BMC Bioinform. 2010;11:367. https://doi.org/10.1186/1471-2105-11-367.

    Article  CAS  Google Scholar 

  24. Hoshida Y. Nearest template prediction: a single-sample-based flexible class prediction with confidence assessment. PLoS ONE. 2010;5: e15543. https://doi.org/10.1371/journal.pone.0015543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tibshirani R, Hastie T, Narasimhan B, Chu G. Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci USA. 2002;99:6567–72. https://doi.org/10.1073/pnas.082099299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tibshirani R. The lasso method for variable selection in the Cox model. Stat Med. 1997;16:385–95. https://doi.org/10.1002/(sici)1097-0258(19970228)16:4%3c385::aid-sim380%3e3.0.co;2-3.

    Article  CAS  PubMed  Google Scholar 

  27. Simon N, Friedman J, Hastie T, Tibshirani R. Regularization paths for Cox’s proportional hazards model via coordinate descent. J Stat Softw. 2011;39:1–13. https://doi.org/10.18637/jss.v039.i05.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–7. https://doi.org/10.1089/omi.2011.0118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yu G, He QY. ReactomePA: an R/Bioconductor package for reactome pathway analysis and visualization. Mol BioSyst. 2016;12:477–9. https://doi.org/10.1039/c5mb00663e.

    Article  CAS  PubMed  Google Scholar 

  30. Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, Petitprez F, et al. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol. 2016;17:218. https://doi.org/10.1186/s13059-016-1070-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bindea G, Mlecnik B, Tosolini M, Kirilovsky A, Waldner M, Obenauf AC, et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity. 2013;39:782–95. https://doi.org/10.1016/j.immuni.2013.10.003.

    Article  CAS  PubMed  Google Scholar 

  32. Yoshihara K, Shahmoradgoli M, Martínez E, Vegesna R, Kim H, Torres-Garcia W, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun. 2013;4:2612. https://doi.org/10.1038/ncomms3612.

    Article  CAS  PubMed  Google Scholar 

  33. Mayakonda A, Lin D-C, Assenov Y, Plass C, Koeffler HP. Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res. 2018;28:1747–56. https://doi.org/10.1101/gr.239244.118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mroz EA, Rocco JW. MATH, a novel measure of intratumor genetic heterogeneity, is high in poor-outcome classes of head and neck squamous cell carcinoma. Oral Oncol. 2013;49:211–5. https://doi.org/10.1016/j.oraloncology.2012.09.007.

    Article  CAS  PubMed  Google Scholar 

  35. Hoshida Y, Brunet JP, Tamayo P, Golub TR, Mesirov JP. Subclass mapping: identifying common subtypes in independent disease data sets. PLoS ONE. 2007;2: e1195. https://doi.org/10.1371/journal.pone.0001195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Walunas TL, Lenschow DJ, Bakker CY, Linsley PS, Freeman GJ, Green JM, et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity. 1994;1:405–13. https://doi.org/10.1016/1074-7613(94)90071-x.

    Article  CAS  PubMed  Google Scholar 

  37. Ahmadzadeh M, Johnson LA, Heemskerk B, Wunderlich JR, Dudley ME, White DE, et al. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood. 2009;114:1537–44. https://doi.org/10.1182/blood-2008-12-195792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med. 2010;207:2187–94. https://doi.org/10.1084/jem.20100643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mumprecht S, Schürch C, Schwaller J, Solenthaler M, Ochsenbein AF. Programmed death 1 signaling on chronic myeloid leukemia-specific T cells results in T-cell exhaustion and disease progression. Blood. 2009;114:1528–36. https://doi.org/10.1182/blood-2008-09-179697.

    Article  CAS  PubMed  Google Scholar 

  40. Pauken KE, Wherry EJ. Overcoming T cell exhaustion in infection and cancer. Trends Immunol. 2015;36:265–76. https://doi.org/10.1016/j.it.2015.02.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lei Q, Wang D, Sun K, Wang L, Zhang Y. Resistance mechanisms of anti-PD1/PDL1 therapy in solid tumors. Front Cell Dev Biol. 2020;8:672. https://doi.org/10.3389/fcell.2020.00672.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Huang YH, Zhu C, Kondo Y, Anderson AC, Gandhi A, Russell A, et al. CEACAM1 regulates TIM-3-mediated tolerance and exhaustion. Nature. 2015;517:386–90. https://doi.org/10.1038/nature13848.

    Article  CAS  PubMed  Google Scholar 

  43. Zöller J, Ebel JF, Khairnar V, Schmitt V, Klopfleisch R, Meiners J, et al. CEACAM1 regulates CD8(+) T cell immunity and protects from severe pathology during Citrobacter rodentium induced colitis. Gut microbes. 2020;11:1790–805. https://doi.org/10.1080/19490976.2020.1775464.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wherry EJ. T cell exhaustion. Nat Immunol. 2011;12:492–9. https://doi.org/10.1038/ni.2035.

    Article  CAS  PubMed  Google Scholar 

  45. Ruffo E, Wu RC, Bruno TC, Workman CJ, Vignali DAA. Lymphocyte-activation gene 3 (LAG3): the next immune checkpoint receptor. Semin Immunol. 2019;42: 101305. https://doi.org/10.1016/j.smim.2019.101305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dougall WC, Kurtulus S, Smyth MJ, Anderson AC. TIGIT and CD96: new checkpoint receptor targets for cancer immunotherapy. Immunol Rev. 2017;276:112–20. https://doi.org/10.1111/imr.12518.

    Article  CAS  PubMed  Google Scholar 

  47. Roh W, Chen PL, Reuben A, Spencer CN, Prieto PA, Miller JP, et al. Integrated molecular analysis of tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals markers of response and resistance. Sci Transl Med. 2017;9:eaah3560. https://doi.org/10.1126/scitranslmed.aah3560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lang F, Liu Y, Chou FJ, Yang C. Genotoxic therapy and resistance mechanism in gliomas. Pharmacol Ther. 2021;228: 107922. https://doi.org/10.1016/j.pharmthera.2021.107922.

    Article  CAS  PubMed  Google Scholar 

  49. Yang Y, Bai L, Liao W, Feng M, Zhang M, Wu Q, et al. The role of non-apoptotic cell death in the treatment and drug-resistance of digestive tumors. Exp Cell Res. 2021;405: 112678. https://doi.org/10.1016/j.yexcr.2021.112678.

    Article  CAS  PubMed  Google Scholar 

  50. Tang R, Xu J, Zhang B, Liu J, Liang C, Hua J, et al. Ferroptosis, necroptosis, and pyroptosis in anticancer immunity. J Hematol Oncol. 2020;13:110. https://doi.org/10.1186/s13045-020-00946-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rosenbaum SR, Wilski NA, Aplin AE. Fueling the fire: inflammatory forms of cell death and implications for cancer immunotherapy. Cancer Discov. 2021;11:266–81. https://doi.org/10.1158/2159-8290.CD-20-0805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hou J, Hsu JM, Hung MC. Molecular mechanisms and functions of pyroptosis in inflammation and antitumor immunity. Mol Cell. 2021. https://doi.org/10.1016/j.molcel.2021.09.003.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wang Y, Gao W, Shi X, Ding J, Liu W, He H, et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature. 2017;547:99–103. https://doi.org/10.1038/nature22393.

    Article  CAS  PubMed  Google Scholar 

  54. Hu L, Chen M, Chen X, Zhao C, Fang Z, Wang H, et al. Chemotherapy-induced pyroptosis is mediated by BAK/BAX-caspase-3-GSDME pathway and inhibited by 2-bromopalmitate. Cell Death Dis. 2020;11:281. https://doi.org/10.1038/s41419-020-2476-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fang Y, Tian S, Pan Y, Li W, Wang Q, Tang Y, et al. Pyroptosis: a new frontier in cancer. Biomed Pharmacother. 2020;121: 109595. https://doi.org/10.1016/j.biopha.2019.109595.

    Article  CAS  PubMed  Google Scholar 

  56. Shi J, Gao W, Shao F. Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci. 2017;42:245–54. https://doi.org/10.1016/j.tibs.2016.10.004.

    Article  CAS  PubMed  Google Scholar 

  57. Fritsch M, Günther SD, Schwarzer R, Albert M-C, Schorn F, Werthenbach JP, et al. Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis. Nature. 2019;575:683–7. https://doi.org/10.1038/s41586-019-1770-6.

    Article  CAS  PubMed  Google Scholar 

  58. Kadamur G, Ross EM. Mammalian phospholipase C. Annu Rev Physiol. 2013;75:127–54. https://doi.org/10.1146/annurev-physiol-030212-183750.

    Article  CAS  PubMed  Google Scholar 

  59. Kang R, Zeng L, Zhu S, Xie Y, Liu J, Wen Q, et al. Lipid peroxidation drives gasdermin D-mediated pyroptosis in lethal polymicrobial sepsis. Cell Host Microbe. 2018;24:97-108.e4. https://doi.org/10.1016/j.chom.2018.05.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature. 2016;535:153–8. https://doi.org/10.1038/nature18629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lacey CA, Mitchell WJ, Dadelahi AS, Skyberg JA. Caspase-1 and caspase-11 mediate pyroptosis, inflammation, and control of brucella joint infection. Infect Immun. 2018. https://doi.org/10.1128/iai.00361-18.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Carrot-Zhang J, Chambwe N, Damrauer JS, Knijnenburg TA, Robertson AG, Yau C, et al. Comprehensive analysis of genetic ancestry and its molecular correlates in cancer. Cancer Cell. 2020;37:639-54.e6. https://doi.org/10.1016/j.ccell.2020.04.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sayaman RW, Saad M, Thorsson V, Hu D, Hendrickx W, Roelands J, et al. Germline genetic contribution to the immune landscape of cancer. Immunity. 2021;54:367-86.e8. https://doi.org/10.1016/j.immuni.2021.01.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. El-Arabey AA, Abdalla M, Abd-Allah AR. SnapShot: TP53 status and macrophages infiltration in TCGA-analyzed tumors. Int Immunopharmacol. 2020;86: 106758. https://doi.org/10.1016/j.intimp.2020.106758.

    Article  CAS  PubMed  Google Scholar 

  65. Du T, Gao J, Li P, Wang Y, Qi Q, Liu X, et al. Pyroptosis, metabolism, and tumor immune microenvironment. Clin Transl Med. 2021;11: e492. https://doi.org/10.1002/ctm2.492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dinarello CA. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol Rev. 2018;281:8–27. https://doi.org/10.1111/imr.12621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fisher DT, Appenheimer MM, Evans SS. The two faces of IL-6 in the tumor microenvironment. Semin Immunol. 2014;26:38–47. https://doi.org/10.1016/j.smim.2014.01.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol. 2014;6: a016295. https://doi.org/10.1101/cshperspect.a016295.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–64. https://doi.org/10.1038/nrc3239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Carbone DP, Gandara DR, Antonia SJ, Zielinski C, Paz-Ares L. Non-small-cell lung cancer: role of the immune system and potential for immunotherapy. J Thorac Oncol. 2015;10:974–84. https://doi.org/10.1097/jto.0000000000000551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Intlekofer AM, Thompson CB. At the bench: preclinical rationale for CTLA-4 and PD-1 blockade as cancer immunotherapy. J Leukoc Biol. 2013;94:25–39. https://doi.org/10.1189/jlb.1212621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Josefowicz SZ, Lu LF, Rudensky AY. Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol. 2012;30:531–64. https://doi.org/10.1146/annurev.immunol.25.022106.141623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lenschow DJ, Walunas TL, Bluestone JA. CD28/B7 system of T cell costimulation. Annu Rev Immunol. 1996;14:233–58. https://doi.org/10.1146/annurev.immunol.14.1.233.

    Article  CAS  PubMed  Google Scholar 

  74. Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science (New York, NY). 2008;322:271–5. https://doi.org/10.1126/science.1160062.

    Article  CAS  Google Scholar 

  75. Peggs KS, Quezada SA, Chambers CA, Korman AJ, Allison JP. Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. J Exp Med. 2009;206:1717–25. https://doi.org/10.1084/jem.20082492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000;192:1027–34. https://doi.org/10.1084/jem.192.7.1027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Francisco LM, Salinas VH, Brown KE, Vanguri VK, Freeman GJ, Kuchroo VK, et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med. 2009;206:3015–29. https://doi.org/10.1084/jem.20090847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wolf Y, Bartok O, Patkar S, Eli GB, Cohen S, Litchfield K, et al. UVB-induced tumor heterogeneity diminishes immune response in melanoma. Cell. 2019;179:219-35.e21. https://doi.org/10.1016/j.cell.2019.08.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hellmann MD, Ciuleanu TE, Pluzanski A, Lee JS, Otterson GA, Audigier-Valette C, et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med. 2018;378:2093–104. https://doi.org/10.1056/NEJMoa1801946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Germano G, Lamba S, Rospo G, Barault L, Magrì A, Maione F, et al. Inactivation of DNA repair triggers neoantigen generation and impairs tumour growth. Nature. 2017;552:116–20. https://doi.org/10.1038/nature24673.

    Article  CAS  PubMed  Google Scholar 

  81. Hellmann MD, Nathanson T, Rizvi H, Creelan BC, Sanchez-Vega F, Ahuja A, et al. Genomic features of response to combination immunotherapy in patients with advanced non-small-cell lung cancer. Cancer Cell. 2018;33:843-52.e4. https://doi.org/10.1016/j.ccell.2018.03.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Galluzzi L, Chan TA, Kroemer G, Wolchok JD, López-Soto A. The hallmarks of successful anticancer immunotherapy. Sci Transl Med. 2018. https://doi.org/10.1126/scitranslmed.aat7807.

    Article  PubMed  Google Scholar 

  83. Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med. 2015;372:311–9. https://doi.org/10.1056/NEJMoa1411087.

    Article  CAS  PubMed  Google Scholar 

  84. Zhang M, Cheng Y, Xue Z, Sun Q, Zhang J. A novel pyroptosis-related gene signature predicts the prognosis of glioma through immune infiltration. BMC Cancer. 2021;21:1311. https://doi.org/10.1186/s12885-021-09046-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chao B, Jiang F, Bai H, Meng P, Wang L, Wang F. Predicting the prognosis of glioma by pyroptosis-related signature. J Cell Mol Med. 2022;26:133–43. https://doi.org/10.1111/jcmm.17061.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the contributions of CGGA, TCGA and Rembrandt database for providing free access to online data.

Funding

This work was supported by Finance science and technology project of hainan province (Grant No. ZDYF2022SHFZ088 and ZDYF2019129), the National Nature Science Foundation of China (Grant No. 82060456), the Innovative Research Project of Hainan Graduate Students (Grant No. Qhyb2021-58) and project supported by Hainan Province Clinical Medical Center.

Author information

Authors and Affiliations

Authors

Contributions

CY and KY conceived and designed the study and drafted the manuscript. GH, ZC and SZ performed data analysis and manuscript writing. JT and WH revised the manuscript. All authors reviewed the manuscript. GH, ZC and SZ contributed equally to this work.

Corresponding authors

Correspondence to Kun Yang or Chunshui Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics approval

The Medical Ethics Committee of the First Affiliated Hospital of Hainan Medical University reviewed and approved the acquisition of tumor specimens (2022 (Scientific Research L) No. (145)).

Consent to participate

The data processing met the CGGA, TCGA and Rembrandt database publication guidelines.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10790 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, G., Chen, Z., Zhuo, S. et al. Pyroptosis: a novel signature to predict prognosis and immunotherapy response in gliomas. Human Cell 35, 1976–1992 (2022). https://doi.org/10.1007/s13577-022-00791-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-022-00791-5

Keywords

Navigation